FlexSim Knowledge Base
Announcements, articles, and guides to help you take your simulations to the next level.
Sort by:
This article reviews one method for making a state Gantt chart for the default and alternate state profiles: Example Model You can download the model for this walkthrough ( stateganttdemo.fsm). The model has two multiprocessors, in a Group called Multiprocessors. Each multiprocessor has two processes: Process1 and Process2. To make the chart, we will first make a Statistics Collector, and then a Calculated Table. Making the Statistics Collector Make a new Statistics Collector. On the Event Listening tab, use the Sampler to listen to On State Change of the group of multiprocessors. You can leave the parameter names alone. However, we need to add a label, so we can record the profile number. Select the new event, and then use the green plus button in the Event Labels area to add a label for this event. Set its name to ProfileNum, and its value to the following code: data.StateProfileNode?.rank The event settings should look something like the following: Next we need to set the row mode. Make sure it's set to Add Per Event, with no row value. As the final configuration step for the statistics collector, we need to set up the columns. There should be four columns in this collector: Time - In the pick options, select Time, then Model Date/Time Object - In the pick options, select IDs, then ID of Event Object Profile - Type data.ProfileNum for the value. The default storage and display format are fine. State Type the following code: data.eventNode.as(Object).stats.state(data.ProfileNum).profile[data.ToState + 1][1] Set the Storage Type to String The code is necessary because On State Change occurs before the state is set to the new state. So the code is looking up the name of the future state in the profile table. When you reset and run this model, you will see a table like the following: Making the Calculated Table Make a new Calculated Table, and give it the following query: SELECT Object, Time as StartTime, LEAD(Time) OVER (PARTITION BY Object) AS EndTime, State FROM StatisticsCollector1 WHERE Profile = 1 This query creates an Object column as well as a Time column. To get the time that the current state ends, we look to when the next state begins. The LEAD() function looks ahead in the table, and the OVER(PARTITION BY Object) clause makes sure that LEAD() makes sure to look to the next row with the same Object. We also record the state column, and filter out the standard state profile, keeping the special multiprocessor state profile. Once you get this query to work, change the Update Mode to By Interval, and set the interval to 20 or 30. Since the Statistics Collector table will get longer and longer, the query will become more and more expensive as the model runs. To control how much time is spent running the query, we use an interval. The final configuration of the Calculated Table should look like this: You will need to set the Display Format of each column on the Display Format tab (Object, Date/Time, Date/Time, and Raw). Making the Chart Make a new dashboard, and create a Gantt chart. Point it at the Calculated Table. When you do that, the chart should fill in all the other columns correctly. Charting Both State Profiles for Both Objects In order to chart both profiles on the same chart, we first need to add a column to the Statistics Collector, and then update the query in the Calculated Table. The new column should be named ObjectAndProfile, and a Storage Type of String. Use the following code for a value: data.eventNode.name + " - " + string.fromNum(data.ProfileNum.as(int)) Then change your query to the following: SELECT ObjectAndProfile, Time as StartTime, LEAD(Time) OVER (PARTITION BY ObjectAndProfile) AS EndTime, State FROM StatisticsCollector1 With these changes, you should be able to view both profiles for both multiprocessors.
View full article
This article demonstrates how to use the Statistics Collector and Calculated Tables to create three utilization pie charts: a state pie chart an individual utilization pie chart a group utilization pie chart Example Model You can download that model (utilizationdemo.fsm) to see the working demonstration. The model has a Source, a Processor, a Sink, a Dispatcher, and several operators. The operators carry flow items to and from the processor, as well as operate the processor. The operators are in a group called Operators. State Pie Chart First, we need to make a Statistics Collector that collects state data for the operators. The easiest way to do that is to use the pin button to pin the State statistic for any object in the model. Use the pin button to pin a pie chart to a new dashboard. The pin button creates a new Statistics Collector, as well as a new chart. Open the properties for new Statistics Collector (double click on it in the toolbox), and change its name to OperatorStatePie. On the Data Recording tab, remove the object from the Enumerated Rows table. Using the sampler, add the Operators group (you can sample it in the toolbox). Now, when you reset and run the model, the state chart should work. Utilization Pie Chart Often, users need to combine sever states into a single value that can be used to determine the utilization of an object in the model. In order to gather this data, we can use a calculated table. Make a new Calculated Table, and give it the following query: SELECT Object, (TravelEmpty + TravelLoaded + Utilize) / Model.statisticalTime AS Busy, 1 - Busy AS NotBusy FROM OperatorStatePie This query sums the time in several states into a total, and then divides by the statistical time. Be sure to set the name of the table (the part after FROM) to the name of your Statistics Collector. Run the model for a little bit of time, and then click the Update button on the properties window. You should get a table like the following: Instead of viewing the data as just numbers, change the Display Format of each column to better represent the data. On the Display Format tab, set the Object column to display Object data. Then set the other two columns to display percentages. When you switch back to the Calculations tab, the data will be formatted: Once we get the query right, set the update mode to Always. This will updated the data in the table whenever the data is needed, including every time the chart draws. If updating the table is computationally expensive, you can use the By Interval or Manual options. Generally, a small number of rows (1-100) is small enough to use the Always mode. Regardless of the update mode, we can make a chart based on this table. In the dashboard, create a new Pie Chart. For the Data Source, select the calculated table. For the Pie Title, select the Object column. For the Center Data, select the Busy column. Be sure to include the Busy and NotBusy columns. This should show you a pie chart, comparing the operator's busy and not busy time. Group Utilization To make the final utilization chart, make a second calculated table. The query for the second table should be as follows: SELECT AVG(Busy) AS AvgBusy, AVG(NotBusy) AS AvgNotBusy FROM CalculatedTable1 Again, use the Update button to be sure the query is correct. Once it is, set the update mode to Always. Finally, you can make the pie chart for this data: Things to Try If you feel comfortable with this model, you can try a couple extra tasks, such as: Remove one of the operators from the group, reset, and run. The charts will update accordingly. Add the Processor to the group, reset, and run. The state chart should work automatically.
View full article
In version 2018 and on, you can make this chart by dragging the Throughput Per Hour by Type template from the dashboard library. If you install the template (available on the Advanced tab), you will see a Process Flow and a Statistics Collector appear in your toolbox. One of the most common questions from FlexSim users is as follows: How do I make a chart that shows the output every hour? You can make this chart in three steps. Configure the Statistics Collector First, you need a Statistics Collector. Make a new one in the toolbox (click the green plus button, select Statistics, and then select Statistics Collector). On the event listening tab, use the green plus button to add a timer event, and configure as shown here: This timer event will fire every hour (every 3600 seconds) in the model. Notice the shared label, that is storing all members of the Processors group as an array. We will use this label in the next step. Once you have configured the timer, then you need to set up the row mode for this collector. We want one row per processor, and we need to use the Processors label as the row value. Since the Processors label is an array, we will get three rows per timer event, each row corresponding to a processor. Finally, we can add the columns. The three columns are as follows: Time - use the pick list to select Model Date/Time from the Time menu Object - use the pick list to select ID of row value from the IDs menu Output - use the pick list to select Statistic by Object from the Object Statistics menu Use data.rowValue as the object value in the popup If you use the pick options to choose these options, then the storage type and display format options should be set automatically. With these three columns in place, we can watch the table populate. Reset and run the model at high speed. Every model hour, you should see a new set of rows appear, one for each processor in the group. The table will look something like this: Configure the Calculated Table The Statistics Collector table from the previous steps is close to what we want, except that the output value always increases as the model runs. But what about the output for just a single hour? To get that value, we can use a Calculated Table. Make a new calculated table, and give it the following query (in the Query field): SELECT Time, Object, ISNULL(Output - LAG(Output) OVER (PARTITION BY Object), 0) AS OutputPerHour FROM StatisticsCollector1 This query uses SQL window functions. Basically, it says that each row's value should subtract the previous row's value for the object. In addition, if that value is NULL (because it's the first row), then just use a value. If you reset and run the model, so that the collector table has at least a few rows in it, click the Update button to run the query. Notice that the Time and Object columns show numbers. This is because the Calculated Table can't infer the formatting of the column. To set the formatting, use the Display Format Tab. You may also wish the table to update every hour, with the Statistics Collector. Make the Chart Now that our data is correct, we can make a chart. Make a new dashboard, and create a Time Plot chart. Point the chart to the calculated table. Let's use the Time column for the X values, and let's use the OutputPerHour column for the Y values. In addition, make sure to split by the Object column. If the calculated table updates every hour, then running the model should create the chart shown at the beginning of the model. Here is the model used to create this chart (should work in 2017 Update 2 Beta or later; beta must be built on or after August 21, 2017). outputperhourdemo.fsm
View full article
Top Contributors