NO 233a

Part 1: Getting Started

In this exercise you create a new part chapter, a new part family within the new chapter, and configure the Part Builder environment to begin modeling the part. We'll use an alternate technique than that used in the previous exercise.

Step	Action	Result
1.	Click the Pipes menu, then click Part Builder	The Getting Started - Catalog Screen dialog appears.
2.	Click the US Imperial Structures Folder, then click New Chapter. Enter Custom for name and click OK. ures'iUS Imperial Structures.apc	A new Chapter is created for custom structures.
3.	Verify that the Custom Folder is selected, then click New Parametric Part.	The New Part dialog appears
4.	For Name enter "NO 233a". Click in the box next to Description. Add "Outside Drop Connection" to the default Description, Click OK.	The Part Builder environment launches.
5.	Expand Part Configuration. Change Undefined Part Type to Junction Structure. Change Undefined to Manhole. Change Undefined Bounded Shape to Cylinder.	The Part is configured as a cylinder shape with the properties of a junction structure.

6.	Expand Modeling. Right-click Work Planes and click Add Work Plane.	The Create Work Plane dialog appears.
7.	Click Top, enter "Rim" for Name, then click OK.	A top work plane is created which will represent the rim elevation of the structure.
8.	Expand Work Planes. Right-click Rim, then click Add Geometry, Point.	You are prompted to pick a point.
9.	Click a point near the center of the yellow rectangle. Press ESC.	A point is created on the Rim work plane near the center. This will become a reference point to begin the construction of the part.
10.	Right-click Work Planes, then click Add Work Plane.	The Create Work Plane dialog opens.
11.	Click Right, enter "Vertical Axis" for Name then click OK.	The Vertical Axis work plane is created. 57. Modeling Work Planes (1) Rim Vertical Axis \square Model Dimensions

12.	Click Save Part Family. Click Yes. Stay in the Part Builder environment for the next exercise. - Save Part Family A with To Por Part Configuratior	The part is validated and saved. Depending on the part Type and on the Bounding Shape selected, certain Model Parameters and Size Parameters are automatically added to the part definition.

Part 2 - Defining the Manhole Geometry

In this exercise you will define the geometry of the drop manhole by creating a simple schematic of the structure profile. You will build this portion with dimensions that can be modified from within Civil 3D when the part is in use.

Step	Action	Result
1.	Under Modeling, Work Planes, right-click Vertical Axis and click Set View.	The current view and UCS is set to match the work plane.
2.	Right-click Vertical Axis. Click Add Geometry, Line. Create a line with 5 segments on the work plane. Begin by snapping to the node of the reference point on the Rim work plane and Use Ortho to make it easier to draw a straight line. Make the segments about 24 units long.	A line geometry object is shown in the drawing. This line represents the vertical axis of the manhole. Each segment represents a component of the structure. Starting from the top, the segments represent: the frame; the cone; and the last 3 segments represent the barrel. We'll use the extra vertices to place the incoming Dip Tee and the Drop 90° Elbow in the next steps.

3.	Use the Add Geometry, Line and Add Geometry, Arc to draw the schematic of the drop assembly. Don't worry about making the parts perfectly meet. We'll use constraints to make the geometry match up properly. Make the two horizontal lines that connect to the vertical line about 36 units long.	
4.	Next you will establish some constraints to keep the components of the profile in the correct location relative to one another. Right-click Vertical Axis, Add Constraints, Parallel. Select the bottom line segment of the manhole centerline and then click the segment	The bottom two segments are now constrained such that they are parallel to each other.

	directly above it.	
5.	Repeat the process, working your way up the centerline, constraining adjacent line segments to Parallel.	All segments representing the centerline of the structure are constrained to be parallel to one another.
6.	Right-click Vertical Axis, Add Constraints, Perpendicular. Select the bottom segment of the structure centerline and the lower horizontal line. Repeat for the upper horizontal line	The lower and upper horizontal components of the drop pipe are constrained to perpendicular to the structure centerline.
7.	Right-click Vertical Axis, Add Constraints, Parallel. Select the bottom line segment of the manhole centerline and then click the vertical segment of the drop pipe.	The vertical drop pipe is constrained to parallel to the structure centerline.
8.	Right-click Vertical Axis. Click Add Constraints, Coincident. Click the point at the top of the vertical drop pipe and then the left end of the upper horizontal line.	This will position the rectangle so that its center is located at the fixed point.

9.		

	Repeat these steps for each segment of the centerline, starting at the top and ending at the bottom segment.	Dimensions named LenA2 through LenA5 are created for the centerline of the structure. Note: for this exercise, make sure you dimension the segments in the order shown below.
	Add a Distance dimension to the lower horizontal line by picking the points at each end. This represents the distance from the structure centerline to the start of the elbow and will be used to ensure the drop stays on the outside of the structure.	LenA6 is created.

| | |
| :--- | :--- | :--- | :--- |

Part 3 - Create Profiles and Establish Parameters

In this exercise you will extrude the part profiles to create the 3D model. You will then establish the model parameters to control the sizing and dimensions of the manhole.

Step	Action	Result
$\mathbf{1 .}$	Right-click Modifiers. Click Add Path. When prompted for path, select the top line segment (the segment dimensioned LenA1) then select the Frame Cylinder Diameter profile (the circle dimensioned BdyD2) for the start profile and select it again for the end profile.	The Frame Cylinder Diameter profile is applied along the path (length) of the top line segment.

4.	Repeat the Add Path command for the remaining three line segments. Use the Barrel Cylinder Diameter profile for both the start and end profiles for each of the three segments. Change your view to SE Isometric to see the part in 3D. Change view back to Right
5.	Next, you'll add paths for the drop pipe assembly. Right-click Modifiers. Click Add Path. Select the lower horizontal segment for the path and the Drop Pipe Diameter profile for the start and end profiles.
6.	Add Path for the curved elbow. When the Enter number of path segments dialog opens, verify that "Do not segment path" is checked, and click OK. Then add the path modifier for the vertical segment of the drop pipe. Use the Drop Pipe Diameter profile.

	Enter number of path segments	
	Number of path segments: \square \square Do not segment path	
7.	Finish the drop pipe assembly by adding paths for the upper segments. Start with the right upper segment. Switch to SE isometric view.	In SE Isometric view, your part looks like this:
8.	Switch back to Right view. Next, you will merge the structure components with the drop pipe assembly components. Right-click Modifiers and select Boolean Add. When prompted to select objects, select the bottom two barrel segments and the lower horizontal pipe segment and press Enter	The parts are merged.

11.	Switch the view to SE Isometric.	
12.	Next you will set the placement point for the part. Expand AutoLayout Data. Right click Layout Data, then click Set Placement Point. Use the node object snap to click the top point on the vertical axis.	This is the point at which the part will be inserted into the drawing.

13.	Click Save Part Family.	
14.	Right-click on Size Parameters and click Edit Configuration.	
15.	Click the New button. Add the following Parameters clicking the New button each time. - Barrel Height - Frame Height (SFH) - Frame Diameter (SFD) - Cone Height (SCH) - Inner Structure Diameter (SID) - Barrel Pipe Clearance (SBPC) Click OK when all of the parameters have been added.	
16.	Click Save Part Family. Right-click Model Parameters, then click Edit.	Saving the part will cause the Model Parameters to update, including the new Size Parameters.

	Double-click in the Equation column next to each of the following and enter the values shown.	
	 Name Value Equation BdyD1 16.9770 16.977 BydD2 24.0000 24 BdyD3 36.0000 36 BdyD4 48.0000 48 BydD5 12.0000 12 FTh 6.0000 6 LenA1 24.0000 24 LenA2 24.0000 24 LenA3 27.4310 27.431 LenA4 20.5690 20.569 LenA5 24.0000 24 LenA6 35.0890 35.089 LenA7 21.0927 21.0927 SBH 74.0000 74 SBPC 3.0000 3 SESD 48.00000 48 SSSH 100.0000 108 SCH 24.0000 24 SFD 24.0000 24 SFH 4.0000 4 SID 48.0000 48 SRS 102.0000 102 SVPC 36.0000 36 WTh 4.0000 4	
17.	Right-click on Size Parameters, click Edit Configuration...	The Edit Part Size Dialog opens

	the Equations and Descriptions for the BdyD\# parameters as shown: - BdyD1 12 Elbow Bend Diameter - BdyD2 SFD Frame Cylinder Diameter - BdyD3 SFD+(2*Wth) Cone Top Diameter - BdyD4 SID+(2*Wth) Barrel Cylinder Diameter - BdyD5 12 Incoming Pipe Diameter	
21.	Make the following additional edits	
22.	Edit the Equations and Descriptions for the LenA\# parameters as shown: - LenA1 SFH Frame Cylinder Height - LenA2 SCH Cone Cylinder Height - LenA3 SVPC-SFH-SCH+(BdyD5/2) Top Pipe CL - LenA4 SRS+FTh-SFH-SCH-LenA3- LenA5 Top Pipe CL to Bottom Pipe CL - LenA5 24 Bottom Pipe CL to Struct Bottom - LenA6 (SID/2)+WTh+(BdyD5/2)+2 Struct CL to Start of Elbow - LenA7 (BdyD5/2)+2 CL Vert Pipe to Incoming Pipe	

	LenA1 4.0000 SFH Frame Cylinder LenA2 24.0000 SCH Cone Cylinder LenA3 14.0000 SVPC-SFH-... Top Pipe CL LenA4 42.0000 SRS+FTh-S... Top Pipe CL to LenA5 24.0000 24 Bot Pipe CL to LenA6 36.0000 (SID/2)+W... Struct CL to St LenA7 8.0000 (BdyD5/2)+2 CL Vertical Pipe	
	Click Close. Change to SE Isometric view and note the changes to the geometry of the structure.	
	Click Save Part Family. Close out of the Part Builder Environment and then re-open the Part.	After all the changes that have been made, now is a good time to close out and re-open the part so that all of the data is freshly loaded into the part builder environment.
26.	Right-click Size Parameters, Click Edit Configuration.	
27.	Change the Data Storage type to List for the following parameters: - WTh - FTh - SFH - SFD	

	Frame Dia SFH in Frame Hgt SID in Barrel Dia WTh in Wall. Click Evaluate to see the resultant part name (note that the name is long and partially cut off on the right. You can click on the name and use your keyboard arrow keys to see the rest of the name)	
38.	Click OK twice to close all dialog boxes.	
39.	Save the Part. Switch Visual Style to Conceptual. Part should look like the image at right.	
40.		Rightant
Rouble click the Equation for SVPC and enter:		
SFH+SCH+SBPC.		
Change the Visual Style to 2D Wireframe.		
Right-Click Vertical Axis, then click Add		
Geometry, Point Reference.		

	Click the point in the center of the Rim work plane.	A reference point (green) is created where the two planes meet in line with the vertical axis of the structure.
	Right-click Vertical Axis, Add Constraints, Coincident. Click the top point of the vertical axis, then click the reference point created in the previous step.	The entire structure moves upward so that the rim elevation matches the top work plane.

