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WORKSHOP ABSTRACT 

Coordinates derived from GPS equipment are determined using complex algorithms that are 
often hidden within proprietary software — the “ghost in the machine”.   Users unfamiliar with 
the computational process can unwittingly generate positional errors ranging from a fraction of a 
foot to many miles.  This problem persists despite efforts of vendors to streamline and simplify 
the GPS positioning process. 

This workshop seeks to shed light on the GPS “black box” by 1) Explaining the main geodetic 
principles and terminology behind GPS; 2) Reducing blind reliance on GPS and GIS software; 
and 3) Providing practical information and tools for the GPS user.  Topics include geodetic and 
vertical datums, map projections, “ground” coordinate systems, the geoid, NGS Datasheets and 
OPUS, GIS data compatibility, and an overview of (draft) APLS standards for spatial data 
accuracy and georeferencing.  Numerous examples of positioning errors will be used to illustrate 
the peril of neglecting geodetic principles in modern surveying and mapping applications.  A 
workbook will be provided that includes step-by-step GPS and geodetic computations.  So bring 
your questions and your favorite everyday tools (calculator, laptop computer, data collector), and 
together we will purge the ghosts from your machines! 
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Today, GPS has thrust surveyors into the thick of geodesy which is no longer the exclusive realm 
of distant experts.  Thankfully, in the age of microcomputers, the computational drudgery can be 
handled with software packages.  Nevertheless, it is unwise to venture into GPS believing that 
knowledge of the basics of geodesy is, therefore, unnecessary.  It is true that GPS would be 
impossible without computers, but blind reliance on the data they generate eventually leads to 
disaster. 

Jan Van Sickle (2001, p. 126) 

 
 
 
Note:  This workbook is intended to accompany a presentation.  Therefore some of the material 
may appear incomplete or be unclear if it is used without attending the presentation. 
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Section 1 

GPS, GEODESY, AND THE PERILS OF MODERN POSITIONING 

Exercise 1.1:  Computation of coordinates from total station data 

Total stations determine three-dimensional coordinates by measuring three quantities:  1) slope 
distance,  2) horizontal angle, and  3) zenith angle. 

Grid coordinates (northing and easting) and elevation can be computed from a total station using 
the following formulas (designated as Equation 1.1): 

Equation 1.1 Computation of grid coordinates from total station data 

riDHH

DEE

DNN

S

S

S









cos

sinsin

sincos

0

0

0

 

where  N, E, and H are the northing, easting, and height (elevation) coordinates to be determined 

N0, E0, and H0 are the northing, easting, and height of the instrument setup point 

DS  is the observed slope distance 

α  is the observed horizontal angle (azimuth) 

ν  is the observed zenith angle 

i  and  r  are the instrument and the prism rod heights, respectively. 

Northing

( N, E, H )

r

i

Height

Easting

DS
ν

α

( N0 , E0 , H0 )
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Example computation 
Given:  A total station set up with i = 5.32 ft over starting point with N0 = 5000.00 ft, E0 = 
5000.00 ft, and H0 = 100.00 ft.  The horizontal circle is set so that it reads azimuth directly, and 
the following observations are made to a point with prism rod of height r = 6.56 ft: 

DS = 336.84 ft   α = 152°17’23”   ν = 83°48’50” 

Find: The coordinates and elevation of the observed point. 

Computations: 
 N =   N0   +   DS   ×    cos      ×    sin  

N =      +       × cos(      ) × sin(      ) 

N =      +       ×          ×         

N =      

 E =   E0   +   DS   ×    sin      ×    sin  

E =      +       × sin(      ) × sin(      ) 

E =      +       ×          ×         

E =       

 H =   H0   +   DS   ×    cos      +   i   −   r 

H =      +       × cos(      ) +      −      

H =      +       ×          +      −      

H =       

Solution: 

N = 5000.00 + 336.84 × cos(152°17’23”) × sin(83°48’50”) 

N = 5000.00 + 336.84 × (−0.88531023) × 0.99417711  

N = 4703.53 ft 

E = 5000.00 + 336.84 × sin(152°17’23”) × sin(83°48’50”) 

E = 5000.00 + 336.84 × 0.4650009 × 0.99417711  

E = 5155.72 ft 

H = 100.00 + 336.84 × cos(83°48’50”) + 5.32 − 6.56 

H = 100.00 + 336.84 × 0.10775836 + 5.32 − 6.56 

H = 135.06 ft 
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GPS:  A geodetic tool 

A comparison between total stations and GPS 

Both GPS and total stations determine three-dimensional coordinates, but they differ in virtually 
every other respect, to wit: 

 Observations 

o Total stations are used to directly observe slope distance, horizontal angle, and zenith 
angle 

 Total station EDM sends and receives the signal that it uses for computing 
distance 

o GPS observes the pseudorange, carrier phase (fractional wavelength), and Doppler 
shift of the signals transmitted from the satellites 

 GPS only receives signals from the satellites (a one-way ranging system) 

 Measurements 

o The vector components from a total station to the prism are directly measured 

 Total station measures both distance and angles 

o The vector components between GPS antennas are computed, NOT observed 

 This has implications for error propagation and control network design 

 GPS does NOT measure angles 

 Computations 

o Coordinates can be determined from total station observations using simple plane 
trigonometry 

o Geodetic methods MUST be used to compute coordinates from GPS vectors 

 Reference frame 

o Total stations are referenced to the gravity vector (plumbline) passing through the 
vertical axis of the instrument 

o GPS is referenced to a world-wide coordinate system (in common with the satellites) 
with its origin located at the Earth’s center of the mass 

Geodesy:  The science of positioning 

Geodesy is a quantitative scientific field dealing with the size and shape of the Earth (or other 
planetary bodies), precise determination of coordinates and relationship between coordinates on 
the Earth, and includes study of the Earth’s gravity field.  It is the science behind surveying, 
mapping, and navigation, and it is essential for using GPS. 

The bottom line:  GPS is a geodetic tool that requires geodesy to perform computations and it is 
explicitly referenced to the entire Earth. 
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The geodetic ellipsoid of revolution 

Best-fit ellipsoid
(e.g., GRS-80, WGS-84)

Equatorial 
plane

Earth mass centerEarth mass center

b = semi-minor axis
(polar radius)

a = semi-major axis
(radius of equatorial plane)

Geoid
(“mean sea level”)

a = 20,925,646.325 ift ≈ 3963 mi
b = 20,855,487.595 ift ≈ 3950 mi

Ellipsoid flattening
f = (a – b)/a ≈ 0.335%
1/f ≈ 298.25722

Ellipsoid fits geoid to 
within about ±300 ft worldwide  

Earth-Centered, Earth-Fixed (ECEF) Cartesian coordinates 

Ellipsoid
(e.g., GRS-80, WGS-84) +Z axis (parallel to axis of rotation)

+X axis
(Prime 
meridian)

–Y axis (90°W) 

–Y1

+Z1

Earth mass centerEarth mass center
–X1–X axis 

(180°W) 

+Y axis (90°E) 

–Z axis

Equatorial 
plane

λ1

φ1

h1

Point #1, Arizona

Coordinates:
(–X1, –Y1, +Z1)

(φ1, λ1, h1)

Geoid
(“mean sea level”)
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Exercise 1.2:  Geodetic ellipsoid parameters and computations 

The geodetic ellipsoid of revolution is completely defined by two numbers.  By convention, 
these are usually a, the semi-major axis, and 1/f, the inverse geometric flattening.  These can be 
used to compute other commonly used ellipsoid parameters, such as the following two: 

Equation 1.2 Ellipsoid semi-minor axis Equation 1.3 Ellipsoid first eccentricity squared 

 fab  1  22 2 ffe   

Example computations 
Given:  The following parameters for the GRS-80, WGS-84, and Clarke 1866 ellipsoids: 

Ellipsoid GRS-80 WGS-84 Clarke 1866 

Semi-major axis, a 6,378,137 m (exact) 6,378,137 m (exact) 20,925,832.164 sft 

Inverse flattening, 1/f 298.257 222 101 298.257 223 563 294.978 698 214 

Find: The semi-minor axis (in International Feet) of these ellipsoids. 

Computations: 

Semi-minor axis =   a    ×      f1      × unit conversion 

 GRS-80: b =        × 

















____________________

1
1 × 








m3048.0

ift1
 

    b =         ift 

WGS-84: b =        × 

















____________________

1
1 × 








m3048.0

ift1
 

    b =          ift 

  Clarke 1866: b =        × 

















____________________

1
1 × 








sft1

ift002000.1
 

    b =          ift 
Solution: 

 GRS-80: b = 6,378,137 m × 



 

101298.257222

1
1 × 








m3048.0

ift1
 = 20,855,486.5949 ift 

WGS-84: b = 6,378,137 m × 



 

563298.257223

1
1 × 








m3048.0

ift1
 = 20,855,486.5953 ift 

  Clarke 1866: b = 20,925,832.164 sft× 



 

214294.978698

1
1 ×

sft1

ift000002.1
= 20,854,933.727 ift 
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Exercise 1.3:  Computation of Earth radius 

The Radii of curvature at a point in the meridian (north-south) and prime vertical (east-west) are 
frequently used in geodesy: 

Equation 1.4 Meridian radius (north-south) Equation 1.5 Prime vertical radius (east-west) 

 
  2/322

2

sin1

1

e

ea
RM




  

22 sin1 e

a
RN


  

where φ  is the geodetic latitude at the point where the radius is computed. 

a  is the ellipsoid semi-major axis (= 20,925,646.325 459 ift  for the GRS-80 ellipsoid) 

  e2  is the ellipsoid first eccentricity squared (= 0.006 694 380 022 901  for GRS-80) 

RM and RN are used to compute other commonly used Earth radii, such as the following two:  

Equation 1.6 Radius of curvature in a specific azimuth, α 

 22 cossin NM

NM

RR

RR
R


  

Equation 1.7 Geometric mean radius of curvature 

22

2

sin1

1

e

ea
RRR NMG 


  

RG is the essentially the “average” radius of curvature at a point on the ellipsoid, and is the one 
we will use for radius computations in this workshop. 
 

Rule of thumb: 

Geometric mean 
radius of curvature 
increases by about 
33 ft per mile north 
(between latitudes  
of 30° and 40°) 

 
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Example computation 

Given:  A point at latitude φ = 34°32’59.29087” N (midway between points CAS-2 and CAS-3). 

Find: The radii of curvature in the meridian, prime vertical, at an (approximate) azimuth of α = 
72°06’17” (from CAS-2 to CAS-3), and the geometric mean radius (for the GRS-80 ellipsoid). 

Computations:  First convert latitude and azimuth to decimal degrees: 

 φ = 34 + 32/60 + 59.29087/3600 = 34.5498030194° 

 α = 72 + 6/60 + 17/3600 = 72.10473° 

Now compute following function of latitude (since it appears in most of the equations): 

 1 − e2 sin2φ = 1 − 0.006694380023 × [sin(34.5498030194°)]2 = 0.99784690136 

Now compute the various radii: 

 
 

  23___________________

__________________1______________________ 
MR  =          

__________________

____________________________
NR          =          

   22 ___)cos(___________________________)sin(________________________

______________________________________




R

 

                    =          

_________________________

___________________1____________________ 
GR  =          

Solution: 

 
  231360.99784690

00230.006694381.32520,925,646 
MR        = 20,852,873.272 ift 

1360.99784690

.32520,925,646
NR              = 20,948,210.259 ift 

    22 )72.10473cos(.04020,948,210)72.10473sin(.61620,852,872

.04020,948,210.61620,852,872




R  

= 20,939,171.046 ift 

1360.99784690

00230.006694381.32520,925,646 
GR        = 20,900,487.406 ift 

Check:  20,948,21020,852,873  NMG RRR  = 20,900,487.406 ift  
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The NGS Datasheet 
 1        National Geodetic Survey,   Retrieval Date = MARCH 29, 2010 
 ES0478 *********************************************************************** 
 ES0478  DESIGNATION -  R 18 
 ES0478  PID         -  ES0478 
 ES0478  STATE/COUNTY-  AZ/YAVAPAI 
 ES0478  USGS QUAD   -  CORNVILLE (1968) 
 ES0478 
 ES0478                         *CURRENT SURVEY CONTROL 
 ES0478  ___________________________________________________________________ 
 ES0478* NAD 83(2007)-  34 43 41.84339(N)    111 58 50.37120(W)     ADJUSTED   
 ES0478* NAVD 88     -      1026.381  (meters)    3367.39   (feet)  ADJUSTED   
 ES0478  ___________________________________________________________________ 
 ES0478  EPOCH DATE  -        2007.00 
 ES0478  X           -  -1,964,472.392 (meters)                     COMP 
 ES0478  Y           -  -4,866,969.363 (meters)                     COMP 
 ES0478  Z           -   3,613,704.412 (meters)                     COMP 
 ES0478  LAPLACE CORR-           0.93  (seconds)                    DEFLEC09 
 ES0478  ELLIP HEIGHT-        1000.746 (meters)          (02/10/07) ADJUSTED 
 ES0478  GEOID HEIGHT-         -25.63  (meters)                     GEOID09 
 ES0478  DYNAMIC HT  -        1025.099 (meters)    3363.18  (feet)  COMP 
 ES0478 
 ES0478  ------- Accuracy Estimates (at 95% Confidence Level in cm) -------- 
 ES0478  Type    PID    Designation                      North   East  Ellip 
 ES0478  ------------------------------------------------------------------- 
 ES0478  NETWORK ES0478 R 18                              0.35   0.29   0.98 
 ES0478  ------------------------------------------------------------------- 
 ES0478  MODELED GRAV-     979,351.9   (mgal)                       NAVD 88 
 ES0478 
 ES0478  VERT ORDER  -  FIRST     CLASS II 
 ES0478 
 ES0478.The horizontal coordinates were established by GPS observations 
 ES0478.and adjusted by the National Geodetic Survey in February 2007. 
 ES0478 
 ES0478.The datum tag of NAD 83(2007) is equivalent to NAD 83(NSRS2007). 
 ES0478.See National Readjustment for more information. 
 ES0478.The horizontal coordinates are valid at the epoch date displayed above. 
 ES0478.The epoch date for horizontal control is a decimal equivalence 
 ES0478.of Year/Month/Day. 
 ES0478 
 ES0478.The orthometric height was determined by differential leveling and 
 ES0478.adjusted in June 1991. 
 ES0478 
 ES0478.The X, Y, and Z were computed from the position and the ellipsoidal ht. 
 ES0478 
 ES0478.The Laplace correction was computed from DEFLEC09 derived deflections. 
 ES0478 
 ES0478.The ellipsoidal height was determined by GPS observations 
 ES0478.and is referenced to NAD 83. 
 ES0478 
 ES0478.The geoid height was determined by GEOID09. 
 ES0478 
 ES0478.The dynamic height is computed by dividing the NAVD 88 
 ES0478.geopotential number by the normal gravity value computed on the 
 ES0478.Geodetic Reference System of 1980 (GRS 80) ellipsoid at 45 
 ES0478.degrees latitude (g = 980.6199 gals.). 
 ES0478 
 ES0478.The modeled gravity was interpolated from observed gravity values. 
 ES0478 
 ES0478;                    North         East     Units Scale Factor Converg. 
 ES0478;SPC AZ C     -   413,436.088   207,499.629   MT  0.99990042   -0 02 11.2 
 ES0478;SPC AZ C     - 1,356,417.61    680,773.06   iFT  0.99990042   -0 02 11.2 
 ES0478;UTM  12      - 3,843,349.858   410,216.925   MT  0.99969935   -0 33 31.3 
 ES0478 
 ES0478!             -  Elev Factor  x  Scale Factor =   Combined Factor 
 ES0478!SPC AZ C     -   0.99984294  x   0.99990042  =   0.99974337 
 ES0478!UTM  12      -   0.99984294  x   0.99969935  =   0.99954233 
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The NGS Datasheet (continued) 
 

  
 ES0478                          SUPERSEDED SURVEY CONTROL 
 ES0478 
 ES0478  NAD 83(1992)-  34 43 41.84276(N)    111 58 50.37059(W) AD(       ) A 
 ES0478  ELLIP H (09/30/99) 1000.753  (m)                       GP(       ) 3 1 
 ES0478  NAVD 88 (09/30/99) 1026.38   (m)         3367.4    (f) LEVELING    3   
 ES0478  NGVD 29 (??/??/92) 1025.631  (m)         3364.92   (f) ADJ UNCH    1 2 
 ES0478 
 ES0478.Superseded values are not recommended for survey control. 
 ES0478.NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums. 
 ES0478.See file dsdata.txt to determine how the superseded data were derived. 
 ES0478 
 ES0478_U.S. NATIONAL GRID SPATIAL ADDRESS: 12SVD1021643349(NAD 83) 
 ES0478_MARKER: DD = SURVEY DISK 
 ES0478_SETTING: 66 = SET IN ROCK OUTCROP 
 ES0478_SP_SET: LIMESTONE LEDGE 
 ES0478_STAMPING: R 18-1931 
 ES0478_MARK LOGO: USGS-E 
 ES0478_MAGNETIC: N = NO MAGNETIC MATERIAL 
 ES0478_STABILITY: A = MOST RELIABLE AND EXPECTED TO HOLD 
 ES0478+STABILITY: POSITION/ELEVATION WELL 
 ES0478_SATELLITE: THE SITE LOCATION WAS REPORTED AS SUITABLE FOR 
 ES0478+SATELLITE: SATELLITE OBSERVATIONS - April 25, 2009 
 ES0478 
 ES0478  HISTORY     - Date     Condition        Report By 
 ES0478  HISTORY     - UNK      MONUMENTED       USGS-E 
 ES0478  HISTORY     - 1933     GOOD             NGS 
 ES0478  HISTORY     - 19990121 GOOD             AZ-025 
 ES0478  HISTORY     - 20031215 GOOD             SHEPH 
 ES0478  HISTORY     - 20090425 GOOD             GEOCAC 
 ES0478 
 ES0478                          STATION DESCRIPTION 
 ES0478 
 ES0478'DESCRIBED BY NATIONAL GEODETIC SURVEY 1933 
 ES0478'4.4 MI SE FROM COTTONWOOD. 
 ES0478'AT SIDE OF HIGHWAY, 0.8 MILES NORTH OF VERDE RIVER HIGHWAY BRIDGE, TOP 
 ES0478'OF RIDGE, 100 FEET NORTHWEST OF HIGHWAY CENTER-LINE, AT SIDE OF ROCK 
 ES0478'CAIRN, ON LEDGE OF LIMESTONE PAINTED BLACK U.S.B.M. 3363.9. 
 ES0478 
 ES0478                          STATION RECOVERY (1999) 
 ES0478 
 ES0478'RECOVERY NOTE BY YAVAPAI COUNTY ARIZONA 1999 (WRA) 
 ES0478'THE STATION IS LOCATED ABOUT 4.4 MI (7.1 KM) SOUTHEAST OF COTTONWOOD, 
 ES0478'1 MI (1.6 KM) NORTHEAST OF BRIDGEPORT, 0.8 MI (1.3 KM) NORTHEAST OF A 
 ES0478'HIGHWAY BRIDGE OVER THE VERDE RIVER, 0.35 MI (0.56 KM) SOUTHWEST OF 
 ES0478'CORNVILLE ROAD, 0.25 MI (0.40 KM) NORTHEAST OF ROCKING CHAIR ROAD, AT 
 ES0478'US HIGHWAY 89 ALTERNATE MILEPOST 356.7.  OWNERSHIP--COCONINO NATIONAL 
 ES0478'FOREST.  TO REACH THE STATION FROM THE JUNCTION OF U.S. HIGHWAY 89 
 ES0478'ALTERNATE AND STATE HIGHWAY 279 IN COTTONWOOD, GO NORTHEAST FOR 2.2 KM 
 ES0478'(1.35 MI) ON HIGHWAY 89 ALTERNATE TO THE STATION ON RIGHT, AT THE TOP 
 ES0478'OF A SMALL KNOLL.  THE STATION IS A DISK SET IN A LIMESTONE OUTCROP. 
 ES0478'LOCATED 41.5 M (136.2 FT) SOUTHEAST FROM THE CENTERLINE OF HIGHWAY, 
 ES0478'32.0 M (105.0 FT) NORTHWEST FROM THE CENTER OF AN ABANDONED ROAD, 21.7 
 ES0478'M (71.2 FT) SOUTHEAST FROM A FENCE, 0.9 M (3.0 FT) SOUTH-SOUTHEAST 
 ES0478'FROM A ROCK CAIRN AND 0.3 M (1.0 FT) WEST FROM A WITNESS POST. 
 ES0478 
 ES0478                          STATION RECOVERY (2003) 
 ES0478 
 ES0478'RECOVERY NOTE BY SHEPHARD-WESNITZER INC 2003 (MLD) 
 ES0478'RECOVERED AS DESCRIBED 
 ES0478 
 ES0478                          STATION RECOVERY (2009) 
 ES0478 
 ES0478'RECOVERY NOTE BY GEOCACHING 2009 (ACM) 
 ES0478'RECOVERED IN GOOD CONDITION. 
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The NGS Geodetic Toolkit 
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Section 2 

GEODETIC DATUM DEFINITIONS AND REFERENCE COORDINATES 

How are the data connected to the Earth? 

Examples of georeferencing errors for Arizona 

Table 2.1 Examples of various positioning error sources and their magnitudes for Arizona due 
to geodetic datum definition and reference coordinate problems (abbreviations and technical 
terms are defined in the Glossary). 

Positioning error examples for Arizona Error magnitudes 

Using NAD 27 when NAD 83 required 
Varies from ~210 to 

230 feet (horizontal) 

Using “WGS 84” when NAD 83 required (e.g., by using 
WAAS corrections or CORS ITRF coordinates) 

~4 feet (horizontal) 

~3 feet (vertical) 

Using published three-parameter datum transformation 
between NAD 27 and “WGS 84” for NAD 83 projects 

~2 to 16 feet (horizontal) 

Using NADCON to transform coordinates between NAD 27 
and NAD 83 

~1 foot (horizontal) 

Using NADCON to transform coordinates between NAD 
83(1986) “original” and NAD 83(1992) “HARN” 

~0.5 foot (horizontal) 

Using NAD 83(1986) “original” when NAD 83(1992) 
“HARN” required 

Up to 3.8 feet (horizontal) 

Using NAD 83(1992) “HARN” when CORS or 1999 
Arizona FBN unpublished coordinates required 

Up to 0.2 foot 

(horizontal and vertical) 

Using NAD 83(1992) “HARN” when NAD 83(NSRS2007) 
“National Readjustment” coordinates required 

Up to 0.5 ft (horizontal) 

Up to 0.7 ft (vertical) 

Using published NGS 14-parameter transformation between 
“WGS 84” and NAD 83 (CORS) but ignoring velocities and 
reference (zero) time of 1997 

~0.6 ft (horizontal) 

for coordinates in year 2007 

Using reference coordinates found in the header records of 
CORS raw GPS data files 

Varies from zero to over 100 feet 
(horizontal and vertical) 

Autonomous (uncorrected) GPS single-point positioning 
precision (at 95% confidence) 

~10 to 20 ft (horizontal) 

~20 to 50 ft (vertical) 
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The NGS Datasheet as a geodetic reference coordinate source  

Recommend using Datasheets with GPS-derived coordinates, because they give ellipsoid height 
(as well as ECEF coordinates). 

 

Some things to note about NGS Datasheets: 

 Units of “feet” in NGS Datasheets are presently US Survey Feet, e.g., for above Datasheet: 

NAVD 88 H = 2168.480 m = 7114.42 sft = 7114.44 ift 

 Many conventional stations do not have accurate elevations, so cannot be used with geoid 
model to determine accurate ellipsoid heights 

 Conventionally (optically) determined control is almost always less accurate than survey-
grade GPS, so using such control for surveys is not advised 

o Only GPS stations included in the NSRS2007 readjustment have positional accuracies 
given as linear “network” values in centimeters (relative “order” system not used) 

 Epoch date may not be same as CORS (“Continuously Operating Reference Station”) 

o NGS station coordinates were determined in 2007 (“NSRS2007”) 

 2007.00 epoch date is used for tectonically active states (California, Arizona, Nevada, 
Oregon, Washington, and Alaska) 

 2002.00 epoch date is used for all other states (consistent with CORS epoch date) 

FQ0454 *********************************************************************** 
FQ0454  FBN         -  This is a Federal Base Network Control Station. 
FQ0454  DESIGNATION -  FLAGSTAFF NCMN 
FQ0454  PID         -  FQ0454 
FQ0454  STATE/COUNTY-  AZ/COCONINO 
FQ0454  USGS QUAD   -  FLAGSTAFF WEST (1983) 
FQ0454 
FQ0454                         *CURRENT SURVEY CONTROL 
FQ0454  ___________________________________________________________________ 
FQ0454* NAD 83(2007)-  35 12 52.88846(N)    111 38 05.04201(W)     ADJUSTED   
FQ0454* NAVD 88     -      2168.480  (meters)    7114.42   (feet)  ADJUSTED   
FQ0454  ___________________________________________________________________ 
FQ0454  EPOCH DATE  -        2007.00 
FQ0454  X           -  -1,923,992.178 (meters)                     COMP 
FQ0454  Y           -  -4,850,855.836 (meters)                     COMP 
FQ0454  Z           -   3,658,589.263 (meters)                     COMP 
FQ0454  LAPLACE CORR-          -2.94  (seconds)                    DEFLEC09 
FQ0454  ELLIP HEIGHT-        2145.372 (meters)          (02/10/07) ADJUSTED 
FQ0454  GEOID HEIGHT-         -23.15  (meters)                     GEOID09 
FQ0454  DYNAMIC HT  -        2165.393 (meters)    7104.29  (feet)  COMP 
FQ0454 
FQ0454  ------- Accuracy Estimates (at 95% Confidence Level in cm) -------- 
FQ0454  Type    PID    Designation                      North   East  Ellip 
FQ0454  ------------------------------------------------------------------- 
FQ0454  NETWORK FQ0454 FLAGSTAFF NCMN                    0.16   0.14   0.35 
FQ0454  ------------------------------------------------------------------- 
FQ0454  MODELED GRAV-     979,132.0   (mgal)                       NAVD 88 
FQ0454 
FQ0454  VERT ORDER  -  FIRST     CLASS II 

= φ and λ

= h

= X 
= Y 
= Z
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OPUS output as a geodetic reference coordinate source 

The Online Positioning User Service  

This is an excellent alternative to the NGS Datasheets if there are no high-quality GPS-derived 
NGS control stations locally available. 

 More accurate than conventional (optical) control 

 Requires logging raw GPS data (observables) at the receiver for at least 2 hours (or as little 
as 15 minutes using the “Rapid Static” option) 

o This can easily be done at a GPS base while performing a survey 

 

FILE: cas1_160a.dat 000083824 
 
                              NGS OPUS SOLUTION REPORT 
                              ======================== 
 
All computed coordinate accuracies are listed as peak-to-peak values. 
For additional information: http://www.ngs.noaa.gov/OPUS/about.html#accuracy 
 
      USER: mld@geodeticanalysis.com                DATE: March 30, 2010 
RINEX FILE: cas1160b.05o                            TIME: 04:33:52 UTC 
 
  SOFTWARE: page5  0909.08 master23.pl 081023      START: 2005/06/09  01:40:00 
 EPHEMERIS: igs13264.eph [precise]                  STOP: 2005/06/09  06:14:00 
  NAV FILE: brdc1600.05n                        OBS USED: 10816 / 11191   :  97% 
  ANT NAME: TRM41249.00     NONE             # FIXED AMB:    46 /    51   :  90% 
ARP HEIGHT: 2                                OVERALL RMS: 0.010(m) 
 
 REF FRAME: NAD_83(CORS96)(EPOCH:2002.0000)            ITRF00 (EPOCH:2005.4361) 
       
         X:     -2008522.841(m)   0.029(m)          -2008523.523(m)   0.029(m) 
         Y:     -4861719.061(m)   0.019(m)          -4861717.725(m)   0.019(m) 
         Z:      3597805.541(m)   0.009(m)           3597805.469(m)   0.009(m) 
 
       LAT:   34 32 59.94649      0.012(m)        34 32 59.96249      0.012(m) 
     E LON:  247 33 10.81227      0.020(m)       247 33 10.76755      0.020(m) 
     W LON:  112 26 49.18773      0.020(m)       112 26 49.23245      0.020(m) 
    EL HGT:         1666.715(m)   0.029(m)              1665.871(m)   0.029(m) 
 ORTHO HGT:         1693.096(m)   0.033(m) [NAVD88 (Computed using GEOID09)] 
 
                        UTM COORDINATES    STATE PLANE COORDINATES 
                         UTM (Zone 12)         SPC (0202 AZ C) 
Northing (Y) [meters]     3824090.869           393783.900 
Easting (X)  [meters]      367235.276           164688.216 
Convergence  [degrees]    -0.82074793          -0.30076926 
Point Scale                0.99981726           0.99992919 
Combined Factor            0.99955575           0.99966764 
 
US NATIONAL GRID DESIGNATOR: 12SUD6723524090(NAD 83) 
 
 
                              BASE STATIONS USED 
PID       DESIGNATION                        LATITUDE    LONGITUDE DISTANCE(m) 
AI8820 FERN FERNO MESA CORS ARP            N352030.723 W1122717.007   87877.0 
AI7445 FST2 FLAGSTAFF 2 CORS ARP           N351317.499 W1114902.781   94167.9 
AI7443 FST1 FLAGSTAFF 1 CORS ARP           N351318.370 W1114902.581   94192.2 
 
                 NEAREST NGS PUBLISHED CONTROL POINT 
ET0122      D 58                           N343255.    W1122656.        231.3 
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Some things to note about OPUS output: 

 Gives both NAD 83 and ITRF 00 coordinates. 

o NAD 83 is for epoch 2002.0 (same as NSRS2007 for most of US, except for California 
and parts of Arizona, Nevada, Oregon, Washington, and Alaska). 

o ITRF 00 is for day of observation (e.g., date 2005.4361 = June 9, 2005 for this example). 

 This is NOT same as the current version of WGS-84 (G1150), which was computed 
for a reference time of 2001.0, so the coordinates will differ by the date difference 
times the ITRF station velocity (about 0.06 ft/year to the SW in AZ, so for this case 
nearly 0.3 ft). 

 However, ITRF 00 and WGS-84 (G1150) can be considered equivalent to within 
about 1 – 2 cm (0.03 – 0.07 ft) if both refer to the same reference time. 

 Slightly different results will be obtained depending on which GPS orbits were used. 

o Final orbits available after about 2 weeks. 

o “Rapid” orbits available in 17 hours, and are nearly as accurate as final orbits. 

 Values to right of coordinates are accuracy estimates in meters, e.g., 0.020 (m). 

o These are based on the maximum difference between the 3 positions computed by OPUS. 

o Can also estimate accuracy (or at least precision) yourself if have multiple OPUS 
solutions on a single point. 

 Detailed (“extended”) output also available 

o Gives additional information such as CORS details, coordinate transformations, 
velocities, actual vector components, GPS solution statistics, and internal precision 
estimates. 

 Two versions of OPUS now available:  OPUS-S (“Static”) and OPUS-RS (“Rapid Static”). 

o OPUS-S was formerly simply known as “OPUS” and requires a dataset duration of at 
least 2 hours. 

o OPUS-RS will process shorter datasets (duration from 15 minutes to 2 hours). 

 Accuracy of OPUS-RS results varies by location and is best in areas with dense 
CORS coverage. 

 If poor results are achieved with OPUS-RS, use of OPUS-S is recommended (for 
dataset durations of more than 2 hours). 
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Relative positioning with “survey-grade” GPS 

Base
( Xb , Yb , Zb )

Computed
GPS vector

( ΔX, ΔY, ΔZ )

GPS
“observables”

Rover
( X, Y, Z )

X1

Y1

Z1 X2

Y2

Z2

X3

Y3

Z3

X4

Y4

Z4

 

GPS computation flowchart 

Base
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Rover
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H

GPS vectorΔX, ΔY, ΔZ

h’

Map projection

“Geoid model”

N’, E’

Convert
to ECEF

Convert
from
ECEF

Datum transformation
(if necessary)
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Grid translation,
rotation, & scaling

(not recommended)

Vertical adjustment (e.g., block
shift, inclined planar correction)

(user input
coordinates)

φ, λ

hXb , Yb , Zb

X, Y, Z
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Exercise 2.1:  Computation of coordinates using GPS vector components 

Below are equations for computing geodetic coordinates of a new station using the GPS vector 
from a base station of known geodetic coordinates. 

Equation 2.1 Converting latitude, longitude, and height to ECEF coordinates 

 
 

   




sin1

sincos

coscos

2 heRZ

hRY

hRX

N

N

N






  (Leick, 2004, p. 371) 

where X, Y, and Z are the ECEF coordinates of a point 

  φ, λ, and h are the latitude, longitude, and ellipsoid height of the point, respectively 

    2122 sin1


 eaRN  is the prime vertical radius of curvature (Leick, 2004, p. 369) 

  a  is the ellipsoid semi-major axis (= 20,925,646.325 459 ift  for the GRS-80 ellipsoid) 

  e2  is the ellipsoid first eccentricity squared (= 0.006 694 380 022 901  for GRS-80) 

Equation 2.2 Computing coordinates from GPS vector components 

ZZZYYYXXX bbb   

where X, Y, and Z are the ECEF coordinates to be determined 

Xb, Yb, and Zb are the ECEF coordinates of the GPS base 

  ΔX, ΔY, and ΔZ are the delta ECEF components of the GPS vector 

Equation 2.3 Converting ECEF coordinates to latitude, longitude, and height 

N

N

R
YX

h

X

Y

Z
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Z









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

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
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
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














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22

1

0
2

22

1

  (Leick, 2004, pp. 371-372) 

where 0  is a latitude that can be initially approximated as 
  












 

222

1
0

1
tan

YXe

Z . 

This approximate latitude value is then substituted into the right side of the first line of Equation 
2.3, and then the resulting value of   is substituted as 0 , and the process repeated until the 

change in   is negligible. 
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Example computation 
Given:  A GPS base station located at midpoint between points CAS-2 and CAS-3, with NAD 83 
coordinates of φ = 34°32’59.29087” N, λ =  112°26’45.18607” W, and h = 5456.421 ift.  The 
following GPS vector components were determined from this base to point CAS-2: 

ΔX = −219.000 ift   ΔY = 38.340 ift   ΔZ = −51.528 ift 

Find: The NAD 83 coordinates of point CAS-2. 

Computations: 

Step 1.  Convert GPS base latitude, longitude, and ellipsoid height to ECEF coordinates. 

The prime vertical radius of curvature for this station was computed in Exercise 1.3: 

NR =          

Now compute the ECEF values for the GPS base: 

  Xb = (   RN    +  h  ) ×      cos         ×   cos  

Xb = (       +     ) × cos(      ) × cos(       ) 

= ________________ 

  Yb = (   RN    +  h  ) ×       cos           ×   sin  

Yb = (       +     ) × cos(      ) × sin(       )  

= ________________ 

  Zb = [  RN    × (1−   e2   ) +  h  ] ×     sin  

Zb = [       × (1−      ) +     ] × sin(        ) 

                 = ________________ 

Step 2.  Compute ECEF coordinates of new GPS station (CAS-2). 

 X = Xb + ΔX =         +       =          

 Y = Yb + ΔY =          +       =          

Z = Zb + ΔZ =          +       =          

Step 3. Convert ECEF coordinates of new station to latitude, longitude, and ellipsoid height. 

Instead of using iterative Equation 2.3, perform this computation using the NGS Geodetic 
Toolkit, which gives the following coordinates for CAS-2: 

 
These results can be 
verified using 
Equation 2.3  

Latitude, φ  = _____°____’____.__________” N 

Longitude, λ  = _____°____’____.__________” W 

Ellipsoid height, h = ____________ ift 
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Solution: 

Step 1.  Convert GPS base latitude, longitude, and ellipsoid height to ECEF coordinates. 

The prime vertical radius of curvature for this station was computed in Exercise 1.3: 

NR = 20,948,210.259 ift 

Now compute the ECEF values for the GPS base: 

  Xb = (   RN    +  h  ) ×     cos       ×   cos  

Xb = (20,948,210.259 + 5456.421) × cos(34.5498030194°) × cos(−112.4458850194°) 

= −6,589,343.061 ift 

  Yb = (   RN    +  h  ) ×     cos       ×   sin  

Yb = (20,948,210.259 + 5456.421) × cos(34.5498030194°) × sin(−112.4458850194°)  

= −15,950,675.460 ift 

  Zb = [  RN    × (1−   e2   ) +  h  ] ×     sin  

Zb = [20,948,210.259 × (1− 0.006694380023) + 5456.421] × sin(34.5498030194°) 

                 = 11,803,762.654 ift 

Step 2.  Compute ECEF coordinates of new GPS station (CAS-2). 

 X = Xb + ΔX = (−6,589,343.061 ift)  +   (−219.000 ift)  =  −6,589,562.061 ift 

 Y = Yb + ΔY = (−15,950,675.460 ift)   +   (38.340 ift)  =  −15,950,637.120 ift 

Z = Zb + ΔZ = (11,803,762.654 ift)  +   (−51.528 ift)  =  11,803,711.126 ift 

Step 3. Convert ECEF coordinates of new station to latitude, longitude, and ellipsoid height. 

Equation 2.3 was used to compute the following results for station CAS-2 (compare to 
those computed using the NGS Geodetic Toolkit). 

 

 

Latitude, φ  = 34° 32’ 58.60097” N 

Longitude, λ  = 112° 26’ 47.78016” W 

Ellipsoid height, h = 5466.883 ift 

These results were computed 
using Equation 2.3  
(required only 2 iterations in 
Excel for accuracy shown)


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Datums and datum transformations 

Datum. Any quantity or set of quantities used as a reference or basis for determining other 
quantities. 

Geodetic datum. A set of (at least 8) constants specifying the coordinate system for geodetic 
control (latitude, longitude, height). 

  2 for reference ellipsoid size and shape (usually semi-major axis and flattening) 

  3 to specify location of origin (at or near center of Earth for modern datums) 

  3 to specify the orientation of coordinate system 

Vertical datum. A set of fundamental “elevations” to which other “elevations” are referred. 

Datum transformation. Mathematical method for converting one geodetic or vertical datum 
to another (there are several types, and they vary widely in accuracy). 

Geodetic datum transformation 

b1

a1

b2

a2
rotX

rotY

rotZ

scale

ΔX, ΔY, ΔZ

 

Typical geodetic datum transformations.  Note that the dimensions of the reference ellipsoid 
(a and b axes) may or may not change in the transformation. 

 3-parameter:  3-dimensional translation of origin as ΔX, ΔY, ΔZ (like a GPS vector) 

 7-parameter:  3 translations plus 3 rotations (one about each of the axes) plus a scale 

 14-parameter:  A 7-parameter where each parameter changes with time (each has a velocity) 

 Transformations are also used that model distortion, such as the NGS model NADCON 

Vertical datum transformations.  Can be a simple vertical shift or a complex operation that 
models distortion, such as the NGS model VERTCON. 



Section 2:  Geodetic datum definitions and reference coordinates 

 20

Exercise 2.2:  Geodetic azimuths 

Forward and reverse grid azimuths differ by exactly 180°.  Forward and reverse geodetic 
azimuths do not differ by 180° because of meridian convergence, as shown in the figure below. 
 
Equation 2.4 Approximate forward geodetic azimuth (from point A to point B) 












 
B

AB

AB
AB 




 costan~ 1  

where AB~  is the approximate forward geodetic azimuth from point A to B 

BA  ,  are longitudes at azimuth end points A and B, respectively 

  BA  ,  are longitudes at azimuth end points A and B, respectively 

Equation 2.4 is accurate to within approximately ±0.5% for distances of less than about 100 
miles. 

Although forward and backward grid azimuths differ by exactly 180°, forward and backward 
geodetic azimuths generally do not due to meridian convergence, as shown in the figure below. 
 

 
 

Rule of Thumb:  

The average convergence in Arizona is about 35 arc-seconds per mile east-west. 
 
Equation 2.5 Difference between forward and back geodetic azimuths (meridian convergence) 

   sin180 ABABBA    (Stem, 1990, p. 51; Ewing and Mitchell, 1970, p. 44) 

where BAAB  ,  are the forward and back geodetic azimuths from point A to B, respectively 

    is the average latitude of the azimuth end points 

Although Equation 2.5 is for a sphere, it is accurate to better than 0.2” for distances of less than 
about 100 miles. 

 
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Example computation 
Given:  A two points (CAS-2 and CAS-3) with the following geodetic coordinates: 

CAS-2: φA = 34°32’58.60097” N  λA =  112°26’47.78016” W 

CAS-3: φB = 34°32’59.98077” N  λB =  112°26’42.59198” W 

Find: The approximate geodetic azimuth from CAS-2 to CAS-3 and compute the difference 
between the forward and back geodetic azimuths (i.e., the convergence). 

Computations: 

To simplify the computations, the approximate geodetic azimuth can be computed using the 
coordinate differences in arc-seconds: 

   
     
























  ____________cos
_______________________

_______________________
tancostan~ 11

B
AB

AB
AB 




  

= tan−1(      ×      ) =     ° =       °      ’      ” = N      °      ’      ” E 

The difference between forward and back azimuths is 

   sin180 ABABBA    (can use midpoint latitude from Exercises 1.3 or 2.1) 

= (      +      ) × sin (         )  

=       × sin[      ] =     ” 

Solution: 

The approximate geodetic azimuth can be computed as 

   
     
























  5499946583.34cos
"60097.58"98077.59

"78016.47"59198.42
tancostan~ 11

B
AB

AB
AB 


  

= tan−1(3.7600957 × 0.823631645) = 72.10473° = 72° 06’ 17” = N 72° 06’ 17” E 

The difference between forward and back azimuths is 

   sin180 ABABBA    (can use midpoint latitude from Exercises 1.3 or 2.1) 

= (−42.59198” + 47.78016”) × sin(34.5498030194°) 

= 5.18818” × 0.5671224 = +2.9423” 

Check using NGS Inverse tool:  

 Forward azimuth = 72° 10’ 50.3098”  

Error in approximate azimuth is −0° 04’ 33” = −0.11% (OK, but not very accurate) 

 Back azimuth  =252° 10’ 53.2521” 

Convergence = (252° 10’ 53.2521”) – (72° 10’ 50.3098”) –180° = +2.9423”  (the same!) 




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Exercise 2.3:  An approximate method for computing ellipsoidal distance 

This gives a method for computing an approximate ellipsoidal distance between two points with 
geodetic coordinates (latitude, longitude, and ellipsoid height).  For the GRS-80, WGS-84,  
Clarke 1866, and most other Earth ellipsoids, note the following: 

Rules of Thumb 

1 arc-second of latitude ≈ 101 ft      (accurate to within about ±0.3 ft in US) 

1 arc-second of longitude ≈ 101 ft × cos(latitude)      (short by about 0.5 ft in US) 

Based on these relationships, we can compute an approximate distance, to wit: 

Equation 2.6 Approximate ellipsoidal distance between a pair of geodetic coordinates 

   22 cos""101  s  feet 

This equation is accurate to within about ±1% everywhere on the Earth (and about ±0.5% in AZ) 

where "  is change in latitude between two points in arc-seconds 

  "  is change in longitude between two points in arc-seconds 

    is average latitude of the two points 

Example computation 
Given:  Points CAS-2 and CAS-3 from the previous example (in Exercise 2.2).  

Find: The approximate ellipsoidal distance between the points CAS-2 and CAS-3. 

Computations: 

From the previous example, the average latitude of CAS-2 and CAS-3 is  = 34.5497141306° 

   22 cos""101  s  

      22 19434.5498030cos____________________________________101   

   22 __________________101  =      ft 

Solution: 

      22 19434.5498030cos78016.4742.5919860097.5898077.59101   

    22 27316.437980.1101   = 454 ft 

Check using NGS Inverse tool: 

  Actual ellipsoid distance (geodesic) = 138.9428 m = 455.849 ift 

     Approximate geodetic inverse error = −1.8 ft = −0.4% 

 


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Exercise 2.4:  A more accurate method for approximating ellipsoidal distance 

Computation of accurate geodetic distances is difficult, but a good approximation over short 
distances can be computed using spherical angles based on an appropriate radius of curvature. 

Equation 2.7 Central angle between two points on surface of a sphere 

 )(coscoscossinsincos 1
BABABA     

where BA  ,  are the latitudes at points A and B, respectively 

  BA  ,  are longitudes at points A and B, respectively 

Equation 2.8 Approximate geodetic inverse based on spherical angle 




 










ABNABM

NM

RR

RR
Rs ~cos~sin 22  

where all variables are as defined previously and radii of curvature are evaluated at the mean 
latitude of the two points. 

The accuracy of the distances computed by Equation 2.8 vary with azimuth, and are generally 
shorter than actual by a maximum of 10 ppm for distances less of than about 10 miles (e.g., a one 
mile inverse is at most 0.05 ft shorter than actual). 

A highly accurate method for computing geodetic distance and azimuth was published by 
Vincenty (1975), and is the one used in the NGS geodetic tool “Inverse”. 
 
Example computation 
Given:  Points CAS-2 and CAS-3 from the previous two examples (in Exercises 2.2 and 2.3).  

Find: The approximate ellipsoidal distance between the points CAS-2 and CAS-3. 

Computations: 

First compute the spherical angle, 

 )(coscoscossinsincos 1
BABABA     

ψ  = cos−1[sin(_________________________ ) × sin(________________________ )  

+ cos(_______________________ ) × cos(________________________ ) 

× cos( _______________________ )  − ( _______________________ )] 

  = cos−1[(____________________ × ____________________)  

+ (___________________ × ___________________ × ___________________)] 

  = cos−1[__________________ + __________________] =     ° =     " 
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Then compute the ellipsoid distance as (with ψ in radians) as 




 










ABNABM

NM

RR

RR
Rs ~cos~sin 22

. 

From Exercise 1.3, the radius of curvature is Rα  = 20,939,171 ift (rounded to the nearest foot) at 
a mean latitude of  = 34.5498030194° for points CAS-2 and CAS-3.  This is at an 
(approximate) azimuth of ~  = 72.10473° from CAS-2 to CAS-3 (Exercises 1.3 and 2.2). 

The spherical angle must be converted to radians for this computation, as follows: 

 s =     Rα      ×    ψ 

s =           ×       ° × 
180


 =       ift 

Solution: 

 )(coscoscossinsincos 1
BABABA     

ψ  = cos−1[sin(34.5496113805556°) × sin(34.5499946583333°)  

+ cos(34.5496113805556°) × cos(34. 5499946583333°) 

× cos(−112.446605600000° + 112.445164438889°)] 

  = cos−1[(0.567119620484369 × 0.567125130147320)  

+ (0.823635438808740 × 0.823631645066765 × 0.999999999683663)] 

  = cos−1[0.321627788576296 + 0.678372211186735] = 0.0012473344° = 4.490404” 

The spherical angle must be converted to radians for this computation, as follows: 
 

s = 20,939,171 ift × 0.0012473344° × 
180

3.14159265
 = 455.848 ift 

From Exercise 2.3, Vincenty inverse is nearly identical, s = 455.849 ift    
(error = −0.001 ft = −0.0002%) 

The results shown here were computed using Microsoft Excel, which has a numerical precision 
of 15 digits.  Note that most hand calculators have difficulty accurately performing these 
calculations due to lower numerical precision.  Example computations using different numerical 
precisions are given below (these will vary depending on the calculator, sequence of 
computations, and number of digits entered): 

  14 digits of numerical precision    s = 455.845 ift (−0.0009% error) 

13 digits of numerical precision    s = 455.821 ift (−0.0061% error) 

12 digits of numerical precision    s = 455.611 ift (−0.0522% error) 

 
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Exercise 2.5:  Deflection of the vertical and the Laplace correction 

In general, the plumbline (gravity vector) passing through the axis of an instrument is not parallel 
to a line perpendicular to the reference ellipsoid (the ellipsoid normal), and the angle between 
these two lines is called the deflection of the vertical.   The deflection of the vertical is divided 
into north-south and east-west components, denoted as ξ and η, respectively.  These can be 
obtained from the NGS model DEFLEC09 and USDOV2009 for any location in the US.  
DEFLEC09 was derived from the GEOID09 “hybrid” geoid model, and is the appropriate one to 
use for survey observations referenced to NAD 83.  USDOV2009 was derived from the purely 
gravimetric geoid model USGG2009, which is referenced to ITRF 00. 

If the deflection of the vertical is not zero, an instrument leveled to the local plumbline will not 
be “level” with respect to the geodetic datum.  When using terrestrial (optical) instruments, this 
affects determination of coordinates and azimuths using astronomic (or gyroscopic) methods; 
reductions of terrestrial observations to the ellipsoid; and change in ellipsoid height.  In addition, 
since deflection of the vertical varies with location, it can cause horizontal and vertical errors in 
terrestrial surveys that are similar to the misclosure that occurs if a traverse is performed with an 
improperly leveled instrument. 

The Laplace correction is the difference between astronomic and geodetic azimuth caused by 
deflection of the vertical.  A simplified version of the Laplace correction is given on NGS 
datasheets, and adding this value to (clockwise) astronomic azimuths will give the geodetic 
azimuth for an approximately horizontal line of sight between stations. 

Equation 2.9 The simplified (horizontal) Laplace correction (assumes approximately horizontal 
line of sight, a clockwise positive azimuth, and a positive east deflection of the vertical): 

 tan AL  

where α  and  A  are the geodetic and astronomic azimuths, respectively 

  is the deflection of the vertical component in the east-west (prime vertical) direction 

  is the geodetic latitude 

Rules of Thumb 

Maximum deflection of the vertical in Arizona = 35 arc-seconds (DEFLEC09) 

Maximum Laplace correction magnitude in Arizona = 25 arc-seconds (DEFLEC09) 

Simplified Laplace correction error is less than approximately 10% for zenith angles 
within about 5° of horizontal 

Example computation 
Given:  In Elbow Canyon of the Virgin Mountains of northwestern Arizona, GPS was used to 
locate the southwest corner and the west quarter corner of Section 16, T 39 N, R 15 W, Gila and 
Salt River Baseline and Meridian.  The following NAD 83 coordinates were obtained: 

 

 
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Station Latitude Longitude Ellipsoid height 
SW Corner S16 36°46’31.61284”N 113°55’21.70113”W 3530.589 ift 
W 1/4 Corner S16 36°46’57.75891”N 113°55’21.69613”W 3275.291 ift 

 
The geodetic azimuth and horizontal ground distance from the southwest corner to the west 
quarter corner based on these coordinates is 0° 00’ 31.73” and 2644.715 ift. 

Find: The astronomic quadrant bearing from the southwest corner to the west quarter corner of 
Section 16. 

Computations: 
For the southwest corner of Section 16, DEFLEC09 gives ξ = 9.18”, η = −26.48”, and L = 
19.79”.  Equation 2.9 can be rearranged to compute the astronomic azimuth: 

A  =  α − L  =         −       =        

Astronomic quadrant bearing =        (rounded to nearest arc-second) 

Solution: 
For the southwest corner of Section 16, DEFLEC09 gives ξ = 9.18”, η = −26.48”, and L = 
19.79”.  Equation 2.9 can be rearranged to compute the astronomic azimuth: 

A  =  α − L  =    0° 00’ 31.73”  −    19.18”   =   0° 00’ 12.55”   

Astronomic quadrant bearing =   N 00° 00’ 13” E  (rounded to nearest arc-second) 

Check:  L = −η tan φ = −(+26.48”) × tan(36°46’32”N) = 19.79”, as given by DEFLEC09. 

How accurate is the simplified (horizontal) Laplace correction? 

The complete Laplace correction is given by    cotcossintan L ,  where the 
first term is the same as Equation 2.9, and the second term is referred to as the deflection 
correction.  The quantity  is the geodetic zenith angle, which can be estimated using the 
ellipsoid height difference and distance between the corners.  Earth curvature increases the zenith 
angle, and can be accounted for by subtracting 0.0239×(distance in thousands of feet)2 from the 
height difference (this correction is covered in more detail in Exercise 4.2): 

 = 90° − tan−1{[(3275.291 − 3530.589) – 0.0239×2.6447152] / 2644.715} = 95.517°. 

Thus the deflection correction is: 

[9.18” × sin(0°00’31.73”)  −  (−26.48”) × cos(0°00’31.73”)] × cot(95.517°) = −2.56” 

This gives a complete Laplace correction of L = 19.79” − (−2.56”) = 22.35”.  Although this 
deflection correction is rather large, note that this is a worse-case scenario, because the deflection 
of the vertical value in this example is essentially the maximum for Arizona.  In most cases, the 
deflection correction is smaller than can be resolved using optical methods, and the simplified 
Laplace correction will suffice.  This helps tremendously, since the simplified Laplace correction 
does not depend on the azimuth or zenith angle between stations, and so a unique value can be 
specified at a point. 
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Section 3 

GRID COORDINATE SYSTEMS AND COMPUTATIONS 

How are the data displayed?  How are the data used? 

Examples of grid coordinate errors for Arizona 

Table 3.1 Examples of various positioning error sources and their magnitudes for Arizona due 
to grid coordinate system and computation problems (abbreviations and technical terms are 
defined in the Glossary). 

Positioning error examples for Arizona Error magnitudes 

Using SPCS 27 projection parameters for SPCS 83 projects 37.9 miles (horizontal) 

Determining State Plane coordinates in US Survey Feet when 
International Feet are required 

Up to 5 feet (horizontal) 

Determining UTM coordinates in US Survey Feet when 
International Feet are required 

Up to 27 feet (horizontal) 

Using linear coordinates from a geographic “projection” to 
compute distances 

Up to ~1000 feet horizontal per 
mile 

Using SPCS grid distances when “ground” distances are 
required (example here is for Flagstaff) 

~2.3 feet horizontal per mile at 
elevation of 7000 feet 

Using UTM grid distances when “ground” distances are 
required (example here is for Flagstaff) 

~3.6 feet horizontal per mile at 
elevation of 7000 feet 

Using planar computation methods to transform geodetically-
derived horizontal coordinates (example here is for 
converting from UTM to SPCS over a 20 mi × 20 mi area in 
Phoenix area using planar scaling, rotation, and translation 
based on two common points) 

Varies, but increases rapidly 
with size of area 

(3 to 4 feet of horizontal 
error for this example) 
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Grid coordinate system information in NGS Datasheets and OPUS output 

Both NGS Datasheets and OPUS output use the geodetic coordinates of the point to compute 
grid (map projection) coordinates in the State Plane and Universal Transverse Mercator 
coordinate systems.  They also provide the convergence angle, grid point scale factor, and 
combined scale factor for both systems. 

 Portion of NGS Datasheet for station PR 23 

 

Portion of OPUS output for station CAS-1 

 

                              NGS OPUS SOLUTION REPORT 
                              ======================== 
REF FRAME: NAD_83(CORS96)(EPOCH:2002.0000)            ITRF00 (EPOCH:2005.4361) 
       
         X:     -2008522.841(m)   0.029(m)          -2008523.523(m)   0.029(m) 
         Y:     -4861719.061(m)   0.019(m)          -4861717.725(m)   0.019(m) 
         Z:      3597805.541(m)   0.009(m)           3597805.469(m)   0.009(m) 
 
       LAT:   34 32 59.94649      0.012(m)        34 32 59.96249      0.012(m) 
     E LON:  247 33 10.81227      0.020(m)       247 33 10.76755      0.020(m) 
     W LON:  112 26 49.18773      0.020(m)       112 26 49.23245      0.020(m) 
    EL HGT:         1666.715(m)   0.029(m)              1665.871(m)   0.029(m) 
 ORTHO HGT:         1693.096(m)   0.033(m) [NAVD88 (Computed using GEOID09)] 
 
                        UTM COORDINATES    STATE PLANE COORDINATES 
                         UTM (Zone 12)         SPC (0202 AZ C) 
Northing (Y) [meters]     3824090.869           393783.900 
Easting (X)  [meters]      367235.276           164688.216 
Convergence  [degrees]    -0.82074793          -0.30076926 
Point Scale                0.99981726           0.99992919 
Combined Factor            0.99955575          0.99966764

AI1939  FBN         -  This is a Federal Base Network Control Station. 
AI1939  DESIGNATION -  PR 23 
AI1939  PID         -  AI1939 
AI1939  STATE/COUNTY-  AZ/YAVAPAI 
AI1939  USGS QUAD   -  PRESCOTT VALLEY SOUTH (1973) 
AI1939 
AI1939                         *CURRENT SURVEY CONTROL 
AI1939  ___________________________________________________________________ 
AI1939* NAD 83(2007)-  34 34 33.49068(N)    112 17 18.12513(W)     ADJUSTED   
AI1939* NAVD 88     -      1482.5    (meters)    4864.     (feet)  GPS OBS    
AI1939  ___________________________________________________________________ 
AI1939  EPOCH DATE  -        2007.00 
AI1939  X           -  -1,994,369.018 (meters)                     COMP 
AI1939  Y           -  -4,865,587.497 (meters)                     COMP 
AI1939  Z           -   3,600,060.612 (meters)                     COMP 
AI1939  LAPLACE CORR-           2.23  (seconds)                    DEFLEC09 
AI1939  ELLIP HEIGHT-        1456.454 (meters)          (02/10/07) GPS OBS 
AI1939  GEOID HEIGHT-         -26.06  (meters)                     GEOID09 
. 
. 
AI1939;                    North         East     Units Scale Factor Converg. 
AI1939;SPC AZ C     -   396,601.168   179,257.269   MT  0.99991433   -0 12 39.4 
AI1939;SPC AZ C     - 1,301,184.93    588,114.40   iFT  0.99991433   -0 12 39.4 
AI1939;UTM  12      - 3,826,775.422   381,827.449   MT  0.99977212   -0 43 52.4 
AI1939 
AI1939!             -  Elev Factor  x  Scale Factor =   Combined Factor 
AI1939!SPC AZ C     -   0.99977143  x   0.99991433  =   0.99968578 
AI1939!UTM  12      -   0.99977143  x   0.99977212  =   0.99954360 

= k  = γ  

 = δ + 1  

 = γ 

 = δ + 1  
 = k 
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Map projection distortion 

Map projection distortion is an unavoidable consequence of attempting to represent a curved 
surface on a flat surface.  It can be thought of as a change in the “true” relationship between 
points located on the surface of the Earth and the representation of their relationship on a plane.  
Distortion cannot be eliminated — it is a Fact of Life.  The best we can do is decrease the effect. 

There are two general types of map projection distortion: 

1. Linear distortion.  Difference in distance between a pair of grid (map) coordinates when 
compared to the true (“ground”) distance, denoted here by δ. 

 Can express as a ratio of distortion length to ground length: 

○ E.g., feet of distortion per mile;    parts per million (= mm per km) 

○ Note:  1 foot / mile = 189 ppm = 189 mm / km 

 Linear distortion can be positive or negative: 

○ NEGATIVE distortion means the grid (map) length is SHORTER than the “true” 
horizontal (ground) length. 

○ POSITIVE distortion means the grid (map) length is LONGER than the “true” 
horizontal (ground) length. 

2. Angular distortion.  For conformal projections (e.g., Transverse Mercator, Lambert 
Conformal Conic, Stereographic, Oblique Mercator, etc.), it equals the convergence 
(mapping) angle, γ.  The convergence angle is the difference between grid (map) north and 
true (geodetic) north. 

 Convergence angle is zero on the projection central meridian, positive east of the central 
meridian, and negative west of the central meridian 

 Magnitude of the convergence angle increases with distance from the central meridian, 
and its rate of change increases with increasing latitude: 

Latitude 
Convergence angle 

1 mile from CM 
Latitude 

Convergence angle 
1 mile from CM 

0° 0° 00’ 00” 50° ±0° 01’ 02” 

10° ±0° 00’ 09” 60° ±0° 01’ 30” 

20° ±0° 00’ 19” 70° ±0° 02’ 23” 

30° ±0° 00’ 30” 80° ±0° 04’ 54” 

40° ±0° 00’ 44” 89° ±0° 49’ 32” 

 Usually convergence is not as much of a concern as linear distortion, and it can only be 
minimized by staying close to the projection central meridian (or the Equator). 

Total linear distortion of grid (map) coordinates is a combination of distortion due to Earth 
curvature and distortion due to ground height above the ellipsoid.  In many areas, distortion due 
to variation in ground height is greater than that due to curvature.  This is illustrated in the 
diagrams and tables on the following pages. 
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Table 3.2 Horizontal distortion of grid coordinates due to Earth curvature 

Maximum 

zone width for 

secant projections 

(miles) 

Maximum linear horizontal distortion, δ 

Parts per 
million 

Feet per mile 
Ratio 

(absolute value) 

16 miles ±1 ppm ±0.005 ft/mile 1 : 1,000,000 

50 miles ±10 ppm ±0.05 ft/mile 1 : 100,000 

71 miles ±20 ppm ±0.1 ft/mile 1 : 50,000 

112 miles ±50 ppm ±0.3 ft/mile 1 : 20,000 

158 miles (e.g., SPCS)* ±100 ppm ±0.5 ft/mile 1 : 10,000 

317 miles (e.g., UTM)† ±400 ppm ±2.1 ft/mile 1 : 2500 

*State Plane Coordinate System; zone width shown is valid between ~0° and 45° latitude 
†Universal Transverse Mercator; zone width shown is valid between ~30° and 60° latitude 
 
 
 

Grid length less than
ellipsoidal length

(distortion < 0)

Grid length greater
than ellipsoidal length

(distortion > 0)

Ellipsoid
surface

Projection
surface
(secant)

Maximum projection zone 
width for balanced positive 

and negative distortion  
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Table 3.3 Horizontal distortion of grid coordinates due to ground height above the ellipsoid 

Height below (–) 

and above (+) 

projection surface 

Maximum linear horizontal distortion, δ 

Parts per 
million 

Feet per mile 
Ratio 

(absolute value) 

–100 feet,  +100 feet ±4.8 ppm ±0.03 ft/mile ~1 : 209,000 

–400 feet,  +400 feet ±19 ppm ±0.1 ft/mile ~1 : 52,000 

–1000 feet,  +1000 feet ±48 ppm ±0.3 ft/mile ~1 : 21,000 

+2000 feet –96 ppm –0.5 ft/mile ~1 : 10,500 

+4000 feet* –191 ppm –1.0 ft/mile ~1 : 5200 

+7000 feet** –335 ppm –1.8 ft/mile ~1 : 3000 

+12,600 feet† –603 ppm –3.2 ft/mile ~1 : 1700 

*Approximate average topographic height in Arizona 
** Approximate topographic height of Flagstaff, Arizona 
† Approximate maximum topographic height in Arizona 
 

Rule of Thumb:  
A 100-ft change in height causes a 4.8 ppm change in distortion 

 

Grid distance 
less than
"ground" distance
(distortion < 0)

Horizontal distance between
points on the ground

(at average height)

Ground surface
in project area

Local
projection
surface

Ellipsoid
surface

Grid distance
greater than

"ground" distance
(distortion > 0)

Typical published 
"secant" projection

surface (e.g., 
State Plane, UTM)

Distortion < 0
for almost all cases

 

 
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Exercise 3.1:  Distortion computations 

Linear distortion is the ratio of grid distance to horizontal ground distance.  One way to estimate 
distortion is to compute the distance between a pair of points based on the grid coordinates 
determined by the GPS software.  This grid distance can then be divided by the ground distance 
between these points measured using a (properly calibrated) tape or EDM. 
 
Equation 3.1 Approximating distortion at a point using measured grid and ground distances 

1
distanceground horizontal measured

22










 


EN  

 
Distortion can be computed more accurately (and conveniently) at a single point using the 
familiar “combined scale factor” approach: 

Equation 3.2 Computing distortion at a point using Earth radius 

1










hR

R
k

G

G  

 
Example computation 
Given:  Points CAS-2 and CAS-3 from the previous examples.  The ellipsoid heights (h) of these 
points are listed below, along with the grid coordinates and grid point scale factors (k) derived 
from the adjusted geodetic coordinates (given in Exercise 2.2).  A horizontal ground distance of 
455.968 ift was carefully measured between these points. 

CAS-2:  NAD 83 (2002.0) ellipsoid height, h = 5466.883 ift 

Coordinate system Northing, N (ift) Easting, E (ift) Grid scale factor, k

SPCS 83, Arizona Central (0202) 1,291,805.295 540,432.685 0.999 929 147 

UTM 83, Zone 12 North 12,546,092.208 1,204,955.902 0.999 817 145 

Low Distortion Projection (LDP) 18,061.311 56,042.621 1.000 258 042 

 

CAS-3:  NAD 83 (2002.0) ellipsoid height, h = 5445.959 ift 

Coordinate system Northing, N (ift) Easting, E (ift) Grid scale factor, k 

SPCS 83, Arizona Central (0202) 1,291,942.505 540,867.361 0.999 928 988 

UTM 83, Zone 12 North 12,546,225.452 1,205,391.755 0.999 816 711 

Low Distortion Projection (LDP) 18,200.930 56,476.686 1.000 258 048 

 

Find: The linear distortion (in parts per million) at the midpoint between points CAS-2 and 
CAS-3 in SPCS, UTM, and LDP coordinates using both Equations 3.1 and 3.2 (the geometric 
mean radius of curvature RG = 20,900,487 ift was determined at the midpoint in Exercise 1.3). 
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Computations: For midpoint, use the mean grid scale factor and mean ellipsoid height = 5456 ft. 

SPCS 83 AZ C 

Using Equation 3.1: 

   
11

______________

____________________________________________________ 22






















 


 
=       – 1  in parts per million       × 1,000,000 =     

Using Equation 3.2: 

1
___________________

_______________

2

____________________












 =     – 1       

 

UTM 83 12N 

Using Equation 3.1: 

   
11

______________

____________________________________________________ 22



















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 


 
=       – 1  in parts per million       × 1,000,000 =     

Using Equation 3.2: 

1
___________________

_______________

2

____________________





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





 =     – 1       

 

LDP 

Using Equation 3.1: 

   
11

______________

____________________________________________________ 22


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
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=       – 1  in parts per million       × 1,000,000 =     

Using Equation 3.2: 

1
___________________

_______________

2

____________________
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









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Solution:  For midpoint, use the mean grid scale factor and mean ellipsoid height = 5456 ft. 

SPCS 83 AZ C 

Using Equation 3.1: 

   
1

455.968

455.817
1

455.968

685.432,540361.867,540295.805,291,1505.942,291,1 22




















 
  

= 0.9996688 – 1  in parts per million  –0.0003312 × 1,000,000 = –331.2 ppm 

Using Equation 3.2: 

1
545620,900,487

20,900,487

2

9999290.00.9999291












 = 0.9996681 – 1   –331.9 ppm 

(= –1.75 ft/mile) 

UTM 83 12N 

Using Equation 3.1: 

   
1

455.968

455.766
1

455.968

9021,204,955.7551,205,391..20812,546,092.45212,546,225 22







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










 


= 0.9995570 – 1  in parts per million  –0.0004430 × 1,000,000 = –443.0 ppm 

Using Equation 3.2: 

1
545620,900,487

20,900,487

2

9998167.00.9998171












 = 0.9995560 – 1   –444.0 ppm 

(= –2.34 ft/mile) 

LDP 

Using Equation 3.1: 

   
1

455.968

455.967
1

455.968

56,042.62156,476.68618,061.31118,200.930 22







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










 
  

= 0.9999978 – 1  in parts per million  –0.0000022 × 1,000,000 = –2.2 ppm 

Using Equation 3.2: 

1
545620,900,487

20,900,487

2

00025805.100025804.1












 = 0.9999970 – 1   –3.0 ppm 

(= –0.016 ft/mile) 
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Exercise 3.2:  Six steps for designing a low-distortion grid coordinate system 

1. Define project area and choose representative ellipsoid height, ho (not elevation) 

 The average height of an area may not be appropriate (e.g., project near a mountain) 

○ No need to estimate height to an accuracy of better than about ±20 feet 

 Note that as the size of the area increases, the effect of Earth curvature on distortion 
increases and it must be considered in addition to the effect of topographic height 

○ E.g., for areas wider than about 35 miles (perpendicular to the projection axis), 
distortion due to curvature alone exceeds 5 parts per million (ppm) 

2. Place central meridian near centroid of project area 

3. Scale central meridian of projection to representative ground height, ho 

Equation 3.3 Local map projection scaled to “ground” 

GR

h
k 0

0 1  

 Where RG is geometric mean radius of curvature, 
22

2

sin1

1

e

ea
RG 


  (Equation 1.7) 

○ Alternatively, can initially approximate RG as 20,900,000 feet for Arizona (since ko 
will likely be refined in Step #4) 

 This procedure is for the Transverse Mercator projection 

○ For Lambert Conical projection, use same equation for scale of standard parallel 

4. Check distortion at points distributed throughout project area 

 Best approach is to compute distortion over entire area and generate distortion contours 
(this ensures optimal low-distortion coverage) 

○ May require repeated evaluation using different ko values 

 Distortion computed at a point as 1










hR

R
k

G

G     (Equation 3.2) 

○ Where k = projection grid scale factor at a point (with respect to ellipsoid; see 
Equations 3.3 and 3.4) 

○ Multiply   by 1,000,000 to get distortion in parts per million (ppm) 

5. Keep the definition SIMPLE and CLEAN! 

 Define ko to no more than SIX decimal places, e.g., 1.000206 (exact) 

○ Note:  A change of one unit in the sixth decimal place equals distortion caused by a 
21-foot change in height 

 Defining central meridian and latitude of grid origin to nearest whole arc-minute usually 
adequate (e.g., Central meridian = 111°48’00” W) 
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 Define grid origin using large whole values with as few digits as possible (e.g., False 
easting = 50,000;    Max coordinate < 100,000) 

6. Explicitly define linear unit and geodetic datum 

 E.g., Linear unit = International foot;   Geodetic datum = NAD 83(2007) 
 
Example computation 
Design a Low Distortion Projection (LDP) for Prescott 

1. Define project area and choose representative ellipsoid height, ho (not elevation) 

From topographic maps and benchmark information, a representative ellipsoid height is  
h0 = 5400ft (no need for greater accuracy than nearest ±10 feet) 

2. Place central meridian near centroid of project area 

Based on location and extent of Prescott, a good, clean value is λ0 = 112° 28’ 00” W 

3. Scale central meridian of projection to representative ground height, ho 

First compute Earth radius at mid-latitude of Prescott, φ = 34° 32’ 00” N (no need for greater 
accuracy than nearest arc-minute of latitude): 

  222

2

533333.34sin00230.006694381

00230.006694381.32520,925,646

sin1

1










e

ea
RG = 20,900,450 ift 

 Thus the central meridian scale factor scaled to the representative ellipsoid height is 

450,900,20

5400
11

0

0 
GR

h
k  = 1.000258 

Based on these results, the following Transverse Mercator projection is defined (will refine 
definition if necessary based on results of Step #4): 

    Latitude of grid origin,    φ0 = 34° 30’ 00” N 
    Longitude of central meridian,  λ0 = 112° 28’ 00” W 
    False northing,      N0 = 0.000 ift 
    False easting,       E0 = 50,000.000 ift 
    Central meridian scale factor,  k0 = 1.000258 

4. Check distortion at points distributed throughout project area 

Distortion can be computed at various points throughout the project area.  These can be 
survey control points or even artificial points taken from topographic maps. 

To illustrate, we can use the results of the point distortion computation CAS-2 from the 
previous example (which is repeated here for convenience) 

1
546720,900,487

20,900,487
1.000258041 
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
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

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









hR

R
k

G

G  = 0.999996468 – 1 = –3.5 ppm 

For CAS-4 (at the hospital, 230 ft lower than the resort) we have: 
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1
523520,900,495

20,900,495
1.000258021 
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G  = 1.000007546 – 1 = +7.5 ppm 

This computation can be performed at discrete points throughout the project area, but best 
approach is to compute distortion over entire area (for example on a 3-arc-second grid) and 
generate distortion contours to ensure optimal low-distortion coverage. 

The ability to achieve low distortion is limited by change in elevation (height) within the 
project area.  A reasonable goal might be to limit distortion to ±0.1 ft per mile, which is 
about ±20 ppm and corresponds to a height change of about ±400 ft. 

5. Keep the definition SIMPLE and CLEAN! 

All of the projection parameters were initially defined in Step #3, but trial-and-error may be 
necessary to refine definition. 

 Note ko is defined to exactly SIX decimal places:  k0 = 1.000258 (exact) 

 Both latitude of grid origin and central meridian are defined to nearest whole arc-minute: 

φ0 = 34° 30’ 00” N and  λ0 = 112° 28’ 00” W 

φ0 was selected far enough south to ensure positive northings, but far enough north to 
keep northings less than 100,000 ift. 

 Grid origin is defined using clean whole values with as few digits as possible: 

N0 = 0.000 ift  and  E0 = 50,000.000 ift 

These values were selected to keep grid coordinates positive but less than 100,000 ift 
within the Prescott area (it is conventional to set N0 to zero at φ0, but is not required). 

6. Explicitly define linear unit and geodetic datum 

Linear unit is International foot, and geodetic datum is NAD 83(2007) 

Final Low Distortion Projection definition for this example: 

Linear unit:  International foot 

Geodetic datum:  North American Datum of 1983(2007) 

System:  Arizona LDP 

Zone:  Prescott 

Projection:  Transverse Mercator 

   Latitude of grid origin:  34° 30’ 00” N 

   Longitude of central meridian:  112° 28’ 00” W 

   Northing at grid origin:  0.000 ft 

   Easting at central meridian:  50,000.000 ft 

   Scale factor on central meridian:  1.000258 (exact) 

Note that this coordinate system definition only deals with horizontal coordinates (no vertical 
datum is specified). 
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Methods for creating low-distortion grid coordinate systems 

1. Design a Low Distortion Projection (LDP) for a specific project geographic area. 

Use a conformal projection referenced to the existing geodetic datum. 

Described in detail previously in this document. 

2. Scale the reference ellipsoid “to ground”. 

A map projection referenced to this new “datum” is then designed for the project area. 

Problems: 

 Requires a new ellipsoid (datum) for every coordinate system, which makes it more 
difficult to implement than an LDP. 

 New datum makes it more complex than an LDP, yet it does not perform any better. 

 Generates new set of latitudes that can be substantially different from original latitudes. 

○ Change in latitude can exceed 3 feet per 1000 ft of topographic height, depending on 
method used for scaling the ellipsoid (this case is for scaling with constant flattening). 

○ Can lead to confusion over which latitude values are correct. 

3. Scale an existing published map projection “to ground”. 

Referred to as “modified” State Plane when an existing SPCS projection definition is used. 

Problems: 
 Generates coordinates with values similar to “true” State Plane (can cause confusion). 

○ Can eliminate this problem by translating grid coordinates to get smaller values. 

 Often yields “messy” parameters when a projection definition is back-calculated from the 
scaled coordinates (in order to import the data into a GIS). 

○ More difficult to implement in a GIS, and may cause problems due to rounding or 
truncating of “messy” projection parameters (especially for large coordinate values). 

○ Can reduce this problem through judicious selection of “scaling” parameters. 

 Does not reduce the convergence angle (it is same as that of original SPCS definition). 

○ In addition, the arc-to-chord correction may be significant; it can reach ½ arc-second 
for a 1-mile line located 75 miles from the projection axis (this correction is used 
along with the convergence angle for converting grid azimuths to geodetic azimuths). 

 MOST IMPORTANT:  Usually does not minimize distortion over as large an area as 
the other two methods. 

○ Extent of low-distortion coverage generally decreases as distance increases from 
projection axis (i.e., central meridian for TM and central parallel for LCC projection). 

○ State Plane axis usually does NOT pass through the project area. 

○ Sketches illustrating this problem with “modified” SPCS are shown on the next page. 
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Ellipsoid
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surface

Local grid coordinate system designed for specific project 
location, showing extent of low-distortion coverage
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projection
surface

"Modified" (scaled)
State Plane
projection surface

Ellipsoid
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State Plane projection axis
(central meridian for
Transverse Mercator)

Ground
surface

Local grid coordinate system based on "modified" State Plane 
approach, showing reduced extent of low-distortion coverage



Section 3:  Grid coordinate systems and computations 
 

 40

Exercise 3.3:  Two methods for computing horizontal “ground” distance 

This exercise gives two simple methods for computing horizontal “ground” distances using 
geodetic information.  The first method is done by scaling the ellipsoid distance (geodesic) using 
the average of the ellipsoid heights at the endpoints, as follows: 

Equation 3.4 Approximate geodetic “ground” distance based on ellipsoid distance (geodesic) 











G
grnd R

h
sD 1  

where s  is the ellipsoid distance (geodesic) 

h  is the average ellipsoid height of the two points 

GR  is the geometric mean radius of curvature at the midpoint latitude of the two points 

The second method for computing a horizontal ground distance can be done by using a GPS 
(GNSS) vector directly.  Neglecting Earth curvature, this distance can be computed as: 

Equation 3.5 Approximate “ground” distance based on GPS (GNSS) vector components 

  2222 hZYXDgrnd   

where ΔX, ΔY, ΔZ are the GPS vector components (as ECEF Cartesian coordinate deltas) 

  Δh = change in ellipsoid height between vector end points 

Note that this method can also be used with end point coordinates (rather than a GPS vector), by 
converting the latitude, longitude, and ellipsoid heights to X, Y, Z ECEF coordinates using 
Equation 2.1, and then using the difference in ECEF coordinates in Equation 3.5. 

Accounting for curvature increases this horizontal ground distance, but for distances of less than 
20 miles (about 30 km), the increase is less than 1 part per million (ppm), i.e., less than 0.1 ft (3 
cm).  The horizontal distance can be multiplied by the following curvature correction factor to 
get the approximate curved horizontal ground distance (error is less than about 0.01 ft for 
distances under 50 miles): 

Equation 3.6 Correction factor applied to horizontal distance to account for curvature 
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where all variables are as defined previously.  An Earth radius of 20,900,000 ft is sufficiently 
accurate in Arizona for distances of less than about 100 miles (causes less than 0.01 ft error).   

Example computation 
Given:  Points CAS-2 and CAS-3 from the previous exercises, and a GPS vector from CAS-2 to 
CAS-3 with components ΔX = 438.001 ft, ΔY = −76.678 ft, and ΔZ = 103.056 ft. 
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Find: The horizontal “ground” distance between these points using the two methods in this 
exercise. 

Computations: 

Method 1.  From Exercises 2.3 and 2.4, ellipsoid distance (geodesic) is s = 455.849 ift 

From Exercises 1.3 and 3.1, RG = 20,900,487 ift at midpoint between CAS-2 and CAS-3 (which 
is the same as the average RG for the two points) 

From the ellipsoid heights in Exercise 3.1, the average ellipsoid height is  

h  = (        +       ) / 2 =       ift 

So ground distance is  


















 1______________1

G
grnd R

h
sD  =      ift 

 

Method 2.  Using the given GPS vector components and Δh from Exercises 3.1 gives a 
horizontal ground distance of 

 2222 (________)(________)(________)(________) grndD  =      ift  

Solution: 

Method 1.  From Exercise 2.4, ellipsoid distance (geodesic) is s = 455.849 ift 

From Exercises 1.3 and 3.1, RG = 20,900,487 ift at midpoint between CAS-2 and CAS-3 (which 
is the same as the average RG for the two points) 

From the ellipsoid heights in Exercise 3.1, the average ellipsoid height is  

h  = (5466.883 + 5445.959) / 2 = 5456.421 ift 

So ground distance is  











487,900,20

421.5456
1849.455grndD  = 455.849 × 1.00026107 = 455.968 ift 

Method 2.  Using the given GPS vector components and Δh = 5445.959 – 5466.883 = −20.924 ft 
gives a horizontal ground distance of 

 2222 )924.20()056.103()678.76()001.438( grndD  = 455.968 ift, 

which is the same as that computed for Method 1.  For such a short distance, curvature is 
completely negligible.  This can be verified using Equation 3.6, which gives a curvature 
correction factor of CC = 1.000 000 000 020, or 0.00002 ppm.  As stated previously, the 
curvature correction factor is less than 1 ppm for distances of less than about 20 miles. 
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Exercise 3.4:  Projection grid scale factor and convergence angle computation 

For the Transverse Mercator projection, the grid scale factor at a point can be computed as 
follows (modified from Stem, 1990, pp. 32-35): 

Equation 3.7 Transverse Mercator projection grid scale factor formula 
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where   0  (in radians, for negative west longitude) 

  = geodetic longitude of point 

0  = central meridian longitude 

and all other variables are as defined previously. 

The following shorter equation can be used to approximate k for the Transverse Mercator 
projection.  It is accurate to better than 0.02 part per million (at least 7 decimal places) if the 
computation point is within about ±1° of the central meridian (about 50 to 60 miles between 
latitudes of 30° and 45°): 

Equation 3.8 Approximate Transverse Mercator projection grid scale factor formula 
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Note that this equation may not be sufficiently accurate for computing k throughout a UTM 
system zone (at the zone width of ±3° from the central meridian the error can exceed 1 ppm). 

An even simpler equation can be used to approximate the grid scale factor, which utilizes the 
grid coordinate easting value and is about twice as accurate as the previous equation (i.e., better 
than 0.01 part per million if the computation point is within about ±1° of the central meridian): 

Equation 3.9 Another approximate Transverse Mercator projection grid scale factor formula 

 
 2

0

2
0

0
2 GRk

EE
kk


  

where E = Easting of the point where k is computed (in same units as RG) 

  E0 = False easting (on central meridian) of projection definition (in same units as RG) 

  RG = Earth geometric mean radius of curvature (can use 20,900,000 feet for Arizona) 
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For the Lambert Conformal Conic projection, the grid scale factor at a point can be computed as 
follows (modified from Stem, 1990, pp. 26-29): 

Equation 3.10 Lambert Conformal Conic projection grid scale factor formula 
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where 0k  = projection grid scale factor applied to central parallel (tangent to ellipsoid if 0k  = 1) 

0  = geodetic latitude of central parallel = standard parallel for one-parallel LCC 

22 2 ffee   = first eccentricity of the reference ellipsoid 

and all other variables are as defined previously.  In order to use this equation for a two-parallel 
LCC, the two-parallel LCC must first be converted to an equivalent one-parallel LCC by 
computing 0  and 0k .  The equations to do this are long, but are provided here for the sake of 

completeness.  For a two-parallel LCC, the central parallel is 
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and the central parallel scale factor is 
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where N  and S = geodetic latitude of northern and southern standard parallels, respectively, 

and all other variables are as defined previously. 

Convergence angles.  For the TM, the convergence angle can be approximated as 
 sin  (where all variables are as defined previously; the units of  are the same as the 

units of  ).  This equation is accurate to better than ±00.2” if the computation point is within 
~1° of the central meridian.  For any LCC, the convergence angle is exactly 0sin  . 
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Exercise 3.5:  Grid versus geodetic bearings 

Illustrates misclosure problem with geodetic azimuths, and shows how to convert grid azimuths 
to geodetic azimuths. 

Equation 3.11 Relationship between grid and forward geodetic azimuth from point A to B 

 ABAABAB Ttt    

where AB  and ABt  = geodetic and grid azimuths from  point A to B, respectively 

A  = map projection convergence angle at point A 

 ABTt   = Arc-to-chord (“second term”) correction from A to B (usually negligible) 

Example using Low Distortion Projection (LDP), State Plane, and UTM coordinates 

 

 

 

Grid coords Northing (ift) Easting (ift)  

CAS-2 

LDP 18,061.311 56,042.621 

SPCS 1,291,805.295 540,432.685 

UTM 12,546,092.208 1,204,955.902

CAS-3 

LDP 18,200.930 56,476.686 

SPCS 1,291,942.505 540,867.361 

UTM 12,546,225.452 1,205,391.755

CAS-4 

LDP 19,328.195 54,271.494 

SPCS 1,293,081.384 538,669.061 

UTM 12,547,384.106 1,203,204.126

CAS-2 

CAS-3 

Consider closed polygon below from points 
CAS-2 to CAS-3 to CAS-4 to CAS-2 (not to 
scale).  Label the figure with distances, grid 
azimuths, and geodetic forward and back 
azimuths. 

CAS-4 
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Example solution:  Computed using Low Distortion Projection (LDP) coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

MISCLOSURES (computed using LDP coordinates) 

Grid bearings and grid distances (misclosure due to rounding) 0.0007 ft 

Grid bearings and “ground” distances 0.0152 ft 

Forward geodetic bearings and grid distances 0.1617 ft 

Forward geodetic bearings and “ground” distances 0.1638 ft 

Back geodetic bearings and grid distances 0.1484 ft 

Back geodetic bearings and “ground” distances 0.1499 ft 

Mean forward & back geodetic bearings and grid distances 0.0136 ft 

Mean forward & back geodetic bearings and “ground” distances 0.0273 ft 

Notes 

1)  Misclosures the same for all grid coordinates systems. 

2)  Maximum magnitude of arc-to-chord correction (t − T): 

a)  0.0015” for LDP coordinates 

b)  0.0480” for SPCS 83 AZ C coordinates 

c)  0.1321” for UTM 83 12N coordinates 

CAS-3 
γ = +00’43.9” (LDP) 
γ = −17’59.0” (SPCS) 
γ = −49’11.0” (UTM) 

CAS-2 
γ = +00’41.0” (LDP) 
γ = −18’02.0” (SPCS) 
γ = −49’13.9” (UTM) 

CAS-4 
γ = +00’29.0” (LDP) 
γ = −18’14.1” (SPCS) 
γ = −49’26.1” (UTM) 
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Section 4 

VERTICAL DATUMS AND HEIGHT SYSTEMS 

How high is it?  How deep is it?  Where will water go? 

Examples of height determination errors for Arizona 

Table 4.1 Examples of various positioning error sources and their magnitudes for Arizona due 
to vertical datum and height system problems (abbreviations and technical terms are defined in 
the Glossary). 

Positioning error examples for Arizona Error magnitudes 

Using NGVD 29 when NAVD 88 required 1.2 to 4.5 feet (vertical) 

Using ellipsoid heights for elevations 
Varies from 63 feet to 

113 feet (vertical) 

Neglecting geoid slope when transferring elevations with 
GPS 

Up to 0.7 foot vertical 
per mile horizontal 

Using geoid model GEOID03 when GEOID09 is required to 
derive elevations from ellipsoid heights 

Varies from −0.7 foot to 

+0.5 foot (vertical) 

Using leveling without orthometric corrections to “correct” 
GPS-derived elevations 

Can exceed 0.05 foot vertical 
per mile horizontal 

Generating GPS-derived elevations using a best-fit  inclined 
planar correction surface based on ties to inappropriate or 
inconsistent vertical control (via a vertical “calibration” or 
“localization”) 

Varies, but can cause very large 
systematic vertical errors 
(can exceed several feet) 
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Exercise 4.1:  Ellipsoid, orthometric, and geoid heights 

The relationship between ellipsoidal, orthometric, and geoid heights is shown in the figure 
below.  Note that everywhere in the coterminous US, the geoid height is negative (i.e., the geoid 
is below the ellipsoid).  But in most of Alaska, the geoid height is positive. 

Earth 
surface

EllipsoidGeoid

Orthometric height, H

Geoid height, NG

Ellipsoidal height, h

Deflection of the vertical

Mean 
sea level

Note:Note: Geoid height is Geoid height is negativenegative everywhere in the coterminous USeverywhere in the coterminous US

(but it is (but it is positivepositive in most of Alaska)in most of Alaska)

 
Equation 4.1 Relationship between ellipsoidal, orthometric, and geoid heights 

GNHh   

where h, H, and NG are the ellipsoidal, orthometric, and geoid heights, respectively. 

Strictly speaking, the relationship in Equation 4.1 is approximate due to deflection of the 
vertical.  However, it is accurate at the sub-millimeter level, and so can be considered exact for 
all practical purposes. 

 
 
 

 
 
 
 
 

Rules of Thumb: 

Accuracy of NAVD 88 orthometric heights derived from NAD 83 
ellipsoid heights using the following geoid models (based on NGS 
documentation and given at the 95% confidence level): 

GEOID09 approximate absolute accuracy: ±0.09 ft (±2.7 cm) 
GEOID03 approximate absolute accuracy: ±0.15 ft (±4.7 cm) 
GEOID99 approximate absolute accuracy: ±0.30 ft (±9.0 cm) 
GEOID96 approximate absolute accuracy: ±0.35 ft (±10.8 cm) 

The relative accuracy of these geoid models is 1 to 2 ppm, or better. 

 
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Example computation 
Given:  An NGS Datasheet for conventional NGS control station PEND (below): 

 

Find:  The ellipsoid height of PEND in International and US Survey Feet. 

Computations:  

Sometimes the only horizontal control station available for a GPS survey was determined using 
conventional methods.  These do not have an ellipsoid height, but there is enough information to 
compute it if an accurate NAVD 88 orthometric height is available.  From the Datasheet we 
have: 

 h =     H    +   NG 

h =      +      =      m =     ift =     sft 

Solution: 

 

h = 2160.187 m + (−23.11 m) = 2137.08 m = 7011.42 ift = 7011.40 sft 

h = 7011.4 ft (±0.1 ft at 95% confidence) in both International and US Survey Feet at 
accuracy of the computation 

FQ0306 *********************************************************************** 
FQ0306  DESIGNATION -  PEND 
FQ0306  PID         -  FQ0306 
FQ0306  STATE/COUNTY-  AZ/COCONINO 
FQ0306  USGS QUAD   -  FLAGSTAFF WEST (1983) 
FQ0306 
FQ0306                         *CURRENT SURVEY CONTROL 
FQ0306  ___________________________________________________________________ 
FQ0306* NAD 83(1992)-  35 11 18.46326(N)    111 41 28.38215(W)     ADJUSTED   
FQ0306* NAVD 88     -      2160.187  (meters)    7087.21   (feet)  ADJUSTED   
FQ0306  ___________________________________________________________________ 
FQ0306  LAPLACE CORR-          -2.27  (seconds)                    DEFLEC09 
FQ0306  GEOID HEIGHT-         -23.11  (meters)                     GEOID09 
FQ0306  DYNAMIC HT  -        2157.097 (meters)    7077.08  (feet)  COMP 
FQ0306  MODELED GRAV-     979,125.4   (mgal)                       NAVD 88 
FQ0306 
FQ0306  HORZ ORDER  -  SECOND 
FQ0306  VERT ORDER  -  FIRST     CLASS II 

FQ0306 *********************************************************************** 
FQ0306  DESIGNATION -  PEND 
FQ0306  PID         -  FQ0306 
FQ0306  STATE/COUNTY-  AZ/COCONINO 
FQ0306  USGS QUAD   -  FLAGSTAFF WEST (1983) 
FQ0306 
FQ0306                         *CURRENT SURVEY CONTROL 
FQ0306  ___________________________________________________________________ 
FQ0306* NAD 83(1992)-  35 11 18.46326(N)    111 41 28.38215(W)     ADJUSTED   
FQ0306* NAVD 88     -      2160.187  (meters)    7087.21   (feet)  ADJUSTED   
FQ0306  ___________________________________________________________________ 
FQ0306  LAPLACE CORR-          -2.27  (seconds)                    DEFLEC09 
FQ0306  GEOID HEIGHT-         -23.11  (meters)                     GEOID09 
FQ0306  DYNAMIC HT  -        2157.097 (meters)    7077.08  (feet)  COMP 
FQ0306  MODELED GRAV-     979,125.4   (mgal)                       NAVD 88 
FQ0306 
FQ0306  HORZ ORDER  -  SECOND 
FQ0306  VERT ORDER  -  FIRST     CLASS II 

= NG

= H
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Exercise 4.2:  Trigonometric leveling 

Equation 4.2 Change in elevation from trigonometric leveling 

CRS CriDH  cos   

where ΔH  is the change in elevation (nominally orthometric height) 

  DS  is the slope distance 

  ν  is the zenith angle 

  i  and r  are the instrument and prism rod heights, respectively, and 

  CCR  is the correction term for curvature and refraction, which is given by: 

Equation 4.3 Curvature and refraction correction for trigonometric leveling (after Wolf and 
Brinker, 1994, p. 110) 
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Note that CCR is always added to the change in elevation computed in Equation 4.2. 

 

 

Earth 
curvature,
CC

Refraction, 
CR

ii

rr
ν

DDSS

Level surface

Horizontal at instrument

ΔΔHH

Level surface

Lin
e o

f s
igh

t

Combined effect of curvature & refraction:

CCR = CC − CR

Plumb
line

Plumbline

Actual ray path 
(curved)



Section 4:  Vertical datums and height systems 

 50

Example computation 
Given:  Two survey stations (CAS-1 and CAS-4) were occupied with a 1-second Kern 
theodolite.  The zenith angle was measured from both stations simultaneously in two sets of 
forward and reverse (face 1, face 2) observations, for a total of 12 measurements.  The mean 
observed zenith angle for the forward and reverse sets are given below, along with the instrument 
and target heights.  The slope distance between CAS-1 and CAS-4 is 2016.615 ift. 

Sets From To 
Instrument 
height (ft) 

Target 
height (ft) 

Mean zenith angle of all 
three sets 

1-3 CAS-1 CAS-4 4.89 5.21 96° 37’ 39.0” 

4-6 CAS-4 CAS-1 5.21 4.89 83° 22’ 41.3” 

 

Find:  The elevation change from CAS-1 to CAS-4, both with and without correction for 
curvature and refraction. 

Computations:  

The correction for curvature and refraction between these stations is essentially the same, since it 
is based on the horizontal distance, and so any of the observed zenith angles can be used: 

  22

1000

______________sin____________
0206.0

1000

sin
0206.0 






 









S
CR

D
C =    ft 

Now compute each elevation change: 
                Uncorrected    Corrected 

DS   ×     cos ν    +  i  –     r       +     CCR 
ΔH1–3 = ________ × cos( _________ ) + ______ – ______ =_________ + _______ = _________ 

ΔH1–3 = ________ × cos( _________ ) + ______ – ______ =_________ + _______ = _________ 

Average height change between stations:        _________      _________ 

Solution: 

The correction for curvature and refraction between these stations is essentially the same, since it 
is based on the horizontal distance, and so any of the six zenith angles can be used: 

CCR = 
  2

1000

62750.96sin615.2016
0206.0 






 

 = 0.0206 × 2.00312 = 0.083 ft 

Now compute each elevation change:  
               Uncorrected    Corrected 

ΔH1–3 = 2016.615 × cos(96.62750°) + 4.89 – 5.21 = –233.065 ft + 0.083 =  –232.982 ft 

ΔH4-6 = 2016.615 × cos(83.37814°) + 5.21 – 4.89 =  +232.868 ft + 0.083 =  +232.951 ft 

Average height change between stations:     232.97 ft       232.97 ft 

The average of uncorrected height changes is the same since effect of curvature and refraction 
cancels when observations are made in both directions simultaneously. 
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Exercise 4.3:  Dynamic heights and geopotential numbers 

In addition to orthometric heights, H (“elevations”), NGS Datasheets also give dynamic heights, 
HD.  A dynamic “height” is actually not a height in the geometric sense of a distance above a 
reference surface.  Rather, it is a geopotential number, C, that has been divided (scaled) by a 
constant value of gravity, which gives HD units of length.  Both C and HD represent the 
gravitational potential energy at a point, and changes in HD are the only “height” differences that 
give true change in hydraulic head.  That is, unconfined water will not flow from one point to 
another if the water surface at both points has the same HD, even though the points will generally 
not have the same “elevation”, H (i.e., ΔHD ≠ ΔH, although the difference is often small). 

Equation 4.4 Relationship between dynamic height and geopotential number 

0
C

H D      
806199.9

C
H D   [meters]    

172569.32

C
H D   [ift] 

where C = geopotential number (units of m2/s2 or ft2/s2) 

0  = 9.806199 m/s2 = normal gravity on the GRS 80 ellipsoid at 45° latitude (given on 

NGS Datasheets as 980.6199 gals, where 1 m/s2 = 100 gals) 

Both the dynamic and orthometric heights shown on NGS Datasheets were originally computed 
from the same set of adjusted geopotential numbers.  The relationship between these two types of 
heights is given below. 

Equation 4.5 Relationship between NAVD 88 dynamic and Helmert orthometric heights 
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(modified from Zilkoski et al., 1992) 

where g  = Helmert mean gravity on the plumbline 

g = “Observed” (modeled) NAVD 88 surface gravity (given on NGS Datasheets in 
milligals, where 1 m/s2 = 100,000 mgals) 

K = 2,358,000 s2 = 1 / (4.24 × 10−7 s−2) is a constant factor for computing Helmert 
NAVD 88 mean gravity (assumes constant topographic density of 2670 kg/m3) 

Equations 4.4 and 4.5 show that orthometric heights can also be computed from geopotential 
numbers, as H = C / g . 

Example computation 
Given:  The NGS Datasheet for NGS station PEND (in Exercise 4.1, and on the next page): 

Find:  The geopotential number of PEND from both the dynamic and orthometric height (in ift). 
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Computations:  

Using the published NAVD 88 dynamic height: 

 C =   0      ×         HD     

C =       × 
ift/m3048.0

m______________
 =      ift2/s2 

Using the published NAVD 88 Helmert orthometric height: 

 C =   





 

K

H
g ×  H     

C = 









____________

____________
____________ ×       =

  222

22

ift/m3048.0

s/m_____________
=  

=      ift2/s2 

Solution: 
Using the published NAVD 88 dynamic height: 

 C = 32.172569 ift/s2 × 
ift/m3048.0

m097.2157
 = 227,688 ift2/s2 

Using the published NAVD 88 Helmert orthometric height: 

 C = 









2
2

s000,358,2

m187.2160
s/m791254.9 × 2160.187 m =

  222

22

ift/m3048.0

s/m92.152,21
= 227,688 ift2/s2 

FQ0306 *********************************************************************** 
FQ0306  DESIGNATION -  PEND 
FQ0306  PID         -  FQ0306 
FQ0306  STATE/COUNTY-  AZ/COCONINO 
FQ0306  USGS QUAD   -  FLAGSTAFF WEST (1983) 
FQ0306 
FQ0306                         *CURRENT SURVEY CONTROL 
FQ0306  ___________________________________________________________________ 
FQ0306* NAD 83(1992)-  35 11 18.46326(N)    111 41 28.38215(W)     ADJUSTED   
FQ0306* NAVD 88     -      2160.187  (meters)    7087.21   (feet)  ADJUSTED   
FQ0306  ___________________________________________________________________ 
FQ0306  LAPLACE CORR-          -2.27  (seconds)                    DEFLEC09 
FQ0306  GEOID HEIGHT-         -23.11  (meters)                     GEOID09 
FQ0306  DYNAMIC HT  -        2157.097 (meters)    7077.08  (feet)  COMP 
FQ0306  MODELED GRAV-     979,125.4   (mgal)                       NAVD 88 
FQ0306 
FQ0306  HORZ ORDER  -  SECOND 
FQ0306  VERT ORDER  -  FIRST     CLASS II 
  : 
FQ0306.The dynamic height is computed by dividing the NAVD 88 
FQ0306.geopotential number by the normal gravity value computed on the 
FQ0306.Geodetic Reference System of 1980 (GRS 80) ellipsoid at 45 
FQ0306.degrees latitude (g = 980.6199 gals.). 
FQ0306 
FQ0306.The modeled gravity was interpolated from observed gravity values. 

= HD 
= g 

= H

= γ0  
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Exercise 4.4:  Computing orthometric and dynamic heights from leveling 

Leveling, by itself, does not yield true change in orthometric or dynamic heights.  But when 
leveling is combined with surface gravity, the change in geopotential numbers can be computed.  
If the geopotential number is known for at least one point in a leveling network, then it can be 
computed at all points in the network.  The geopotential numbers can then be converted to 
orthometric and dynamic heights using the relationships from the previous section, where 
orthometric height is H = C / g , and dynamic height is HD = C / 0 . 

 
Equation 4.6 Determining change in geopotential from leveled height differences 

AB
BA

AB n
gg

CC 





 


2

 

where gA and gB = surface gravity at adjacent stations A and B (in m/s2 or ft/s2) 

  ABn  = leveled height difference from station A and B (in same linear units as gravity) 

Alternatively, leveled height differences can be converted to orthometric heights and dynamic 
heights by adding an orthometric correction (OC) or dynamic correction (DC) to observed 
leveled height differences between adjacent stations. 
 
Equation 4.7 The NAVD 88 Helmert orthometric correction for leveled height differences 

    
 ABAB

ABAABBA
AB nHgK

nHnggK
OC





2

22
  (modified from Hwang and Hsiao, 2003) 

where all variables are as defined previously, and the orthometric correction is added to the 
observed leveled height difference, i.e., ABABAB OCnHH  . 
 
Equation 4.8 The dynamic correction for leveled height differences 

AB
BA

AB n
gg

DC 










 1

2 0
   (modified from Hofmann-Wellenhof and Moritz,  2005) 

where all variables are as defined previously, and the dynamic correction is added to the 
observed leveled height difference, i.e., ABAB

D
A

D
B DCnHH  . 

“Approximately equal” symbols were used for equations 4.6 – 4.8 because the surface gravity 
varies continuously along the leveling route.  These equations will be exactly true only when the 
gravity varies linearly between stations.  For best results they should be applied to every turning 
point on a leveling route.  However, in most cases, Equation 4.7 (orthometric corrections) should 
work well for stations less than about 2 km apart.  Equations 4.6 and 4.8 (geopotential numbers 
and dynamic corrections) are more sensitive to variation in surface gravity, and may not give 
good results even for stations less than 2 km apart, especially in mountainous areas. 
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Example computation 
Given:  A leveled height difference of +50.387 ft measured from NGS stations M 504 (PID 
FQ0543) to L 504 (PID FQ0544).  The following data apply to these stations: 

 M 504 (station A) L 504 (station B) 

Orthometric height 6104.396 ift ? 

Dynamic height 6095.991 ift ? 

Surface gravity 32.125673 ift/s2 32.125305 ift/s2 

Find:  The orthometric and dynamic heights of L 504 (in ift).  The stations are 6450 ft apart. 

Computations:  The stations are (slightly) less than about 2 km apart, so using gravity values 
only at the stations themselves should be adequate (rather than at every leveling turning point). 

Alternative 1:  Solve using geopotential numbers. 

CB = AB
BAD

AAB
BA

A n
gg

Hn
gg

C 





 







 


22 0  

CB = ________________
2

______________________
______________________ 






 

  

CB =         ift2/s2 
Orthometric height: 

________________

_______________________
_____________

_______________










K

nH
g

C

g

C
H

ABA
B

B

B

B
B  

BH =        ift 
 Dynamic height: 


_____________

_____________

0
BD

B

C
H        ift 

Alternative 2:  Solve using dynamic and orthometric corrections. 
 

    
 ABAB

ABAABBA
AB nHgK

nHnggK
OC





2

22
 

    
 _________________________________________2

_________________2_______2______________________________




ABOC

ABOC =      ft 

AB
BA

AB n
gg

DC 












 1
2 0

 

_________________1
______________2

________________________













ABDC  =      ft 
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 Orthometric height: 

ABABAB OCnHH  =       +      +     =     ift 

Dynamic height: 
 ABAB

D
A

D
B DCnHH  =       +      +     =     ift 

Solution: 

Alternative 1:  Solve using geopotential numbers. 

CB 387.50
2

32.12530332.125673
6095.991172569.32 






 

  

CB = 196,123.7 + 32.125489 × 50.387 = 197,742.4 ift2/s2 

 Orthometric height: 

000,358,2

387.50396.6104
32.125305

4.742,197





B

B
B g

C
H =  6154.847 ift 

Dynamic height:  
172569.32

4.742,197

0
BD

B

C
H         6146.304 ift 

Alternative 2:  Solve using orthometric and dynamic corrections. 
 

    
 387.05396.610432.1253052,358,0002

387.05396.10462387.05232.12530532.1256732,358,000




ABOC  

   





248,515,151

179.259,12970.766
ABOC    +0.062 ft 

  387.50001463.0387.501
172569.322

32.12530532.125673







 




ABDC  =     −0.074 ft 

 Orthometric height: 

ABABAB OCnHH  =  6104.396  +  50.387  +  0.062  =     6154.845 ift 

Dynamic height: 

ABAB
D
A

D
B DCnHH  =  6095.991  +  50.387  +  (−0.074)  =   6146.304 ift 

Check:  The NGS Datasheet for station L 504 gives: 

  BH  = 1875.997 m = 6154.846 ift       and       D
BH = 1873.393 m = 6146.302 ift 

These results are essentially equal to the NGS Datasheet values, to within the displayed 
precisions (±0.0005 m = ±0.0016 ft).  However, part of the difference is likely also due to non-
linear variation in gravity between the stations, which are 6450 ft (1.95 km) apart 

Note that ΔH = 50.449 ft does not equal ΔHD = 50.311 ft, and that only ΔHD gives true change in 
hydraulic head (even though it is not really a change in “height”, at least in the geometric sense). 


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Section 5 

DOCUMENTATION AND ACCURACY REPORTING 

Is it in the right place?  By how much?  How do you know? 

Examples of documentation and accuracy reporting errors 

Table 5.1 Examples of various positioning error sources and their magnitudes due to 
documentation and accuracy reporting problems (abbreviations and technical terms are defined 
in the Glossary). 

Documentation error examples Problem 

Documenting geodetic datum as “WGS-84” when data 
actually referenced to NAD 83 

Perpetuates confusion about 
“equivalence” of WGS-84 and 

NAD 83 

Listing grid coordinates (such as SPCS) as “NAD 83” 
NAD 83 is a geodetic datum, not 

a grid coordinate system 

Documenting geodetic datum as “GRS-80” 
GRS-80 is a reference ellipsoid, 

not a datum 

Documenting vertical datum as “Mean Sea Level” (MSL) 
There is no MSL datum in the 

US (name changed to 
NGVD 29 in 1976) 

Using precision as an accuracy estimate with data containing 
systematic errors (e.g., incorrect reference coordinates) 

Accuracy estimate is 
meaningless 

Reporting horizontal error using unscaled standard deviation, 
rather than at the 95% confidence level (as specified by the 
FGDC) 

Gives error estimates at 39% 
confidence level 

Reporting vertical error using unscaled standard deviation, 
rather than at the 95% confidence level (as specified by the 
FGDC) 

Gives error estimates at 68% 
confidence level 

Using radial and circular estimates for horizontal error rather 
than semi-major axis of horizontal error ellipse 

Typically makes errors appear 
less than actual 

Using trivial vectors in GPS network adjustments 
Varies, but always makes errors 

appear less than actual 

Relying on precision computed by baseline processor for a 
single GPS vector as an indicator of accuracy 

Varies, but precision value 
usually very optimistic and will 

not reveal systematic errors 
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Exercise 5.1:  Computing error circle and ellipse from standard error components 

Accuracies are given on the NGS Datasheet as linear values for the north, east, and up 
components (in centimeters) scaled to the 95% confidence level.  The north and east components 
can be converted to a horizontal (circular) accuracy consistent with the approach used by the 
National Standard for Spatial Data Accuracy (NSSDA) as developed by the Federal Geographic 
Data Committee (1998, Part 3).  Error ellipse axes and rotation can also be computed from the 
north and east standard error components and horizontal correlation given in the NGS 
Readjustment Distribution Format (RDF) file. 
 
Equation 5.1 Horizontal (circular) accuracy computed from north and east accuracy 
components (at the 95% confidence level per NSSDA) 

2
4477.2

2
2489.1 9595

95
EN

EN EE
CEP

 



  

where CEP95 is the estimated Circular Error Probable (horizontal accuracy) at 95% confidence 
NE95  and EE95  are the north and east errors (accuracies), respectively, from the NGS 

Datasheet (which are given at 95% confidence) 

N  and E  are the north and east standard errors, respectively, from the NGS RDF file 

   
The value 1.2489 is the ratio of the bivariate and univariate scalars for a confidence level of 
95%, because the NGS Datasheet gives the north and east accuracies using the univariate scalar 
at 95% confidence (see Table 5.2 below for these scalars at this and other confidence levels). 
Note that CEP is typically computed at the 50% confidence level. 
 
 
Equation 5.2 Horizontal covariance computed from correlation (the horizontal correlation is 
given in the NGS RDF file) 

ENNE    

where NE  is the horizontal covariance 

    is the horizontal correlation 
 

 
Equation 5.3 Horizontal error ellipse axes computed from standard errors and covariance (at 
95% confidence; standard error values are given in the NGS RDF file) 

  



  222222 4

2

1
4477.2, NEENENba   

where a and b are the error ellipse semi-major and semi-minor axes, scaled to 95% confidence 
(note that the “±” operator allows computation of both a and b with this one equation, and that a 
is always greater than b). 
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Equation 5.4 Horizontal error ellipse rotation computed from standard errors and covariance 
(standard error values are given in the NGS RDF file) 











 
22

1 2
tan

2

1

NE

NE




  

where   is the rotation angle of the semi-major axis, with respect to the east direction (positive 
counterclockwise).  If EN   , rotation is with respect to the positive east axis.  If EN   , 

rotation is with respect to the negative east axis.  If EN   , then   = ±45°, where the sign of 

the rotation is determined by the sign of NE . 

Table 5.2  Values used to scale standard errors (accuracies) to various confidence levels.  The 
univariate scalar is used for single error components, such as vertical error.  The bivariate scalar 
is used for dual (two-dimensional) error components, such as horizontal error, and can be used to 
scale an error ellipse to a desired confidence level.  The trivariate scalar is rarely used but is 
provided here for the sake of completeness.  It is for three-dimensional error components and can 
be used for scaling an error ellipsoid to a desired confidence level.  In all cases, these scalars are 
based on the normal probability distribution of random variables, and the multivariate scalars are 
for jointly distributed random variables. 

Univariate scalars Bivariate scalars Trivariate scalars 

Scalar, 
1
Xc  

Confidence 
level, X 

Scalar, 
2
Xc  

Confidence 
level, X 

Scalar, 
3
Xc  

Confidence 
level, X 

0.6745 50.00% 1.0000 39.35% 1.0000 19.87% 

1.0000 68.27% 1.1774 50.00% 1.5382 50.00% 

1.6449 90.00% 2.0000 86.47% 2.0000 73.85% 

1.9600 95.00% 2.1460 90.00% 2.5003 90.00% 

2.0000 95.45% 2.4477 95.00% 2.7955 95.00% 

2.5758 99.00% 3.0000 98.89% 3.0000 97.07% 

3.0000 99.73% 3.0349 99.00% 3.3682 99.00% 

3.2905 99.90% 3.7169 99.90% 4.0331 99.90% 

Again, for the sake of completeness, note that the trivariate scalar can be used to scale the 
estimated Spherical Error Probable (SEP) to a desired confidence level.  The estimated SEP at 
95% confidence is computed as 

3
4263.1

3
7955.2 959595

95

UEN
UEN EEE

SEP








, 

where U  is the up (ellipsoid height) standard error and UE95  is the up error (accuracy) at 95% 

confidence as given on the NGS Datasheet.  As with CEP, typically SEP is computed at 50% 
confidence. 
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Example computation 
Given:  The NGS Datasheet network accuracies and Readjustment Distribution Format (RDF) 
standard errors (sigmas) for station NN 03 (CZ2412): 

 
NE95  EE95  UE95  

Readjustment Distribution Format values for station NN 03 (in centimeters): 

 
  N     E            U  

Find:  The ellipsoid height (up) error, circular error probable (CEP), spherical error probable 
(SEP), and the horizontal error ellipse axes and rotation angle, all at the 50%, 95%, and 99% 
confidence levels.  Compute all values from either or both the accuracy values on the datasheet 
or the RDF output, as appropriate, and give the final results in feet. 

Computations:  The ellipsoid height accuracy (error) is one-dimensional, so the univariate scalars 
from Table 5.2 should be used to scale the errors to the required confidence levels.  This can be 
done from either the RDF file or the Datasheet. 

 
   Using the RDF sigma value    Using the Datasheet accuracy 

U
XE  =  1

Xc  × U     or   U
XE  =  

1
95

1

c

cX  × UE95  

where 1
Xc is the univariate scalar at the X% confidence level, and we have: 

000010*A1*HZTLOBS                                                      20060712 
000020*10*az.bfile                                                               
000030*13*NAD 83(NSRS 2007)      GRS-80          6378137000          6356752314 
 . 
 . 
CZ2412*80*0164NN 03                         32252589923N111032109845W       AZ   
CZ2412*86*0164                                783662                             
 . 
 . 
DH5794*91*1348            0.60      0.61-.18761247      1.10    Y 
 

 CZ2412 *********************************************************************** 
 CZ2412  DESIGNATION -  NN 03 
 CZ2412  PID         -  CZ2412 
 CZ2412  STATE/COUNTY-  AZ/PIMA 
 CZ2412  USGS QUAD   -  RUELAS CANYON (1992) 
 CZ2412 
 CZ2412                         *CURRENT SURVEY CONTROL 
 CZ2412  ___________________________________________________________________ 
 CZ2412* NAD 83(2007)-  32 25 25.89923(N)    111 03 21.09845(W)     ADJUSTED   
 CZ2412* NAVD 88     -       812.8    (meters)    2667.     (feet)  GPS OBS    
 CZ2412  ___________________________________________________________________ 
  . 
  . 
 CZ2412  ------- Accuracy Estimates (at 95% Confidence Level in cm) -------- 
 CZ2412  Type    PID    Designation                      North   East  Ellip 
 CZ2412  ------------------------------------------------------------------- 
 CZ2412  NETWORK CZ2412 NN 03                             1.18   1.20   2.16 
 CZ2412  ------------------------------------------------------------------- 
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0.6745 × 1.10  

UE50  =        or     =  0.74 cm   =   0.024 ft (at 50% confidence) 

    0.6745 / 1.9600 × 2.16 

 
1.9600 × 1.10  

UE95  =        or     =  2.16 cm   =   0.071 ft (at 95% confidence) 

    1.9600 / 1.9600 × 2.16 

 
2.5758 × 1.10  

UE99  =        or     =  2.84 cm   =   0.093 ft (at 99% confidence) 

    2.5758 / 1.9600 × 2.16 

 
The CEP is two-dimensional, so the bivariate scalars from Table 5.2 should be used to scale the 
errors to the required confidence levels.  This can also be done from either the RDF file or the 
Datasheet. 

 
   Using the RDF sigma values    Using the Datasheet accuracies 

2
2 EN
XX cCEP

 
    or   

2
9595

1
95

2 EN
X

X

EE

c

c
CEP


  

where 2
Xc  is the bivariate scalar at the X% confidence level (note that the univariate scalar is 

used in the denominator for Datasheet accuracies).  First we can compute the mean north and 
east sigma and Datasheet accuracy values as ( N + E ) / 2 = (0.60 + 0.61) / 2 = 0.605 cm and (

NE95 + EE95 ) / 2  = (1.18 + 1.20) / 2 = 1.190 cm.  The CEP for each case is then: 

 
1.1774 × 0.605  

CEP50 =    or    =  0.71 cm   =   0.023 ft (at 50% confidence) 
    1.1774 / 1.9600 × 1.19 

 
2.4477 × 0.605  

CEP95 =    or    =  1.49 cm   =   0.049 ft (at 95% confidence) 
    2.4477 / 1.9600 × 1.19 

 
3.0349 × 0.605  

CEP99 =    or    =  1.84 cm   =   0.060 ft (at 99% confidence) 
    3.0349 / 1.9600 × 1.19 

 

The three-dimensional SEP is computed in a similar manner with the trivariate scalars:  
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   Using the RDF sigma values    Using the Datasheet accuracies 

3
3 UEN
XX cSEP

 
   or   

3
959595

1
95

3 UEN
X

X

EEE

c

c
SEP


 . 

where 3
Xc  is the trivariate scalar at the X% confidence level.  The mean north, east, and up sigma 

and Datasheet accuracy values are 

( N + E + U ) / 3 = (0.60 + 0.61 + 1.10) / 3 = 0.770 cm 

( NE95 + EE95 + UE95 ) / 3  = (1.18 + 1.20 + 2.16) / 3 = 1.51 cm, 

and we have 

 
1.5382 × 0.770  

SEP50 =    or    =  1.19 cm   =   0.039 ft (at 50% confidence) 
    1.5382 / 1.9600 × 1.51 

 
2.7955 × 0.770  

SEP95 =    or    =  2.16 cm   =   0.071 ft (at 95% confidence) 
    2.7955 / 1.9600 × 1.51 

 
3.3682 × 0.770  

SEP99 =    or    =  2.60 cm   =   0.085 ft (at 99% confidence) 
    3.3682 / 1.9600 × 1.51 

 

The horizontal error ellipse must be computed from the RDF values, because the horizontal 
correlation is not given on the datasheet.  We can compute the horizontal covariance from the 
RDF correlation value: 
 

ENNE   = −0.18761247 × 0.60 cm × 0.61 cm = −0.06867 cm2. 

 
The standard error ellipse axes can now be computed using Equation 5.3 (with the 2

Xc value set to 
one).  Note that there is a “±” symbol in the equation — a is computed for the case where “±” is 
“+”, and b is computed for the case where “±” is “−”: 
 

a, b =   



  222222 4

2

1
NEENEN   

                    a = 0.66 cm = 0.022 ft 

       =     



  222222 06867.0461.060.061.060.0

2

1
= 

                    b = 0.55 cm = 0.018 ft 
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Since 2
Xc  = 1.0000 for the previous computations, the a and b dimensions are for the standard 

error ellipse, which has a confidence level of 39.35% (as shown in Table 5.2).  This can be 
scaled to the required confidence levels using the appropriate bivariate scalars, as follows: 
 
       × 0.66 cm   =   0.78 cm   =   0.025 ft 
 a50,  b50 = 1.1774              (at 50% confidence) 
       × 0.55 cm   =   0.64 cm   =   0.021 ft 
 
 
       × 0.66 cm   =   1.61 cm   =   0.053 ft 
 a95,  b95 = 2.4477              (at 95% confidence) 
       × 0.55 cm   =   1.33 cm   =   0.044 ft 
 
 
       × 0.66 cm   =   2.00 cm   =   0.066 ft 
 a99,  b99 = 3.0349              (at 99% confidence) 
       × 0.55 cm   =   1.65 cm   =   0.054 ft 
 
The error ellipse rotation is computed using Equation 5.4, as follows: 
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Converting this to degrees gives: 
 


 


180
 × −0.74146 = −42.482° 

 
The convention is that right-handed (counterclockwise) rotation is positive.  So for this case, the 
error ellipse is rotated 42.482° clockwise from cardinal directions. 
 
Note the apparent discrepancy in “horizontal” accuracy between what is given on the Datasheet 
and what was computed for CEP and the error ellipse axes at the 95% confidence level.  The 
mean value from the Datasheet 0.86 cm, whereas CEP95 = 1.08 cm (which is the same as the 
mean of the error ellipse axes at 95% confidence).  The reason these values differ is that the 
Datasheet values are for each individual north and east component, and so to scale these one-
dimensional values to 95% confidence level requires a univariate scalar of 1.9600.  The CEP and 
error ellipse represent the two-dimensional horizontal accuracies, which requires using the 
bivariate scalar of 2.4477 to scale these values to 95% confidence.  Because of this, if you want 
to characterize the accuracies on the Datasheet as horizontal (rather than as individual cardinal 
components), then the Datasheet values should be scaled by the ratio 2.4477/1.9600 = 1.2489, as 
shown in Equation 5.1 and was done in the CEP95 computation in this example. 
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Surveying & mapping spatial data requirements & recommendations 

These should be explicitly specified in surveying and mapping projects 

1. Completely define the coordinate system 

a. Linear unit (e.g., International foot, U.S. Survey foot, meter) 

i. Use same linear unit for horizontal and vertical coordinates 

b. Geodetic datum (recommend North American Datum of 1983) 

i. Should include datum “tag” (date), e.g., 1986, 1992 (HARN), 2002.0 (CORS) 

ii. WGS 84, ITRF, and NAD 27 are NOT recommended 

c. Vertical datum (e.g., North American Vertical Datum of 1988) 

i. If GPS used for elevations, recommend using a modern geoid model (e.g., GEOID03) 

ii. Recommend using NAVD 88 rather than NGVD 29 when possible 

d. Map projection type and parameters (e.g., Transverse Mercator, Lambert Conformal Conic) 

i. Special attention required for low-distortion grid (a.k.a. “ground”) coordinate systems 

1) Avoid scaling of existing coordinate systems (e.g., “modified” State Plane) 

2. Require direct referencing of the NSRS (National Spatial Reference System) 

a. Ties to published control strongly recommended (e.g., National Geodetic Survey control) 

i. Relevant component of control must have greater accuracy than positioning method used 

1) E.g., B-order (or better) stations for GPS control, 2nd order (or better) for vertical control 

b. NGS Continuously Operating Reference Stations (CORS) can be used to reference the NSRS 

i. Free Internet GPS post-processing service:  OPUS (Online Positioning User Service) 

3. Specify accuracy requirements (not precision) 

a. Use objective, defensible, and robust methods (published ones are recommended) 

i. Mapping and surveying:  National Standard for Spatial Data Accuracy (NSSDA) 

1) Require occupations (“check shots”) of known high-quality control stations 

ii. Surveys performed for establishing control or determining property boundaries: 

1) Appropriately constrained and over-determined least-squares adjusted control network 

2) Beware of “cheating” (e.g., using “trivial” GPS vectors in network adjustment) 

4. Documentation is essential (metadata!) 

a. Require a report detailing methods, procedures, and results for developing final deliverables 

i. This must include any and all post-survey coordinate transformations 

1) E.g., published datum transformations, computed correction surfaces, “rubber sheeting” 

b. Documentation should be complete enough that someone else can reproduce the product 

c. For GIS data, recommend that accuracy and coordinate system information be included as feature 
attributes (not just as separate, easy-to-lose and easy-to-ignore metadata files) 
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Example of surveying and mapping documentation (metadata) 

Basis of Bearings and Coordinates 

Linear unit:  International foot (ift) 

Geodetic datum:  North American Datum of 1983 (2007) 

Vertical datum:  North American Vertical Datum of 1988 (see below) 

System:  Arizona LDP 

Zone:  Gila Valley 

Projection:  Transverse Mercator 

 Latitude of grid origin:  32° 20’ 00” N 
 Longitude of central meridian:  109° 48’ 00” W 
 Northing at grid origin:  0.000 ift 
 Easting at central meridian:  200,000.000 ift 
 Scale factor on central meridian:  1.00014 (exact) 

All distances and bearings shown hereon are projected (grid) values based on the preceding 
projection definition.  The projection was defined to minimize the difference between projected 
(grid) distances and horizontal (“ground”) distances at the topographic surface within the design 
area of this coordinate system. 

The basis of bearings is geodetic north.  Note that the grid bearings shown hereon (or implied 
by grid coordinates) do not equal geodetic bearings due to meridian convergence. 

Orthometric heights (elevations) were transferred to the site from NGS control station “P 439” 
(PID CY0725) using GPS with NGS geoid model “GEOID09” referenced to the current 
published NAVD 88 height of this station (889.460 m). 

The survey was conducted using GPS referenced to the National Spatial Reference System.  A 
partial list of point coordinates is given below (additional coordinates are available upon 
request).  Local network accuracy estimates are given at the 95% confidence level and are 
based on an appropriately constrained least-squares adjustment of over-determined and 
statistically independent observations. 

Point #1 “SAFFORD BASE ARP”, permanent GPS base (off site) 

Latitude = 32° 48' 07.31561” N Northing = 170,563.997 ift Estimated accuracy 
Longitude = 109° 42' 42.84664” W Easting = 227,075.294 ift Horizontal = Fixed 
Ellipsoidal height = 2945.423 ift Elevation = 3033.826 ift Vertical = Fixed 

 
Point #1002, 1/2” rebar with aluminum cap, derived coordinates (on site) 

Latitude = 32° 50' 06.81662" N Northing = 182,643.211 ift Estimated accuracy 
Longitude = 109° 42' 47.90144" W Easting = 226,633.861 ift Horizontal = ±0.034 ift 
Ellipsoidal height = 2822.412 ift Elevation = 2910.734 ift Vertical = ±0.056 ift 

 
Point #1006, 1/2” rebar with plastic cap, derived coordinates (on site) 

Latitude = 32° 50' 16.89645" N Northing = 183,662.115 ift Estimated accuracy 
Longitude = 109° 42' 47.93756" W Easting = 226,629.942 ift Horizontal = ±0.047 ift 
Ellipsoidal height = 2815.734 ift Elevation = 2904.040 ift Vertical = ±0.068 ift 
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GLOSSARY 

Below is a list of the abbreviations and terms used in this workbook.  In the interest of brevity, the 
definitions are highly general and simplified.  Please note also that this list gives only a portion of the 
terms and abbreviations frequently encountered in GPS positioning and geodesy.  Terms in italics within 
the definitions are also defined in this list.  Cited references are listed at the end of the workbook. 

Autonomous position.  A GPS position obtained with a single receiver using only the ranging capability 
of the GPS code (i.e., with no differential correction). 

Cartesian coordinates.  Coordinates based on a system of two or three mutually perpendicular axes.  
Map projection and ECEF coordinates are examples two- and three-dimensional Cartesian coordinates, 
respectively. 

Confidence interval or level.  A computed probability that the “true” value will fall within a specified 
region (e.g., 95% confidence level).  Applies only to randomly distributed errors. 

CORS (Continuously Operating Reference Stations).  A nation-wide system of permanently mounted 
GPS antennas and receivers that collect GPS data continuously.  The CORS network is extremely 
accurate and constitutes the primary survey control for the US.  CORS data can be used to correct GPS 
survey and mapping results, and the data are freely available over the Internet. 

Datum transformation.  Mathematical method for converting one geodetic or vertical datum to another 
(there are several types, and they vary widely in accuracy). 

Differential correction.  A method for removing much of the error in an autonomous GPS position.  
Typically requires at least two simultaneously operating GPS receivers, with one of the two at a location 
of known geodetic coordinates. 

ECEF (Earth-Centered, Earth-Fixed).  Refers to a global three-dimensional (X, Y, Z) Cartesian 
coordinate system with its origin at the Earth’s center of mass, and “fixed” so that it rotates with the solid 
Earth.  The Z-axis corresponds to the Earth’s conventional spin axis, and the X- and Y-axes lie in the 
equatorial plane.  Widely used for geodetic and GPS computations. 

Ellipsoid.  A simple mathematical model of the Earth corresponding to mean sea level (the geoid) and 
used as part of a geodetic datum definition.  Constructed by rotating an ellipse about its semi-minor axis.  
Also referred to as a “spheroid”. 

Ellipsoid height.  Straight-line height above and perpendicular to the ellipsoid.  This is the type of height 
determined by GPS, and it does not equal elevation.  Can be converted to orthometric heights 
(“elevations”) using a geoid model. 

Ellipsoid normal.  A line perpendicular to the reference ellipsoid along which ellipsoid heights are 
measured. 

FBN (Federal Base Network).  Nationwide network of GPS control stations observed and adjusted by 
the NGS.  A nation-wide readjustment of the FBN is scheduled for 2007. 

FGDC (Federal Geographic Data Committee).  Develops and promulgates information on spatial data 
formats, accuracy, specifications, and standards.  Widely referenced by other organizations.  Includes the 
Federal Geodetic Control Subcommittee (FGCS) and the NSSDA. 

Geodetic datum.  Reference frame for computing geodetic coordinates (latitude, longitude, and ellipsoid 
height) of a point.  A datum always refers to a particular ellipsoid and a specific adjustment (e.g. the 1992 
adjustment of NAD 83 for the Arizona HARN). 
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Geographic “projection”.  This is not a true map projection in the sense that it does not transform 
geodetic coordinates (latitude and longitude) into linear units.  However, it is a projection in the sense that 
it represents geodetic coordinates on a regular flat grid, such that the difference in angular units (e.g., 
decimal degrees) is equal in all directions.  Because of meridian convergence, this results in an extremely 
distorted coordinate system, especially at high latitudes, and the distortion varies greatly with direction. 

Geoid.  Surface of constant gravitational equipotential (a level surface) that best corresponds to global 
mean sea level.  Often used as a reference surface for vertical datums. 

GPS (Global Positioning System).  A constellation of satellites used for navigation, mapping, surveying, 
and timing.  Microwave signals transmitted by the satellites are observed by GPS receivers to determine a 
three-dimensional position.  Accuracy varies greatly depending on the type of receiver and methods used. 

Grid distance.  The horizontal distance between two points on a flat plane.  This is the type of distance 
obtained from map projections. 

Ground distance.  The horizontal distance between two points as measured on the curved Earth surface. 

GRS-80 (Geodetic Reference System of 1980).  The reference ellipsoid currently used for many 
geodetic datums throughout the world, including NAD 83 and ITRF. 

HARN (High Accuracy Reference Network).  Network of GPS stations adjusted by the NGS on a state-
by-state basis.  The Arizona HARN was adjusted in 1992.  In some states it is referred to as a High 
Precision GPS (or Geodetic) Network (HPGN). 

International Foot.  Linear unit adopted by the US in 1959, and defined such that one foot equals exactly 
0.3048 meter.  Shorter than the US Survey Foot by 2 parts per million (ppm). 

ITRF (International Terrestrial Reference Frame).  Global geodetic reference system that takes into 
account plate tectonics (continental drift) and is used mainly in scientific studies.  A new ITRF “epoch” is 
computed periodically and is referenced to a specific time (e.g., ITRF 2000 1997.0).  Each epoch is a 
realization of the International Terrestrial Reference System (ITRS).  See Soler (2007), and Soler and 
Snay (2004) for information on its relationship to NAD 83 and WGS 84. 

Local geodetic horizon.  A “northing”, “easting”, and “up” planar coordinate system defined at a point 
such that the northing-easting plane is perpendicular to the ellipsoid normal, north corresponds to true 
geodetic north, and “up” is in the direction of the ellipsoid normal at that point. 

Map projection.  A functional (one-to-one) mathematical relationship between geodetic coordinates 
(latitude, longitude) on the curved ellipsoid surface, and grid coordinates (northings, eastings) on a planar 
(flat) map surface.  All projections are distorted, in that the relationship between projected coordinates 
differs from that between their respective geodetic coordinates.  See Snyder (1987) for details. 

NAD 27 (North American Datum of 1927).  Geodetic datum of the US prior to NAD 83, and  
superseded by NAD 83 in 1986.  This is the datum of SPCS 27 and UTM 27. 

NAD 83 (North American Datum of 1983).  Current official geodetic datum of the US.  Replaced NAD 
27 in 1986, which is the year of the initial NAD 83 adjustment.  This is the datum of SPCS 83 and UTM 
83.  See Schwarz (1986) for details. 

NADCON.  Datum transformation computer program developed by the NGS for transforming 
coordinates between NAD 27 and NAD 83, and also between the NAD 83 1986 adjustment and the various 
HARN adjustments.  See Dewhurst (1990) for details. 

NAVD 88 (North American Vertical Datum of 1988).  Current official vertical datum of the US.  
Replaced NGVD 29 in 1991.  See Zilkoski et al. (1992) for details. 

NDGPS (National Differential GPS).  A nation-wide system of “beacons” (permanently mounted GPS 
receivers and radio transmission equipment) that transmits real-time differential corrections which can be 
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used by GPS receivers equipped with the appropriate radio receivers.  Operated and maintained by the US 
Coast Guard.  See US Coast Guard (2004) for details. 

NGS (National Geodetic Survey).  Federal agency within the Department of Commerce responsible for 
defining, maintaining, and promulgating the NSRS within the US and its territories. 

NGVD 29 (National Geodetic Vertical Datum of 1929).  Previous vertical datum of the US, superseded 
by NAVD 88 in 1991.  Not referenced to the geoid or mean sea level, and not as compatible with GPS-
derived elevations as NAVD 88.  Called “Mean Sea Level” (MSL) datum prior to 1976. 

NSRS (National Spatial Reference System).  The framework for latitude, longitude, height, scale, 
gravity, orientation and shoreline throughout the US.  Consists of geodetic control point coordinates and 
sets of models describing relevant geophysical characteristics of the Earth, such as the geoid and surface 
gravity.  Defined, maintained, and promulgated by the NGS (see Doyle, 1994, for details). 

NSSDA (National Standard for Spatial Data Accuracy).  FGDC methodology for determining the 
positional accuracy of spatial data (see Federal Geographic Data Committee, 1998). 

OPUS (Online Positioning User Service).  A free NGS service that computes NSRS and ITRF 
coordinates with respect to the CORS using raw GPS data submitted via the Internet. 

Orthometric correction.  A correction applied to leveled height differences which reduces systematic 
errors due to variation in gravitational potential.  See Dennis (2004) for details. 

Parts per million (ppm).  A method for conveniently expressing small numbers, accomplished by 
multiplying the number by 1 million (e.g., 0.00001 = 10 ppm).  Exactly analogous to percent, which is 
“parts per hundred”. 

SPCS (State Plane Coordinate System).  A system of standardized map projections covering each state 
with one or more zones such that a specific distortion criterion is met (usually 1:10,000).  Projection 
parameters (including units of length) are independently established by the legislature of each state.  Can 
be referenced to either the NAD 83 or NAD 27 datums (SPCS 83 and SPCS 27, respectively).  See Stem 
(1989) for details. 

Triangulation.  A method for determining positions from angles measured between points (requires at 
least one distance to provide scale). 

Trilateration.  A method for determining positions from measured distances only. 

Trivial vector.  A GPS vector (computed line connecting two GPS stations) that is not statistically 
independent from other GPS vectors observed at the same time.   

US Survey Foot.  Linear unit of the US prior to 1959, and defined such that one foot equals exactly 
1200 / 3937 meter.  Longer than the International Foot by 2 parts per million (ppm). 

UTM (Universal Transverse Mercator).  A grid coordinate system based on the Transverse Mercator 
map projection which divides the Earth (minus the polar regions) into 120 zones in order to keep map 
scale error within 1:2500.  Can be referenced to either the NAD 83 or NAD 27 datums (UTM 83 and UTM 
27, respectively).  See Hager et al. (1989) for details. 

Vertical datum.  Reference system for determining “elevations”, typically through optical leveling.  
Modern vertical datums typically use the geoid as a reference surface and allow elevation determination 
using GPS when combined with a geoid model. 

WAAS (Wide Area Augmentation System).  A system of geosynchronous satellites and ground GPS 
reference stations developed and managed by the Federal Aviation Administration and used to provide 
free real-time differential corrections. See Federal Aviation Administration (2003) for details. 
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WGS 84 (World Geodetic System of 1984).  Reference ellipsoid and geodetic datum of GPS, defined 
and maintained by the US Department of Defense.  Current realizations of WGS 84 are considered 
identical to ITRF 2000 at the 2 cm level.  See National Imagery and Mapping Agency (1997) for details, 
and Merrigan et al. (2002) for information on the most recent realization. 

SELECTED GPS AND GEODESY REFERENCES 

Primary resource:  The National Geodetic Survey (http://www.ngs.noaa.gov/) 

Some NGS web pages of particular interest 
Control station datasheets:  http://www.ngs.noaa.gov/cgi-bin/datasheet.prl  

 The Geodetic Tool Kit:  http://www.ngs.noaa.gov/TOOLS/  

 Online Positioning User Service (OPUS):  http://www.ngs.noaa.gov/OPUS/  

 Continuously Operating Reference Stations (CORS):  http://www.ngs.noaa.gov/CORS/  
The Geoid Page:  http://www.ngs.noaa.gov/GEOID/  

NGS State Geodetic Advisors:  http://www.ngs.noaa.gov/ADVISORS/AdvisorsIndex.shtml 

Documents (categorized as introductory, intermediate, advanced, or reference) 

American Congress on Surveying and Mapping, 2005.  Definitions of Surveying and Associated Terms, 
American Congress on Surveying and Mapping , 314 pp.  [reference] 

American Land Title Association, American Congress on Surveying & Mapping, and National Society of 
Professional Surveyors, 2005.  2005 Minimum Standard Detail Requirements for ALTA/ACSM Land 
Title Surveys, 6 pp., http://www.acsm.net/_data/global/images/ALTA2005.pdf.  [reference] 

American Society for Photogrammetry and Remote Sensing, 1990.  ASPRS Accuracy Standards For 
Large-Scale Maps, 3 pp., http://www.asprs.org/publications/pers/scans/1989journal/jul/1989_jul_ 
1038-1040.pdf  [Note:  These standards have been superseded by the FGDC 1998 standards and are 
NOT recommended for use]  [reference] 

American Society for Photogrammetry and Remote Sensing, 2001.  Digital Elevation Model 
Technologies and Applications: The DEM Users Manual, 539 pp.  [reference] 

Anderson, M.A., D’Onofrio, D., Helmer, G.A. and Wheeler, W.W., 1996.  Specifications for geodetic 
control networks using high-production GPS surveying techniques, version 2. California Geodetic 
Control Committee, http://www.rbf.com/cgcc/hpgps21.htm.  [reference] 

Bomford, G., 1980.  Geodesy (4th Edition), Oxford University Press, Great Britain, 855 pp.  [advanced] 

Bossler, J. D., 1984.  Standards and Specifications for Geodetic Control Networks, Federal Geodetic 
Control Committee (now the Federal Geodetic Control Subcommittee), USA, 25 pp. 
http://www.ngs.noaa.gov/FGCS/tech_pub/1984-stds-specs-geodetic-control-networks.pdf. 
[reference] 

Bureau of the Budget, 1947.  National Map Accuracy Standards, Office of Management and Budget, 
Washington, D.C., 1 p., http://rockyweb.cr.usgs.gov/nmpstds/acrodocs/nmas/NMAS647.PDF.  
[Note:  These standards have been superseded by the FGDC 1998 standards and are NOT 
recommended for use]  [reference] 

Dana, P. H., 2000.  Global Positioning System Overview, University of Colorado at Boulder website, 
http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html (includes links to related 
overview sites on map projections, geodetic datums, and coordinate systems).  [introductory] 
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Defense Mapping Agency, 1984.  Geodesy for the Layman, DMA Technical Report 80-003, U.S. Defense 
Mapping Agency, Washington D.C., USA, 96 pp., http://www.ngs.noaa.gov/PUBS_LIB/ 
GeoLay.pdf.  [introductory] 

Dennis, M.L., 2002.  When is control really control?  Things to be aware of when using NGS survey 
control for high accuracy GPS surveys in Arizona, The Arizona Surveyor, Arizona Professional Land 
Surveyors Association, Vol. 1, No. 4 (Fall 2002), pp. 6-8, http://www.azpls.org/ 
displaynewsletter.cfm.  [intermediate] 

Dennis, M.L., 2004.  A question of gravity:  What effect does gravity have on elevations determined by 
differential leveling?, The Arizona Surveyor, Arizona Professional Land Surveyors Association, Vol. 
4, No. 1 (Winter 2004), p. 6, http://www.azpls.org/displaynewsletter.cfm.  [intermediate] 

Dennis, M.L. (lead author), 2008.  Arizona Spatial Data Accuracy and Georeferencing Standards, version 
3.1, Arizona Professional Land Surveyors Association and Arizona Geographic Information 
Council, 37 pp. , http://www.azpls.org/associations/1444/files/AZ%20Spatial 
%20Data%20Standards_v3.1%20final.pdf  and  http://agic.az.gov/paper/index.html. 

Dewhurst, W.T., 1990.  NADCON: The application of minimum-curvature-derived surfaces in the 
transformation of positional data from the North American Datum of 1927 to the North American 
Datum of 1983, NOAA Technical Memorandum NOS NGS-50, National Geodetic Survey, Silver 
Springs, MD, USA, 32 pp., http://www.ngs.noaa.gov/PUBS_LIB/NGS50.pdf.  [advanced] 

Doyle, D.R., 1994.  Development of the National Spatial Reference System, National Geodetic Survey, 
Silver Spring, Maryland, http://www.ngs.noaa.gov/PUBS_LIB/develop_NSRS.html.  [intermediate] 

Ewing, C.E. and Mitchell, M.M., 1970.  Introduction to Geodesy, American Elsevier Publishing 
Company, New York, 304 pp. 

Federal Aviation Administration, 2005.  Navigation Services, Global Navigation Satellite Systems,  
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservic
es/gnss/  [introductory] 

Federal Emergency Management Agency, 2005.  Guidelines and Specifications for Flood Hazard 
Mapping Partners, FEMA Map Modernization Program, April 2003 version.  Consists of 3 volumes 
(337 pp.), 13 appendices (1207 pp.), and 5 supporting documents (85 pp.), for a total of 1629 pp., 
http://www.fema.gov/library/viewRecord.do?id=2206.  [reference] 

Federal Geographic Data Committee, 1998.  Geospatial Positioning Accuracy Standards, FGDC-STD-
007.2-1998, Federal Geographic Data Committee, Reston, Virginia, USA, 128 pp., 
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/,  [includes 
Reporting Methodology (Part 1), Standards for Geodetic Networks (Part 2), National Standard for 
Spatial Data Accuracy (Part 3), Standards for Architecture, Engineering, Construction (A/E/C) and 
Facility Management (Part 4), and Standards for Nautical Charting Hydrographic Surveys (Part 5)].  
[reference] 

Federal Geographic Data Committee, 1999.  Content Standard for Digital Orthoimagery, FGDC-STD-
008-1999, Federal Geographic Data Committee, Reston, Virginia, USA, 42 pp., 
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/orthoimagery/orth_299.pdf.  
[reference] 

Federal Geographic Data Committee, 2000.  Content Standard for Digital Geospatial Metadata 
Workbook, Version 2.0, Federal Geographic Committee, Reston, Virginia, USA, 126 pp., 
http://www.fgdc.gov/metadata/documents/workbook_0501_bmk.pdf.  

Federal Geographic Data Committee, 2002.  Content Standard for Digital Geospatial Metadata: 
Extensions for Remote Sensing Metadata, FGDC-STD-012-2002, Federal Geographic Data 
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Committee, Reston, Virginia, USA, 144 pp., http://www.fgdc.gov/standards/projects/FGDC-
standards-projects/csdgm_rs_ex/MetadataRemoteSensingExtens.pdf. 

Hager, J.W., Behensky, J.F., and Drew, B.W., 1989.  The Universal Grids: Universal Transverse 
Mercator (UTM) and Universal Polar Stereographic (UPS), DMA Technical Manual 8358.2, Defense 
Mapping Agency, Fairfax, Virginia, USA, 49 pp., “TM8358_2.pdf” in  http://earth-
info.nga.mil/GandG/publications/tm8358.2/TM8358_2.pdf.  [reference] 

Hager, J.W., Fry, L.L., Jacks, S.S. and Hill, D.R., 1990.  Datums, Ellipsoids, Grids, and Grid Systems, 
DMA Technical Manual 8358.1, Edition 1, Defense Mapping Agency, Fairfax, Virginia, USA, 150 
pp., http://earth-info.nga.mil/GandG/publications/tm8358.1/toc.html.  [reference] 

Henning, W. (lead author), 2010.  National Geodetic Survey User Guidelines for Single Base Real Time 
GNSS Positioning, version 1.0, National Geodetic Survey, Silver Spring, MD, USA, 89 pp., 
http://www.ngs.noaa.gov/PUBS_LIB/NGSRealTimeUserGuidelines.v1.0.pdf.  [reference] 

Hofmann-Wellenhof, B. and Moritz, H., 2005.  Physical Geodesy, Springer-Verlag Wien, Austria, 403 
pp.  [advanced] 

Hofmann-Wellenhof, B., Lichtenegger, H. and Collins, J., 2001.  Global Positioning System: Theory and 
Practice (5th Edition), Springer-Verlag, New York, USA, 382 pp.  [advanced] 

Hwang, C. and  Hsiao, Y.-S., 2003.  Orthometric corrections from leveling, gravity, density and elevation 
data:  a case study in Taiwan, Journal of Geodesy, Vol. 77, No. 5-6, pp. 279-291.   [advanced] 

Leick, A., 2003.  GPS Satellite Surveying (3rd Edition), John Wiley & Sons, New York, New York, USA, 
464 pp.  [advanced] 

Londe, M., 2002.  Standards and Guidelines for Cadastral Surveys Using the Global Positioning System, 
U.S. Department of the Interior, U.S. Bureau of Land Management, Information Management and 
Technology Group, FIG XXII International Congress, Washington, D.C. USA, April 19-26, 7 pp., 
http://www.fig.net/pub/fig_2002/JS2/JS2_londe.pdf.  [reference] 

Merrigan, M.J., Swift, E.R., Wong, R.F. and Saffel, J.T., 2002.  A Refinement to the World Geodetic 
System 1984 Reference Frame, Annual Meeting Proceedings: 58th Annual Meeting, ION GPS 2002, 
September 24-27, Portland, Oregon, USA, pp. 1519-1529, http://earth-
info.nga.mil/GandG/sathtml/IONReport8-20-02.pdf.  [advanced] 

National Digital Elevation Program, 2004.  Guidelines for Digital Elevation Data, version 1.0, 93 pp., 
http://www.ndep.gov/NDEP_Elevation_Guidelines_Ver1_10May2004.pdf.  [reference] 

National Geodetic Survey, 1986.  Geodetic Glossary, National Geodetic Survey, Rockville, Maryland, 
USA, 274 pp.  [reference] 

National Geodetic Survey, 1998.  National Height Modernization Study:  Report to Congress, National 
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