ONE TEAM
EXTENSION
EMEA

Moldflow Insight Advanced Processes

Eric Henry
Safe Harbor Statement

This presentation may contain forward-looking statements about future results, performance or achievements, financial and otherwise, including statements regarding our guidance for our quarterly and financial year results.

These statements reflect management’s current expectations, estimates and assumptions based on the information currently available to Autodesk. These forward-looking statements are not guarantees of future performance and involve significant risks, uncertainties and other factors that may cause Autodesk’s actual results, performance or achievements to be materially different from results, performance or achievements expressed or implied by the forward-looking statements contained in this presentation. A discussion of the factors that may affect future results is contained in Autodesk’s most recent SEC Form 10-K and Form 10-Q filings, including descriptions of the risk factors that may impact Autodesk and the forward-looking statements made in this presentation. If this presentation is reviewed after the time and date this presentation was first recorded, even if it subsequently is made available by Autodesk, on its Web site or otherwise, this presentation may not contain current or accurate information.

Autodesk disclaims any obligation to update or revise any forward-looking statement based on new information, future events or otherwise.
Agenda

- SMC Compression Molding
- Resin Transfer Molding
- Powder Injection Molding
- Microcellular & Chemical Foam Molding
Powder Injection Molding

- PIM = Powder Injection Molding
- MIM = Metal Injection Molding (Powdered Metal)
- CIM = Ceramic Injection Molding (Powdered Ceramic)
What is PIM?

- PIM merges two established technologies: plastic injection molding & powder metallurgy
- A mature process where powder is mixed with a binder for molding relatively small metal or ceramic parts
Why use PIM?

- Cost-effective manufacture of high volume complex parts
- Reduced production time compared with investment casting
- Net-shape manufacture with minimal material waste, more significant as materials costs rise
- Finer particle size, higher sintered density than casting products
- Mechanical properties superior to castings
- Properties equivalent to wrought alloys
Who invented it, when, and where?

1973
- Innovated by Parmatech in USA

1980s
- Developing in EUR and JPN

1990s
- The Product Line of MIM in Israel

Today
- Hottest Component Forming Technology
PIM Process

Wheat → Flour → Shaping → Baked
Feedstock

Feedstock = Binder + Powder

SEM Feedstocks

Wax Based

Paraffin Wax

Polymer

POM System

POM

Stearic acid

Gas atomization powder

Water atomization powder

SS particles

Binder

Binder

Wax

Polymer

POM

Stearic acid
Powder Dimension

- Size
 - Diameter: 1-30 μm

- Powder Loading
 - Volume fraction: About 60%
 - Weight fraction: About 90%

\[\phi_v = \frac{V_{\text{powder}}}{V_{\text{suspension}}} = \frac{W_{\text{powder}}}{W_{\text{suspension}}} \frac{\rho_{\text{suspension}}}{\rho_{\text{powder}}} \]

Example:
- Stainless 316
- Solid Density: 7.9 g/cm³,
- Melt Density: 5.32 g/cm³
- \(\phi_f = 61.5\% \), \(W_f = 91\% \)
Viscosity

- Higher than conventional thermoplastic material
- The flow-related increase in pressure for filling narrow cross section gates is relatively small
PIM Products
Moldflow PIM Simulation

- Insight Standard
- 3D
- Fill + Pack
- No Warp
- DOE requires Insight Premium
- Finer mesh required above conventional
Process Modeling

- Keep the same Fill and Pack settings as for thermoplastic injection molding

- Advanced settings
 - Consider the following effects
 - Inertia
 - Gravity
 - Wall-slip
 - Time Step
 - Change the default 5% to 0.1%
Wall Slip (3D) – Slip Friction Coefficient

• “With friction”: a slip velocity model, with slip velocity being a function of shear stress, is applied
Powder Volume Concentration
Powder Concentration & Defects

Low concentration regions, possible black line defects
Powder Volume Concentration

Shear-rate gradients Particle Migration Powder Concentration

\[\dot{\gamma} = \frac{du}{dy} = \frac{U}{h} \]

\[\tau = \eta \cdot \dot{\gamma} \]
Powder Volume Concentration

- Powder Concentration
 - Shear-induced
 - Convection

\[
\frac{\partial \phi}{\partial t} + \mathbf{V} \cdot \nabla \phi = -\nabla \cdot \mathbf{j}_\perp
\]

\[
\mathbf{j}_\perp = \frac{2a^2}{9\eta_0} f(\phi) \nabla \cdot \Sigma_p
\]

\[
\Sigma_p = -\eta_0 \eta_n \dot{\gamma} Q
\]

\[
\eta_n = K_n (\phi/\phi_m)^2 (1 - \phi/\phi_m)^{-2}
\]

\[
Q = \begin{bmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{bmatrix}
\]

\[
\dot{\gamma} = \sqrt{2E:E}
\]

Suspension Balance Model
Powder Volume Concentration

Across thickness
Standard Test Procedures

Viscosity - Injection Moulding Rheometer

Mold Validation – Injection Moulding Machine

Shrinkage – Injection Molding Machine

Moldflow uses alternative test methods for MIM and CIM
Viscosity Testing

for MIM and CIM use Rosand RH-7
Plunger driven capillary rheometer

Rosand RH-7
Twin Bore Piston Rheometer
• Possible Replacement of :
 • piston tips
 • capillary dies
 • barrels
Thermal Conductivity Testing

K System:
- Maximum K values
 ~0.5 W/m/deg.C
- Not suitable for MIM and CIM

for MIM and CIM use: Laser Flash Thermal Diffusivity System
- sample preparation - 12.5 mm diameter disk
- test different samples at each temperature
 - 2 temperatures, solid state and one melt state
Samples are required: moulded parts [3mm thick]
Powder Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder radius</td>
<td>0.01 mm [0.001:10]</td>
</tr>
<tr>
<td>Initial powder volume concentration</td>
<td>60 % [0:100]</td>
</tr>
<tr>
<td>Maximum powder volume concentration</td>
<td>68 % [0:100]</td>
</tr>
<tr>
<td>Particle stress coefficients</td>
<td></td>
</tr>
<tr>
<td>K_n</td>
<td>3 [0:100]</td>
</tr>
<tr>
<td>Λ_1</td>
<td>1 [0:1]</td>
</tr>
<tr>
<td>Λ_2</td>
<td>0.8 [0:1]</td>
</tr>
<tr>
<td>Λ_3</td>
<td>0.5 [0:1]</td>
</tr>
</tbody>
</table>
Validation Examples

- Material
 - Stainless 316L
- Dimension
 - 24.7mm x 18.525mm x 3.088mm
The Part - Meshed

- Meshed Type
 - Block: 3D Tetra
 - Runner: Beam Elements

- Meshed more finer around the Gate area
 - More accurate flow pattern around interface between the runner and part
The Molding Process

Filling Control

<table>
<thead>
<tr>
<th>Ram Position (mm)</th>
<th>Ram Speed (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>8.5</td>
<td>20</td>
</tr>
</tbody>
</table>

Packing Control

<table>
<thead>
<tr>
<th>Duration (s)</th>
<th>Packing Pressure (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>0.5</td>
<td>50</td>
</tr>
<tr>
<td>0.2</td>
<td>2.5</td>
</tr>
</tbody>
</table>
PIM Validation Results – Flow Pattern

- 20% Filled Volume
PIM Validation Results – Flow Pattern

- 38% Filled Volume
PIM Validation Results – Flow Pattern

- 52.8% Filled Volume
PIM Validation Results – Flow Pattern

- 76.1% Filled Volume
PIM Validation Results – Flow Pattern

- 86.1% Filled Volume
PIM Validation Results – Flow Pattern

- 97.7% Filled Volume
Powder Volume Concentration Validation

- Sintered Block
 - Cracks correspond to low powder concentration
 - Optical microscope
Example 2

<table>
<thead>
<tr>
<th>尺寸 (mm)</th>
<th>標準公差 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0</td>
<td>+/- 0.250</td>
</tr>
<tr>
<td>25.0</td>
<td>+/- 0.125</td>
</tr>
<tr>
<td>12.0</td>
<td>+/- 0.05</td>
</tr>
<tr>
<td>6.0</td>
<td>+/- 0.04</td>
</tr>
<tr>
<td>3.0</td>
<td>+/- 0.03</td>
</tr>
<tr>
<td>1.0</td>
<td>+/- 0.02</td>
</tr>
</tbody>
</table>
Jetting Prediction
1.38 s (51.82%)
1.54 s (58.84%)
1.72 s (66.10%)
1.84 s (71.19%)
2.01 s (78.21%)
2.19 s (85.47%)
2.36 s (92.98%)
Weld Line Position & Angle

Moldflow
Example 3

- Jetting prediction using wall slip & inertia effects