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Abstract-The arc-length method is a powerful solution technique becoming increasingly popular among 
researchers and engineers. This method is presented here as a particular case of a more general formulation 
which includes all other solution strategies. The arc-length method is derived in its continuous and discrete 
formulations. Two versions of the arc-length method (Crisfield and Ramm) are presented and compared 
using a geometrical interpretation. Advantages and disadvantages of each method are pointed out. A new 
method, called the modified Crisfield-Ramm method, is proposed. This improved arc-length method 
combines the advantages of the two parent methods. 

INTRODUCTION 

The nature of special problems encountered in struc- 
tural analysis often requires the use of sophisticated 
analytical techniques. Particularly, optimization con- 
straints combined with safety requirements enhance 
the need for better understanding of structural 
behaviour. For these reasons, nonlinear finite element 
analysis of structures increases constantly. This type 
of analysis is used either as a powerful research tool, 
or in the design process of complex or unique struc- 
tures. The objective of such an analysis is to obtain 
the equilibrium states of a structure at various 
load levels. All these equilibrium states trace the 
load-displacement response of the structure in which 
the applied load varies proportionally as a function 
of a unique load parameter. In such a case, for an n 
degree-of-freedom (DOF) system, n + 1 unknowns 
define completely the problem. The finite element 
method, based on continuum mechanics, provides n 
relationships describing the equilibrium states of a 
structure. This is expressed in a single equation 

{R({u), n)} = ltF> - IRint<{u))} = O. (1) 

The parameters of this equation are {R({u}, A)}, 
the residual out-of-balance nodal forces; {II}, the n 
unknown DOF; 1, a scalar load parameter; {F}, the 
reference load vector; {& ), the internal nodal 
forces. To complete the definition of the problem with 
n + 1 unknowns, an additional equation is intro- 
duced, depending on the solution strategy adopted 

f({u}, 1) = 0. (2) 

The nonlinear response of a structure, related to 
geometrical and/or material nonlinearities, requires 
iterative solution techniques. At the current iteration 

number i, the displacement field {a} and the load 
parameter 1 in the subsequent iteration, are given by 

{Us”} = {ui} + {Aui} (3) 

Ji+i &i+A1i (4) 

In these equations {Au’) and A,?’ are the correc- 
tions of the displacement field and the load par- 
ameter, respectively. The iteration process, at a given 
load-displacement step, brings progressively eqns (1) 
and (2) toward zero, such that 

{R({ui+‘}, A’+ ‘)} Z 0 (5) 

f({ui+‘}, Ai”) 10. (6) 

The evaluation of {Aui} and A1’ varies depending 
on the technique adopted. In most approaches, they 
are treated separately within each iteration. 

The correction of the displacement field {Au’} is 
calculated using various approaches. The most 
popular are the Newton-Raphson method, the BFGS 
technique [l], the nonlinear conjugated gradient 
method [2] or the preconditioned linear conjugated 
gradient method [3]. 

On the other hand, the correction of the load 
parameter A1’ is based on techniques grouped 
in three families: load-controlled, displacement- 
controlled and arc-length methods. With load- 
controlled methods, 1’ is fixed at a certain level (thus 
Al’ = 0) and only {Au’] varies in the iterative process. 
Oppositely, in displacement-controlled methods [4], 
ALi is calculated for a fixed increment of one displace- 
ment. In the various adaptations of the arc-length 
method [5-g], Al’ varies as a function of the incre- 
ment of all displacements. It can be seen as a 
generalized displacement-controlled method. As 
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shown later in this paper, these three families are 
particular cases of a more general formulation 
expressed in a single general equation. 

This paper focuses on the constant arc-length 
method (CALM), particularly the Crisfield and 
Ramm adaptations. This method was found to be the 
most efficient one for the analysis of stable and 
unstable structures near limit points [3]. 

The objectives of the paper are as follows. It 
clarifies the various formulations of the arc-length 
method. Crisfield and Ramm’s approaches are pre- 
sented and compared, with advantages and disadvan- 
tages of each one clearly highlighted. A geometrical 
interpretation of the CALM is introduced. This new 
approach enhances the comprehension of the method 
and helps to develop a better feeling on the appli- 
cation of the CALM. Also, a new CALM, namely the 
modified Crisfield-Ramm method, is introduced. 
This method includes the best of the two parent 
methods, without their respective limitations. Finally, 
the paper concludes with examples illustrating the 
application of the CALM with the Crisfield, the 
Ramm and the Crisfield-Ramm methods. 

THE ARC-LENGTH METHOD 

The arc-length method is a solution strategy in 
which the path through a converged solution, at any 
step, follows a direction orthogonal to the tangent 
of the solution curve. In this procedure, both the 
load vector and the displacement field vary. The 
method is presented in the following sections in two 
forms. First, the arc-length method is introduced 
in its general, or continuous, formulation. This is 
followed by the presentation of the method in a 
discrete formulation, as implemented in computer 
programs. 

General formulation 

The equilibrium equation for a discrete structure is 
defined in eqn (1). The n + 1 independent variables of 
this equation are the n DOF u and the load parameter 
1. These variables can be expressed as a function 
of the curvilinear coordinate system s along the 
load-displacement response of the structure (Fig. 1), 
such that {u} = {U(S)> and A: = n(s). The tangent unit 
vector to curve s, t, is expressed as 

t= ; ) {‘I 
where 

The scaling factor of the vector is obtained by 

(7) 

From eqn (7) one can write 

t . t = {li}‘{ti} + i* = 1. (8) 

As stated by [6], the first derivative of the equi- 
librium equation [eqn (1)] with respect to s is written 
as 

(d}= -[41{$}+$$}=0 (9) 

with 

[KJ= - 2 [ 1 
. 

Equation (9) can be simplified by using eqn (1) to 
define 

1 I g ={F}. (‘0) 

Thus, introducing eqn (10) in eqn (9) leads to 

{d}= -[K,]{a}+i{F}=O (1’) 

which can be also expressed by 

(zi} = ri[K,]-‘(F} (ti} = ~(Au,} 

where 

Equation (12) allows redefining eqn (8) such 
that 

i*(l + {Ar+}‘{AuF}) = 1. (13) 

Finally, using eqn (13), the tangent to the curve is 
defined by 

({zi},i)= +’ 
&d’Pu~> + 1 

@+)t 1). (14) 

This formulation for {ti } and n’ represents the basic 
expression for the arc-length method. However, this 
form is not applicable in a finite element computer 
program, a discrete formulation of these relationships 
is thus introduced. 

Discrete formulation 

The relationships presented in the previous section 
can be expressed in a discrete formulation. The 
derivatives (ti} and i are given by 

(‘5) 
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Fig. 1. Typical curve for a structure with two degrees-of-freedom. 

where AS is a finite increment of the arc-length. Using linear, a small value for AS must be selected. Altema- 
the new definitions of eqn (15), the derivation of the tively, an iterative method can be adopted to remain 
equilibrium equation [eqn (1 1)] becomes close to the actual curve ({u}, 2). 

- [Kr](Au} + Al {F} = 0. (16) 

Using eqn (15), eqn (8) becomes 

{AU }‘{Au] + (AJ)~ = (AS)*. 

THE CRISFIEL&RAMM ARC-LENGTH METHOD 

Independently (71 and [8] proposed for eqn (2) the 
(17) following relationship, based on eqn (17) 

Solution techniques proposed by [5-81 are based on f({u>, 1) = {u;+‘]‘(u;+‘> 
eqn (17). Equations (16) and (17) provide the n + 1 
relationships required to solve nonlinear problems + (1; + I)’ - (AS)2 = 0. (22) 

from the last conversed step p to the next step p + 1 
Terms {u,“‘} and A;+’ in eqn (22) are the total 

{Au”> = AL[Kr]-‘{F) = Al{Au,} (18) increments in the displacement field and load factor 
respectively, from step p to step p + 1. These incre- 

A1 = 
&AS 

(19) 
ments are obtained through an iterative process, 

,/{A+NA+) + 1 
expressed as 

{up+‘} = {up} + {Aup} 

1P + ’ = 1P + A1P. 

(20) 
1~:’ ‘I= 1~” + ‘J - 1~“) = i,e& Au’ (23 

(21) 

For a given value of the arc-length increment AS, 
,;+I =AP+‘_JP= 

iwrL ” i’ (24) 

defined as the distance along the curve ({u}, A), it is 
possible to find the solution of the problem. However, In these equations, ({up}, np) is the last point of 
since the correction expressed in eqns (20) and (21) is converged equilibrium on the response curve ({u}, L) 

CAS 4W-c 
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whereas ({up+ ‘}, dP+ ‘) is the point of converged 
solution after an increment AS of the arc-length on 
the same curve. If AS remains constant from step p 
to p + 1, eqn (22) represents a hypersphere of radius 
AS in a n + 1 dimension space (Fig. 2). 

GENERAL EXPRESSION 

The various solution strategies commonly used in 
nonlinear analysis can be grouped in a single 
equation. The hypersphere expressed in eqn (22) was 
redefined by [3] in a more general expression in the 
n + 1 dimension space where [P] is a diagonal matrix 
and d a scalar 

j-((a), ~),={~;+‘)‘[~I{$+‘) 

+ d(l;+‘)2 - AS’=O. (25) 

This equation includes the various methods 
used to solve nonlinear problems: load-controlled, 
displacement-controlled and arc-length methods. For 
a hypersphere, the terms P, of [P] are equal to one 
onlyfori=j,andd=l.ForallP,,#land/ord#l, 
eqn (25) becomes a hyperellipse. From eqn (25), one 
can extract the various expressions associated with 
other methods: 

the original Crisfield-Ramm arc-length method 
expressed in eqn (22) is obtained from eqn (25) 
when [P] = [I] and d = 1; 
the load-controlled method corresponds to the 
case where all P, = 0 and d = 1 in eqn (25); 
the displacement-controlled method is obtained 
when d = 0 and only one P, = Pkk # 0, correspond- 
ing to the prescribed displacement u,; 
with the arc-length method, matrix [P] can be set 
up to consider only certain degrees-of-freedom and 
eliminate other ones (e.g. P, = 1 for translations 
and P, = 0 for rotations). 

Both [7] and [8] proposed similar simplifications to 
eqn (25) where [P] = [I] and d = 0. In its approach, 

Fig. 2. Example of a hypersphere (circle) for a one degree- 
of-freedom system. 

B. MA~~KDJTE 
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> 
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Fig. 3. Crisfield’s method for a two degree-of-freedom 

system. 

Crisfield forces the length of the displacement incre- 
ment to remain equal to the arc-length at each 
iteration from step p to step p + 1 

{u;}‘{u;} = {u;+‘}‘{u;+‘} = AS2. (26) 

It is thus a constant arc-length approach. Ramm, 
on the other hand, limits only the length of the 
displacement increment for the first iteration 
(i = 1) 

{Au’}‘{Au’} = AS2 (27) 

and, as discussed later in this paper, proposes another 
technique for the subsequent iterations. In this case, 
the arc-length in subsequent iterations varies from the 
initial AS. 

Equations (26) and (27) describe a hypersphere in 
the n degree-of-freedom space (Fig. 3). Crisfield and 
Ramm methods are described and compared in more 
details in the following sections. 

CRISFIELD METHOD 

With Crisfield’s method, {us”} can be rewritten 
for iteration i between steps p and p + 1 

{u;“} = {d} -{up} + {AU’}. (28) 

With the decomposition of {Aui} in two parts as 
proposed by [4], (~7’) is expressed as 

{a;“} = {ui} - {up} + {Auk} + Ani{Au;}, (29) 

where 

{Au;} = [k&I-‘{R’} (30) 

{Au;} = [K;]-‘{F}. (31) 
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With Crisfield’s approach, eqn (26) is rewritten 
using eqns (28)-(31) in a second-order form 

a(Al’)* + 2b(M’) + c = 0 (32) 

with 

a = {Aa;}‘{Au;} 

c = {u’}‘{u’} - AS2 

{u’) = {AU;} + {u;}. 

Equation (32) is applied at each iteration forcing 
displacements {uF’} to be equal to AS from steps 
p to p + 1 so that /u:// = .. . ~~u~-‘~~ = l]ubll = 
)@‘I[ . . . I[#;+1 11, where II.11 denotes the Euclidian 
norm. 

Geometrical interpretation 

Geometrical interpretation of Crisfield’s arc-length 
method is done in the n dimension space. Figure 3 
illustrates the geometrical interpretation of eqn (32) 
in a two degree-of-freedom system. With {a”} last 
known point (converged solution) along the curve, 
eqn (32) traces a circle (hypersphere) of radius AS 
centred at {UP}. For a sufficiently regular response 
and prior to any complete material failure, eqn (32) 
intersects the curve at two points. All displacement 
vectors {ai} touch the circle (hypersphere) at each 
iteration since vector (~2 ‘} keeps the same length 
AS. 

Choice of the appropriate root 

Since there are two roots for eqn (32), a criterion 
to select the appropriate root based on the least 
positive cosine value for the angle between {u:} and 
{a;‘} (for i > 1) is proposed [7] 

cos 8’ = 
{u;}‘{u:+ ‘} 

ll{4Jll IIM+‘>ll 
(33) 

This criterion is founded on the assumption that 
the appropriate solution vector {ub+ ‘} should have 
about the same orientation as vector {u:}. Thus only 
the root Al’ leading to the least cosine is retained. 
This is illustrated in Fig. 4 where the good solution 
is obtained with the first root. At the first step (p = 0; 
i = 1), since {At+} is zero, eqn (32) becomes 

(34) 

With eqn (34), the initial arc-length is evaluated by 
imposing at the first step, a load increment A1 

AS = A&/‘-. 

“I 

Fig. 4. Selection of the good root for eqn (32) for a two 
degree-of-freedom system. 

At the beginning of step p + 1 (i = 1), the first load 
vector increment is evaluated as 

AA’= &&-&sign Of A) (35) 

with 

A = {u;- ,}‘{Au,+ 

Equation (35) is similar to eqn (19) without the 
term 1 under the square root since Crisfield’s method 
operates in the n dimension space whereas eqn (19) is 
defined in the n + 1 dimension space. Strictly speak- 
ing, Crisfield’s (or Ramm’s) method should be called 
a ‘pseudo’ arc-length method although it is frequently 
referred to as the arc-length method. 

The criterion expressed by eqn (35) is illustrated in 
Fig. 5 in the case where the arc-length AS at steps p 
and p + 1 are taken equal. For a smooth response, 
the hypersphere touches the curve at two points and 
eqn (35) defines the tangent to the curve at point p. 
The appropriate sign in eqn (35) produces a positive 
projection of AI’{At+} on {up + ‘} to avoid a solution 
toward the previous converged point p - 1. Since AS 
and the square root term in eqn (35) are positive 
quantities, the sign of A is positive along loading 
branches of the response curve and is negative along 
unloading portions of the curve. 

Guarantee of convergence 

At this stage, the existence of at least one real root 
for eqn (32) must be established. This is done using 
the geometrical interpretation presented before. The 
requirement to have at least one real root for eqn (32) 
is a positive value for the square root term 
(b2 -UC > 0). This is written as 

W,Y{~%’ 2 llb:}l12tll{~i)l12 -AS*). (36) 
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Fig. 5. Selection of the sign of A1 ’ at the beginning of step 
p + 1 for a two degree-of-freedom system. 

If/P’ is the angle between (Auk) and loi), the term 
in parentheses in the left-hand side of eqn (36) is 
expressed by 

By introducing eqn (37) into eqn (36), one obtains 

(38) 

The most restrictive case corresponds to cos /3’ = 0, 
obtained when (Au,) and (v’) are orthogonal to each 
other. The condition for a positive square root term 
is then 

II f {AuX)ll = II{u’)ll s AS (39) 

Figure 5 illustrates this condition for a two degree- 
of-freedom problem. It simply stipulates real roots 
always exist when (vi> stays within the hypersphere 
of radius AS. For (ui) precisely on the hypersphere, 
one obtains 

ARi = _ -W4Wl 
I (u~}‘(Au~} 

and A11=0, 

for 

However, when (a’) (or {Auk)) is outside the 
hypersphere, one cannot guarantee a reaf root. For a 
given {Auk} there is however a zone where {Au;} 
must be found to have a solution. 

Fig. 6. Two real roots for a two degree-of-freedom system. 

Figure 7 shows a fictitious example for a two 
degr~-of-fr~dom problem in which (Auk) (or fn’f) 
falls outside the hypersphere. In this example, (Au’,] 
must be located within P, and P2 lines (or two 
h~e~ia~es) to reach the hy~rsphere from the out- 
side and thus produce a real root Al’. 

Finally, it should be mentioned that the demon- 
stration presented above also applies to eqn (25). 
Conclusions drawn before remain true in the case 
where d f 0, leading to a hyperellipse in the n f 1 
dimension space. To apply the Crisfield’s arc-length 
method, an algorithm is given in Fig. 8. 

RAMM ARC-LENGTH METHOD 

As mentioned before, Ramm [8] proposed a 
method, similar to the Crisfield’s one, called the 

Fig. 7. Two imaginary roots for a two degree-of-freedom 
system. 



Geometrical interpretation of the arc-length method 609 

-Lwponstcps(p=I lQp=n#& 
ii(p = I) 1=Ai 

if(p=l) then 

compute the two roots (Ali and Ai;) of Eq, (32). and choice A9.i 

associated with the smallest positive value of Eq. 33: 

Ai+l = 1’ +Al’ 

(Auui) = (Auk) + Al’ (dub) 

(II;+‘) = [“‘)+(Au~ ) 

. end 

Fig. 8. Flow chart of Crisfield’s arc-length method. 

modified Riks-Wempner method. He proposed two 
approaches, in the n + 1 or in the n dimension space. 
The discussion presented hereafter is limited to the 
second case only. 

As stated by eqn (27), only the first displacement 
increment {ui} must fall on the hypersphere of radius 
AS With the modified Riks-Wempner method pro- 
posed by Ramm, the solution along the curve is 
found by following a line (or hyperplane) orthogonal 
to {zJ:} (= {Au’}) expressed by 

{Au’}‘{Au~} = 0. (41) 

Using the separation of {Aui} in two parts ({Auk} 
and {AZ&}), as given by eqns (29)-(31), the load 
factor increment becomes 

Ramm’s arc-length method is illustrated in Fig. 9 
for a fictitious two degree-of-freedom system. By 
opposition to Crisfield’s method, the solution with 
Ramm’s method does not fall on the initial hyper- 
sphere. Due to eqn (41) the increment of displace- 
ment vector {Aui} leaves the initial hypersphere at the 
second iteration. Therefore the arc-length AS varies 
at each iteration. One advantage of the Ramm’s 
method is that there is only one value for Al’, given 
by the linear eqn (42). Convergence is always possible 

Fig. 9. Ramm’s method for a two degree-of-freedom sys- 
tem. 

as long as it exists physically. Beyond material failure 
points, AS increases rapidly, indicating the complete 
failure of the structure modelled. However, near limit 
points, a too large value for AS may lead to a solution 
much too far on the solution curve, as illustrated in 
Fig. 10. This can be avoided by using a smaller 
arc-length in order to follow more closely the solution 
curve. 

To help implementing Ramm’s arc-length method 
in computer programs, a flow chart is presented in 
Fig. 11. 

MODIFIED CRISFIELBRAMM ARC-LENGTH METHOD 

Advantages and disadvantages of the original methods 

Crisfield’s and Ramm’s methods offer many advan- 
tages but are both limited in their applicability due to 
some disadvantages. 

UP ’ 

Fig. 10. Convergence problem for the Ramm’s method for 
a two degree-of-freedom system. 
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--end 

Fig. 1 I. Flow chart of Ramm’s arc-length method. 

Crisfield’s arc-length method has the advantage of 
limiting the length of the displacement increment, for 
all iterations within a step, to a constant value AS. 
This avoids non-convergence problems, particularly 
when the stiffness of a system changes rapidly due to 
occurrence of plasticity or due to cracking in brittle 
structures. However, this method may lead to com- 
plex roots when solving eqn (32). This was observed 
by [3] in some situations. Also, eqns (33) and (35), 
used to select the good real root to avoid a solution 

Fig. 12. Updated hyperplane Ramm’s method for a two 
degree-of-freedom system. 

a) Original Ramm’s arc-length method. 

I 

“1 

b) Modified Crisfield-Ramm’s arc-length method. 

Fig. 13. Proposed modified Crisfield-Ramm’s method. 

towards the previous converged solution, do not 
guarantee a correct choice. 

Ramm’s arc-length method offers the advantage of 
simplicity, and guarantees the solution. Also, in most 
cases, this method gives the same results as with 
Crisfield’s approach. However, the arc-length AS 
is imposed only at the first iteration. This can lead, 
in rare occasions where there is an abrupt change 
in the response, to difficulties in tracing the 
load-displacement response of a structure. 

Nevertheless, Ramm’s method has more advan- 
tages than the Crisfield’s approach, although the 
difference is minute. It is, however, possible to com- 
bine the two methods to take advantage of the good 
points of both approaches. 

)LP 1 
P=60 

Fig. 14. Two degree-of-freedom structure of the example. 
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Fig. 15, Load-displacements curve of the structure in Fig. 12. 

method is based on the ~o~s~rai*t ~u~tjon proposed 
by Ramm and expressed now as 

A new method called the modified ~~s~ejd-Ramrn 
arc-length method (MCR) is proposed hereafter. This 

Iteration 

Table 1. Crisfield’s arc-length method (As i= 1.502) 

<4.434 (0 0) -0.2691 (1.193 <2.502 0.9328 
- 3.394) 0.9135) 1 .tisz> 
(0.9035 (7.023 x 10-Z -0.1794 (-0.2323 (2.270 0.7534 
2,171) 0.6314) 0.2419) I .894) 

(-0.9569 (-0.1651 -0.1304 (-4.035 x IO-2 (2.229 0.6230 
-2.325) -0.2709) -3.240 x 10-2) 1.926) 

( -0.7380 <-2.686 x IO-” -2.231 x iO-3 (-1.039 x 10-3 (2.228 0.6208 
- 1.783) -3.173 x 10-T> 8.048 x 10-“) I .927) 

Table 2. Ramm’s arc-lenath method IAS = I.5021 

Iteration 
No. 

i Au; AU:, Ai’ Au’ Vi i’ AS 

I (4.434 (0 O> -0.2691 (1.193 (2.502 0.9328 1.502 
-3.394) 0.9135) 1.652) 

2 (0.9035 (-7.023 x lo-% -0.1610 (-0.2157 <2.286 0.7118 1.544 
2.171) 0.6314) 0.2818) 1.934) 

3 (-0.9106 (-0.1967 -0.1772 <-3.534x IO-2 (2.2% 0.5946 1.558 
-2.309) -0.3620) 4.616 x lo-*> 1.980) 

4 (-0.4925 <-3.937x 10-3 -4.356 x W3 (-9.205 x 1o-4 (2.250 0.5902 1.559 
- 1.775) -6.531 x 10-3} 1.201 x 10-3) 1.981> 
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This equation uses the updated hyperplane {Aai}, 
and eqn (42) is now rewritten as 

AA’ = _ i”;)‘iAui) 
{u;}‘{Au;} ’ P) 

Figure 12 illustrates this modified method for a 
two-dimensional problem. One observes that the 
arc-length AS increases compared to the value at the 
first iteration. At iteration i, the current displacement 
is obtained by 

{z?;“} = {u;} + {Aui}. (45) 

However, as shown in Fig. 13(a), {tii+‘) does not 
fall on the circle (hypersphere) defined initially. To 
bring {U:“} back on the initial hypersphere, it is 
necessary to reduce the magnitude {ti: ‘} such that 

11u6”11 =AS =crIlii;+‘ll (46) 

which gives 

AS 
a=J$Zj’ (47) 

Equations (45)-(47) allow to express the desired 
incremental displacement 

{u:“} = a($,> + a{Au’}. (48) 

Figure 13 illustrates the effect of the constraint, 
from the application of eqn (45) in Fig. 13(a) to the 
effect of eqn (48) in Fig. 13(b). With the MCR 
method, the orthogonality between the updated hy- 
persphere and {Aui} and arc-length AS are preserved. 

This new method does not induce any convergence 
problem and the response of structures is more easy 
to follow near limit points. Like in the other arc- 
length methods, near limit point and failure, some 
convergence problem can occur. This can be solved 
by reducing the AS value. 

APPLICATION OF THE ARC-LENGTH METHOD 

The two arc-length methods presented in this paper 
are, in the authors’ opinion, the most reliable ones. 
Their implementation is easy and users become fam- 
iliar quickly in the analysis of structures with the 
arc-length method. The reason for such performance 
is due to the great flexibility of the method in which 
the predominant degrees-of-freedom are recognized 
by the method and, therefore, govern the response. 

A second important aspect with both Crisfield’s 
and Ramm’s approaches is that they involve only 
degrees-of-freedom [eqns (26), (27), (34), (35), (41) 
and (42)], whereas in some other arc-length methods 
load terms and degrees-of-freedom are mixed up 
[eqns (13) and (14)]. Although mathematically (or 
vectorially) there is no problem applying such 
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methods, this can cause many inconveniences in 
numerical solutions [3] since the nature of the various 
terms involved differs. 

In continuum mechanics, vector {u} contains only 
displacements. However, in analysis of thin structures 
using plate or shell element or in structural analysis 
with beam elements, rotation terms are found among 
the degrees-of-freedom. A diagonal matrix [P] with 
terms P, = 0 for rotations can be used to eliminate 
rotational degrees-of-freedom in order to add and 
multiply terms having the same nature. However, 
products of rotations (in radians), as they appear in 
the relationships pertaining to the arc-length method, 
are usually negligible compared to products of dis- 
placements. 

The application of the arc-length method, as pro- 
posed in this paper, has been used very successfully 
in various types of analysis. Nonlinear response of a 
thin web open section under axial load and bending 
moments was studied by [lo] using Crisfield’s method 
where both geometrical and material nonlinearities 
were considered. Also, [3] applied the same technique 
in the stability analysis of plates and shells. Both used 
the finite element code MEF (standing for ‘Mtthode 
des Elements Finis’) available at Lava1 University. 
On the other hand, Ramm’s method implemented in 
the finite element code NISA [ 1 l] developed at Stutt- 
gart in Germany, was used by [12] for the postbuck- 
ling analysis of large diameter thin steel cylinders 
subjected to shear forces. It also was used by [13] 
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and [14] in the analysis of concrete panels and of thin 
reinforced concrete plates supported along their four 
edges and subjected simultaneously to inplane loads 
and transverse loads. In these last two cases, geo- 
metrical and material nonlinearities were involved. 

The availability of the two methods in the same 
nonlinear finite element program is a good asset. 
They can be used for different applications but it is 
also possible to switch from one method to the other 
whenever required. Crisfield’s method would be bet- 
ter suited when the arc-length AS increases too 
rapidly with Ramm’s method. On the other hand, 
Ramm’s approach can be used when Crisfield’s 
method fails to obtain a real root. The MCR method, 
combining the advantages of the two parent methods, 
is believed to be the ideal one. 

EXAMPLE 

An example is presented to illustrate the arc-length 
method proposed by Crisfield and to compare it to 
Ramm’s method and the MCR’s method. The struc- 
ture studied is made of two bar elements with differ- 
ent axial stiffnesses (Fig. 14). Small elastic strain 
assumption is assumed, the second Piola-Kirchhoff 
stress tensor is used whereas the Green-Lagrange 
strain tensor is adopted. Moreover, only the overall 
stability is considered and no individual buckling of 
bars is allowed. All these restrictions are not necess- 
ary but are imposed to simplify the interpretation of 

0 0.5 1.0 1.5 2.0 2.5 
Displacement u 

Fig. 16. First three iterations with the Crisfield’s method. 
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Fig. 17. First three iterations with the Ramm’s method. 

the results. This two degree-of-freedom example was 
selected so that one can visualize the geometrical 
variation of II and u simultaneously with the load 
factor 1. 

Figure 15 illustrates the structure response in the 
A-u-v space where its projections on each plane are 
shown. On the I-v plane, one recognizes the typical 
limit point instability curve. The beginning of the 

analysis with both Ramm’s and Crisfield’s methods 
is identified by a diamond shaped sign on each 
curve in Fig. 15. On the u-v plane, the circle with a 
radius AS equal to 1.502, intersects the solution curve 
using Crisfield’s method. Since Ramm’s method is 
different, the solution slightly differs. The coordinates 
of the starting point are: A, = 1.202, a1 = 1.31 and 
0, = 0.74. 

2.5 

Fig. 18. First three iterations with the modified Crisfield-Ramm’s method. 
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Tables 1-3 summarize the most important results tageously the load-controlled or the displacement- 
obtained with the three approaches up to the fourth controlled method. 
iteration. Figure 16 illustrates the path obtained with 
Crisfield’s method for the first three iterations. At the Acknowledgemen&-The authors gratefully thank the 

second iteration vector {nil = (u:) + {Au; > is point- National Sciences and Engin~~ng Research Council of 

ing outward the circle whereas at the third iteration, 
Canada for its financial support. 

thk same vector is pointing inward the circle. This fact 
illustrates that vector (u’) points inward the circle (or 
sphere) near convergence. 

Results in Table 2 and Fig. 17 show that the 
arc-length AS with Ramm’s method increases at 
each iteration. We observe also that {Au’) and fAar3) 
are orthogonal to (AU’>. Although the difference 
between Ramm’s and C&field’s approaches is small 
in the example, it can be larger for other problems. 
In this particular case the small difference is due 
to the flatness of the curve within a circle of small 
radius. 

Figure 18 illustrates the same example for the 
MCR method. The comparison begins at the same 
point as in the two previous methods. After the first 
iteration, the same displacement {ai) (Table 3) is 
obtained. In the second iteration, Ai; is computed as 
the Ramm’s method. With the MCR method, the tl 
parameter is calculated to respect the arc-length 
method. This is illustrated for the second iteration, in 
Fig. 18. Results in Table 3 show that this method 
converges exactly to the same displacements {u} as 
the Crisfield’s method. 

CONCLUSION 

In this paper, the arc-length method for the resol- 
ution of nonlinear response of various types of 
structures was presented. The attention was focused 
on the Crisfield’s and Ramm’s methods which were 
found to be the most efficient ones for the analysis of 
structures near limit points. A new geometrical in- 
terpretation of the method was presented and, based 
on this interpretation, a criterion proving the exist- 
ence of a real root for Crisfield’s approach was in- 
troduced. The authors presented a modified 
Crisfield-Ramm’s method combining the advantages 
of the two previous methods. The example presented 
in the paper illustrated the similarity of the three 
methods and their ability to lead rapidly to a con- 
verged solution. 

Finally, the authors believe that the modified 
method and the two other methods should be in- 
cluded in any nonlinear finite element program, since 
they can be used for different applications. Moreover, 
in many cases, the arc-length method replaces advan- 
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