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Abstract:    Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires 

tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution 

techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they 

fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received 

wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital 

to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two 

decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures. 
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INTRODUCTION 

 

Complete investigation of the nonlinear be-

havior of structures must follow the equilibrium 

path; identify and compute the singular points like 

limit or bifurcation points, whose secondary bran- 

ches in the equilibrium path must be examined and 

followed. Several techniques to achieve the solu-

tion pattern on the equilibrium path were presented 

in literature. Load controlled Newton-Raphson me- 

thod was the earliest method in this regard; but it 

fails near the limit point. To overcome difficulties 

with limit points, displacement control techniques 

were introduced. However for structural systems 

exhibiting snap-through or snap-back behavior, 

these techniques lead to error. One way to over-

come the problem is by adopting a technique to 

switch between load and displacement controls 

(Sabir and Lock, 1972), by using the artificial 

springs of Wright and Gaylord (1968), or by aban- 

doning the equilibrium iterations in the close vi-

cinity of limit point (Bergan and Soreide, 1978; 

Bergan et al., 1978). To obtain a more general 

technique, the arc-length method for structural 

analysis, originally developed by Riks (1972; 1979) 

and Wempner (1971) and later modified by several 

scholars, is used. Various forms of arc-length 

method followed the original work of Riks and 

Wempner. This paper reviews recent developments 

of the arc-length method, discusses its various key 

issues, particularly during the last two decades. 

Unlike the load control method in which the 

load is kept constant during a load step or in the 

displacement control method in which displace-

ment is kept constant during increment, in the 

arc-length method, the load-factor at each iteration 

is modified so that the solution follows some spe- 

cified path until convergence is achieved. The basic 
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idea of the method can be explained as follows. 

Since the method treats the load-factor as a 

variable, it becomes an additional unknown in 

equilibrium equations resulting from finite element 

procedure, and yield (N+1) unknowns, where N is 

the number of elements in the displacement vector. 

The solution of (N+1) unknowns requires an addi-

tional constraint equation expressed in terms of 

current displacement, load-factor and arc-length. 

Two approaches, fixed arc-length and varying 

arc-length are generally used. In the former the 

arc-length is kept fixed for current increment, 

whereas in the latter case, new arc-length is evalu-

ated at the beginning of each load step to ensure the 

achievement of the solution procedure. Simplifica-

tion of the constraint equation leads to a quadratic 

equation, whose roots are used for determining the 

load-factor. Proper selection of root is one of the 

key issues of the method, whose details will be 

discussed in subsequent sections. Generally, for the 

first increment, the trial value of the load-factor is 

assumed as 1/5 or 1/10 of total load. For further 

increments the load-factor is computed according 

to the rate of convergence of the solution process. 

In case of divergence from the solution path, the 

arc-length is reduced and computations are done 

again. The computation time of the solution process 

is also of major concern in finite element analysis, 

so a maximum number of iterations are preset; and 

if solution does not converge in the specified 

number of iterations then the load step is reduced 

and the process is started over again.  

 

 

ARC-LENGTH TECHNIQUE 

 

The equilibrium equation of nonlinear system 

can be written as 

 

            ( )i i i i
λ λ= −g f q                         (1) 

 

where fi is vector of internal equivalent nodal forces, 

q is the external applied load vector, λ is the 

load-level parameter, and gi is out-of-balance force 

vector. The arc-length method is aimed to find the 

intersection of Eq.(1) with constant s termed as the 

arc-length, and can be written in differential form 

as  

 

    T 2 2 Td d ds λ ψ= +∫ p p q q                   (2) 

 

or in increment form, written as 

 

 T 2 2 T 2 0a lλ ψ= ∆ ∆ + ∆ − ∆ =p p q q              (3) 

 

where ∆p is vector of incremental displacement, ∆λ 

is incremental load-factor, ∆l is fixed radius of 

desired intersection, and ψ is the scaling parameter 

for loading terms. With some simplification Eqs.(1) 

and (3) can be directly used to compute the iterative 

change in displacement vector and load-factor, and 

are written as 

 
1

oldT

T 2 T

old2 2 a

δ
δλ λψ

−−     
= −    ∆ ∆     

gp K q

p q q
         (4) 

 

where δp is iterative change in displacement vector, 

δλ is iterative change in load-factor, KT is the tan-

gential stiffness matrix, and gold and aold are the 

previous values of out-of-balance load vector and 

arc-length. After the iterative change δp and δλ 
have been computed, the displacement vector and 

load-factor are updated.  

Alternatively, instead of solving Eqs.(1) and 

(3) directly, constraint equation can be introduced 

by following the technique of Baltoz and Dhatt 

(1979) for displacement control at single point 

(Crisfield, 1981). According to the technique, the 

iterative change of displacement for the new un-

known load level 1i i
λ λ δλ+∆ = ∆ +  is written as  

 
1 1

T T T
δ δλ δ δλδ− −= − + = +p K g K q g p              (5) 

 

and the incremental displacement for the next in-

crement can be written as 

 

            1i i δ+∆ = ∆ +p p p                            (6) 

 

Substituting values from Eqs.(5) and (6) into the 

constraint equation yields the expression 



Memon et al. / J Zhejiang Univ SCI   2004 5(5):618-628 620

          2

1 2 3 0c c cδλ δλ+ + =                   (7) 

where 
T 2 T

1 T T

2 T

2 T

T 2 2 2 T

3

2 ( ) 2

( ) ( )

c

c

c l

δ δ ψ
δ δ λψ

δ δ λ ψ

= +

= ∆ + + ∆

= ∆ + ∆ + − ∆ + ∆

p p q q

p p g q q

p g p g q q

         (8) 

 

Eq.(7) is solved to get the value of δλ, and so to 

define the iterative change completely. This equa-

tion leads to two results of δλ. The method for se-

lection of proper value will be discussed in sub-

sequent sections. The method is graphically shown 

in Fig.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Originally, the work of Riks and Wempner 

advocated that the iterative change should be made 

orthogonal to the predictor solution 
p p

( , )λ∆ ∆p  

(Fig.2). Ramm (1981) advocated the use of making 

iterative change orthogonal to secant change o
( ,∆p  

o )λ ψ∆ q (Fig.3); the technique of Ramm is closely 

related to the work of Riks and Wempner. To avoid 

the dependency of solution process on either pre-

dictor or secant change, Fried (1984) suggested use 

of 2 T

T
( , (1/ ))δ ψp q q instead of o o( , ).λ∆ ∆p  All these 

techniques are termed as linearised versions of 

arc-length method, in which the constraint equation 

leads to only one solution, hence no issue of selec-

tion of roots. However it is possible that the method 

may sometime miss the equilibrium path, and lead 

to numerical difficulties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ARC-LENGTH METHOD DURING THE 80’S 

 

After the introduction of arc-length method by 

Riks (1972; 1979) and Wempner (1971), the me- 

thod received wide acceptance in the field of finite 

element analysis. However as Crisfield (1981) 

stated, the Riks method was not suitable for stan-

dard finite element analysis even with modified 

Newton-Raphson (mN-R) procedure, because equ- 

ations proposed by Riks destroy the banded nature 

of the stiffness matrix. For one-dimensional prob-

lem with N displacement variables, Crisfield (1981) 

gave the modification of the method and suggested 

Fig.1  Arc-length procedure for specific iteration 

 

(p
) 

 

Fig.2  Arc-length method (Riks, 1972; 1979; Wempner,

1971) 

(p
) 

        Fig.3  Arc-length method (Ramm, 1981) 

 

(p
) 
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the fixation of incremental length ∆l during load 

increment. Therefore instead of applying the con-

straint Eq.(3), the following equation was used 

 

    T 2

i i l∆ ∆ = ∆p p                                        (9) 

 

The proposed technique is termed as cylin-

drical arc-length method. Solution of Eq.(9) yields 

to a quadratic equation similar to Eq.(7) but with ψ 

= 0, and thus two roots. To avoid doubling back on 

original load/deflection path, Crisfield suggested 

that the angle between the incremental displace-

ment vector before the current iteration and in-

cremental load vector after the current iteration 

must be minimum. To achieve this, the appropriate 

root is the one that gives positive angle, and in case 

that both roots are positive, the appropriate root is 

the one that is closest to the linear solution. Cris-

field applied this method for large-deflection 

elasto-plastic analysis of imperfectly stiffened 

plates and shells and got satisfactory results. 

Crisfield (1983) pointed out that although the 

arc-length method works well and has been suc-

cessfully incorporated into finite element pro-

gramming, yet only partial success was achieved in 

solving the material nonlinearity of beams and 

slabs with significant strain softening. However the 

same problem when solved by the displacement 

control method with simple line searches yielded 

acceptable results. Thus the author suggests the use 

of line search scheme with arc-length method. The 

suggested scheme uses fixed load level and seeks a 

scalar ηi such that the energy Φ at pi+1 is stationary 

in the direction of ηi, i.e. 
  

T T

T

1 1

11

,

( ( ))

( ) 0

i i i i

i iii

j i js

η δ
η η

η

+ +
++

   ∂Φ ∂Φ ∂Φ= =   ∂ ∂ ∂  
= =

g p
p           (10) 

 

Eq.(10) is too stringent a condition to meet in 

practice and instead it is desirable to satisfy 

 

      
, 0 ,0

( ) ( 0)
j i j i

s sη µ η< =           (11) 

where        
T

0 ,0
( 0) ( )

i i i i
s η δ= = g p                        (12) 

where gi is the out-of-balance force vector at the 

end of the previous iteration. The near optimum 

value of µ is suggested as 0.8. The procedure works 

well; but if Eq.(12) is violated, then a new 

arc-length ηi,2 must be tried as a second attempt to 

satisfy the equation. The simplest method to com-

pute second attempt is to use linear interpolation or 

extrapolation using s1 and s0 values. 

Forde and Stiemer (1987) introduced a general 

arc-length procedure based on orthogonality prin-

ciples. In their work the authors suggested selection 

of an arbitrary direction n
(i)

 with reference to tan-

gent t
(i)

 of the current incremental load-displacement 

configuration. The scalar product of these vectors 

yields a residual g
(i)

. The tangential and normal 

vectors (t and n) consist of m dimensions from the 

displacement vector and one dimension from the 

load parameter. These components are combined 

using a scaling factor ȕ to form vectors with m+1 

dimension, which can be written as 

 

 ( ) ( ) ( )i i iβλ= +t u                                     (13)                       

 ( )i β λ= ∆ + ∆n u                                      (14) 

 

The scalar product of t
(i)

 and n
(i)

 results in the gen-

eral expression for ∆λ, as follows 

 

 

T

T

( ) ( ) II

2 ( ) ( ) I

i i

i i
λ

β λ
− ∆∆ =

+ ∆
g u u

u u
                       (15) 

 

The expression can be simplified for particular 

cases of orthogonality. The use of the method sim-

plifies the solution process. The method reveals 

exactly similar results for ∆λ as obtained by Cris-

field (1981) but without solving quadratic equation 

and selection of proper root.  

 

 

ARC-LENGTH METHOD DURING THE 90’S 

 

Al-Rasby (1991) gave modified arc-length 

method almost similar to that of Forde and Stiemer 

(1987) but introduced scaling matrices for calcula-

tion of the arc-length for the purpose of non-dimen- 

sionalizing the vectors that define the arc-length 
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constraint equations. These matrices can also be 

used to gauge the relative contribution of load and 

displacement components to the arc- length con-

straint equation. Based on the idea, the equation for 

∆λ takes the form  

 

 

T

T

( ) ( ) ( )

s

( ) ( ) ( ) T

s ref s ref

i i i

i i i

δλ
δ λ

−
∆ =

+
g U V

U V R W R
              (16) 

 

where Vs is the displacement scaling diagonal ma-

trix, and Ws is the load scaling diagonal matrix. By 

varying the residual g, all of the known arc-length 

methods can be used. With proper variation of Vs 

and Ws, load control and displacement control 

methods are the special cases of this technique.  

Since variation of the scaling diagonal matrices 

required to follow the solution process, the varia-

tion can be done in infinite variety. However the 

author suggests the following four types of varia-

tions: 

i) Vs ≡ Ws ≡ I. Setting both diagonal scaling 

matrices equal to identity means that all parameters 

are considered equally. This may not be the ideal 

case, since on the load-displacement path, at par-

ticular points some parameters are more significant 

than others. Also this procedure does not introduce 

any scaling on either load or displacement com-

ponent. 

ii) Vs ≡ I and [Ws]i,i = 2

ref( ) .t

−
R  No sum on i. 

This is equivalent to specifying T

ref s refR W R ≡ I. 

iii) Vs ≡ I and Ws = cI,  

Where 
(1)T (1)

2 T

1 ref ref

=c CSP
δ δ
λ

 
 ∆ R R

  

and 
(1)(1)

ref

( )

1 ref

=
i

CSP
δλ

λ
 
 ∆ 

R

U R
 where δ(i)

 is the initial 

displacement vector in the first step, ∆λ1 is the 

initial load parameter in the first step and CSP is the 

current stiffness parameter. 

iv) Vs = [K]i,i and Ws=
1

,[ ]i i

−
K , no sum on i. In 

this scaling procedure the diagonal terms of the 

stiffness matrix are used as scaling parameters. 

Fafard and Massicotte (1993) modified the 

method by making use of the advantages of arc- 

length method given by Crisfield (1981) and Ramm 

(1981). Fafard and Massicotte in their work used 

the constraint equation given by Ramm (1981), and 

used updated hyper-plane technique to evaluate 

arc-length as follows 

 

 
{ } { }
{ } { }

T 1

T 1

i

i

λ
−

−

∆
∆ =

∆

p K g

p K q
                       (17) 

 

and the current displacement was computed as 

given in Eq.(6). This displacement does not fall on 

the defined hypersphere; so to bring it on the hy-

persphere, a reduction in the computed displace-

ment is suggested, as  

 

 1 1i il α+ +∆ = ∆ = ∆p p                        (18) 

from which  

 
1i

lα
+

∆=
∆p

                                   (19) 

 

Hence the desired incremental displacement can be 

expressed as 

 

 { } { } { }1i i iα α δ+∆ = ∆ +p p                         (20) 

 

Since the technique combines the advantages 

of two methods, it can be effectively used for 

load-deflection tracing in nonlinear analysis and it 

can also overcome both the individual drawbacks of 

the other methods and the convergence problem; 

however near failure point convergence can cause 

problem, which can be avoided by reducing the ∆l 

value. In addition Fafard and Massicotte (1993)
 

gave the geometrical representation of arc-length 

methods introduced by Crisfield and Ramm, which 

helps to visualize the method geometrically. 

Carrera (1994) gave a modification for selec-

tion of proper root of the nonlinear constraint 

equation. The author argues that although for some 

problems arc-length method works well; yet it fails 

in some cases, and mostly it is due to the selection 

of the proper root of the governing nonlinear con-

straint equation. Thus Carrera proposed selection of 

root that is closest to constraint linear solution. The 
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method requires computation of the linear solution, 

which is obtained from available data. This sim-

plifies the matter, which otherwise, as in the case of 

Crisfield’s method, requires additional computa-

tion of angle before selection of the proper root.  

Fan (1994) researched variable step-length 

incremental/iterative methods; reviewed a few ex-

isting methods; and proposed three different ways 

to compute the arc-length, i.e., zero incremental 

displacement norm, zero residual force norm and 

zero incremental work norm, to be used with cy-

lindrical arc-length and load/displacement control 

methods. The validity of the proposed strategy was 

verified by solving two cylindrical shell problems 

with snap-back. Observation of the results obtained 

revealed the validity of the derived methods; but 

there was no indication of their validity in three 

dimensional space problems. 

Convergence to predefined deformation state 

is important in some situations. For example, in the 

assessment of dynamic characteristics of a structure, 

convergence at first yield is important. The 

arc-length method does not include the formulation 

to achieve this type of solution. Teng and Luo 

(1998) introduced modification to the existing 

arc-length method based on the concept of accu-

mulated arc-length. Accumulated arc-length is 

defined as the sum of all arc-lengths up to and in-

cluding the current load step. According to the 

procedure, first, conventional arc-length method is 

used to trace the load-displacement path. When the 

path approaches predefined state, the accumulated 

arc-length process is started. To achieve the desired 

level of convergence, the arc-length must be 

modified. This modification is done by introducing 

a new parameter Ȗ 
 

 d( )i iLγ λ λ= −                                    (21) 

 

where λi is the converged load-factor, λd is the de-

sired load level and Li is the sum of arc-lengths up 

to the current increment. Then the desired arc- 

length increment for the next loading step ld is 

computed by making the accumulated arc-length Ld 

satisfy the following equation. 

 

    d( ) 0Lγ =                                           (22) 

hence 

 1 di iL L l+ = +                                    (23) 

 

To solve the above equation, Taylor expansion 

is used, and two possibilities are suggested, i.e. 

quadratic and linear expansion. If the new arc- 

length obtained is greater than the one obtained 

from normal procedure then the arc-length from 

normal procedure is used and subsequent evalua-

tion of arc-length according to accumulated arc- 

length procedure is done in the next step. In addi-

tion, alternative quadratic approach is also sug-

gested which even eliminates the issue of selection 

of appropriate root (here accumulated arc-length is 

defined in terms of load-factor); then Taylor ex-

pansion is used to solve the resulting equation for 

desired arc-length. Although the procedure given is 

used to solve numerical problems and reported 

results are satisfactory, the issue of imaginary roots 

is not touched in this research work. 

In arc-length method the issue of complex 

roots arising from solution of quadratic equation is 

a factor that leads to divergence of the solution. 

Several attempts had been made to modify the 

method to overcome this problem; however the 

issue is still alive in certain situations, and efforts to 

overcome the problem continue. In an attempt to 

resolve this issue, Zhou and Murray (1994) intro-

duced a relaxation factor ȕ to reflect the contribu-

tion of residual force vector to displacement. The 

range of ȕ is from 0 to 1.  The method includes tra- 

ditional arc-length method as a subset when ȕ=1. 

The concept of the technique is to apply fraction of 

residual force in iterative process, which increases 

the computational cost of the process, but the 

probability of solution failure can be diminished. 

Proper value of factor ȕ always ensures positive 

discriminant of quadratic equation, hence the real 

roots. Acceptable range of value for ȕ can be de-

termined by setting the discriminant of the quad-

ratic equation greater than or equal to zero, which 

leads to quadratic equation in terms of ȕ. Solution 

of the new equation leads to ȕ values, from which 

proper value is selected as 
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 max0 β β< ≤                                           (24) 

and  

 max 2min(1, )β β=                        (25) 

 

Although rare, but near zero, ȕmax values can 

reduce the efficiency considerably. To overcome 

this situation research work suggested the use of 

full Newton-Raphson method when ȕmax is less than 

0.001. This modified technique has been success-

fully applied to the post buckling analysis of buried 

pipe segments. 

Lam and Morley (1992) proposed a new 

strategy to deal with the complex roots arising from 

the solution of the quadratic equation. Authors pro- 

posed the resolution of out-of-balance load vector 

into parallel and orthogonal components with re-

spect to fixed nodal load vector in case of diver-

gence. To achieve this they introduced a scaling 

parameter η in the usual constraint equation. The 

procedure becomes general arc-length procedure 

when η equals 1. The value of parameter η is ini-

tially set to 1; with the consequent divergence of 

solution process due to complex roots being com-

puted by using simple line-search technique. The 

line-search leads to a quadratic equation in terms of 

η. Suitable value of this scaling parameter are cho-

sen close to 1. This newly computed value of η is 

then fed back into original constraint equation 

which is solved again. This way the problem of 

complex roots can be avoided successfully. The 

authors further report that generally the quadratic 

equation solved for η gives real values, but in case it 

lead to complex values, the following procedure is 

adopted: 

i) Compute the displacement due to the or-

thogonal component of out-of-balance load vector 

(orthogonal to applied load vector) and update the 

displacement. 

ii) Compute associated nodal forces. 

iii) Compute incremental loading parameter 

and the arc-length from orthogonal component of 

out-of-balance force vector. 

iv) Reduce the loading parameter by multi-

plying the loading parameter by the ratio of original 

arc-length to arc-length associated with complex 

roots, and iterate the solution process. 

Although this solution procedure imposes ex-

tra computational cost, it can counteract the prob-

lem of complex roots successfully. 

To improve the workability of the arc-length 

procedure, particularly to avoid the track back of 

solution scheme due to incorrect loading parameter, 

Feng et al.(1996) suggested a formulation for com- 

putation of initial load increment, based on the 

technique of sign of determinant of current stiffness 

matrix. The technique and its use are reported in 

literature on finite element analysis. However, 

when used with iterative techniques for solution of 

equations in combination with incremental-itera- 

tive process, it does not work since the determinant 

of the stiffness matrix cannot be obtained as a 

by-product of the solver. Thus modification for use 

with iterative solvers is needed. The modification is 

done by using the derivative of the load parameter 

at current iteration, i.e. 

 

 0sign( ) sign( )k kλ λ∆ = $                        (26) 

 

Where λ$  is the derivative of the load-factor. The 

formulation for both λ  values in Eq.(26) is given in 

a relevant paper and is not repeated here. The nu-

merical results reported present the validity of the 

technique. The validity of the technique was also 

reported by Bellini and Chulya (1987). 

May and Duan (1997) worked with arc-length 

method for structures with strain softening, and 

argued that since failure of materials with strain 

softening is highly localized, global constraint 

equations are unable to produce convergence. They 

argued that inclusion of displacement of dominant 

nodes (nodes which are associated with failure zone) 

into the constraint equation leads to betterment. 

However these nodes can cause problem as any 

node might change its position with development of 

nonlinearity that leads to troublesome constraint 

equation. Thus they modified the existing arc- 

length method to address these problems and intro- 

duced local arc-length procedure. In its constraint 

equation, displacement associated with the regions 

of nonlinearity was used instead of total displace-

ment vector. To automate the selection of dominant 

nodes in analysis research work proposes the use of 
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dominant element in which some or all of the ma-

terial is either in damaged zone or in failure zone. 

Thus the relative displacement vector for a plane 

element with n degrees of freedom is given as 

 
T

1 2 1 3 2 1[ , , ,..., ]n n nδ δ δ δ δ δ δ δ−∆ = − − − −δ           (27) 

 

where δ1 to δn are the displacements at nodes within 

the element. In adjacent dominant elements relative 

displacement of common nodes is computed twice, 

since each element has its own relative displace-

ment vector. The equations for arc-length and load- 

factor are then computed as  

 

 ( ) ( )T 2

1

1

m

ie e
e

l
=

∆ ∆ = ∆∑ δ δ                        (28) 

( ) ( )

( ) ( )

T

P 1 F

1

1

T

P P

1

m

ie e
e

i
m

e e
e

λ λ
−

=

=

∆ ∆ + ∆
∆ = ∆ −

∆ ∆

∑

∑

U δ U

U U

          (29) 

in which 

 

( ) ( )
1

T

P P

1

m

e e
e

lλ

=

∆∆ =
∆ ∆∑ U U

                    (30) 

 

where ∆UP is the relative reference deformation in 

the element and ∆UF is the relative incremental 

deformation due to unbalanced force. The tech-

nique mentioned successfully predicts the load- 

displacement behavior of materials with strain 

softening as mentioned in reported results. How-

ever, the reported method was applied to plain 

concrete element and there was no mention of the 

use of the method for compression softening, which 

is frequent and dominant in concrete structures. 

Hellweg and Crisfield (1998) also attempted to 

solve a double cantilever beam with softening type 

damage model and reported divergence of the so-

lution even if proper root for cylindrical arc-length 

method was selected. The authors argue about the 

situation when divergence is due to the sharp 

snap-back, in which neither root can lead the solu-

tion on the proper path. Therefore they suggested 

that the selection of proper root be based on the 

minimum residual norm. However to preserve 

computer resources the idea is applied only when 

sharp snap-back is observed, otherwise the usual 

method is continued.  

Regarding the issue of selection of root when 

divergence occurs, Kweon and Hong (1994) dis-

carded every existing possibility of selection of 

roots and suggested restarting of the corresponding 

load step with arc-length reduced to half. To pre-

vent the number of iterations being too large the 

authors also suggested that the maximum number 

of iterations be fixed. If the number of iterations 

exceeds the maximum number, then the load step is 

restarted with arc-length reduced to half. Generally 

the direction of load step is evaluated according to 

the sign of the determinant of stiffness matrix, but 

Kweon and Hong (1994) suggested that the load 

direction must be independent of the sign of the 

determinant of the stiffness matrix; and imposed 

the condition that the first incremental displace-

ment vector in the present load step should make an 

acute angle with the total incremental displacement 

vector at the last step. They argued that the criterion 

leads to better results, and that numerical problems 

for post buckling analysis do not occur. Although 

the reported results of post buckling analysis of 

isotropic shell under compression showed the va-

lidity of the reported procedure, the method will 

probably lead to slower convergence as the arc- 

length is reduced to half of previous or no con-

vergence at all for problems with critical points. 

While performing geometrical nonlinear post- 

buckling analysis of truss members Kuo and Yang 

(1995) found that most existing arc-length control 

methods failed to predict load-displacement re-

sponse, and argued that it is because iterations were 

not performed in proper direction for problems with 

multi-winding loops. To overcome this problem, 

Kuo and Yang introduced two control parameters 

for detecting change in direction and for guiding the 

direction of iteration. It was accomplished by 

obtaining the dot product of two adjacent tangent 

vectors; and once negative value is obtained, the 

direction of loading should be reversed. The tech-

nique has advantage in that negative value will only 

be obtained when the control passes a limit point; 
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however for large variation in curvature it is pos-

sible that the above parameter may not yield nega-

tive value. In such cases a vector directed along the 

secant line of N-dimensional curve is defined. Then 

the dot product of two adjacent tangent vectors 

along this newly defined secant vector will give the 

correct sign. The validation of the proposed tech-

nique is given by solving numerical examples. 

 

 

APPLICATION IN NONLINEAR ANALYSIS OF 

REINFORCED CONCRETE STRUCTURES 

 

Most nonlinear analyses of reinforced con-

crete structures use Newton-Raphson (NR) or 

modified Newton-Raphson (m-NR) method to trace 

the equilibrium path. Modified Newton-Raphson 

method leads to some simplification, but conver-

gence of the solution process is slow. Both of these 

methods work well with linear or bilinear material 

relationship, but become inefficient with higher 

degree of nonlinearity, i.e., cracking, bond-slip, 

material nonlinear behavior, time dependent effects, 

etc., are introduced. Furthermore a disadvantage of 

these methods is that without some special tech-

nique the descending branch of the load-displace- 

ment path cannot be traced. An early method of 

dealing with limit points was to use the displace-

ment-control of Baltoz and Dhatt (1979). The 

method has been applied successfully in many 

situations; however the method is not suitable for 

problems with many degrees of freedom, which is 

quite common in case of nonlinear analysis of re-

inforced concrete structures. A further problem 

when trying to apply the method to highly material 

nonlinear finite elements, such as concrete in gene- 

 

 

 

 

 

 

 

 

 

 

ral and reinforced concrete in particular, is that the 

initial solution which makes the basis of further 

iterations, may be well away from the final equi-

librium state, and thus can lead to numerical dif-

ficulties and/or divergence of solution process. In 

addition strain-softening is one of the major effects 

in reinforced concrete analysis, which must be 

included to produce a realistic response. The effect 

can lead to localized failure of material and often 

exhibit snap-back behavior in load-deformation 

space. In such cases, traditional methods fail to 

trace the complete load-deflection response of re-

inforced concrete structures. Therefore the arc- 

length method is used in combination with New-

ton-Raphson method to trace the complete response 

in load-deformation space. The method has been 

successfully applied by several researchers for the 

analysis of reinforced concrete structures, who 

reported good agreement between experimental and 

analyzed results. In the following table, a few 

examples are summarized to show the validity of 

the method. Details of problems included are given 

in relevant references. 

Table 1 summarizes five examples, among 

which examples 1 to 3 were analyzed by Foster 

(1992) and examples 4 and 5 were analyzed by 

Crisfield (1983). All the examples included were 

compared with the modified Newton-Raphson 

method to demonstrate the validity and effective-

ness of the arc-length method. For all five examples 

mentioned, the modified Newton-Raphson method 

almost failed to converge at the early stages. In 

addition Table 1 also shows the faster convergence 

rate of the solution process when the arc-length 

method is combined with line searches.  

Lam and Morley (1992) used their modified arc- 

 

 

 

 

 

 

 

 

 

 

Total iterations 
No. Application Total load steps Modified Newton- 

Raphson method 
Arc-length method 

Arc-length method 
with line search 

 

1 Single span RC deep beam 13 682 341 150 

2 Two span RC deep beam 13 420 120 111 

3 Shear panel 17 - 117 108 

4 Jain Kennedy slab 14 - 246 86 

5 McNeice slab 16 - 244 98 

 

Table 1  Comparison of arc-length method and modified Newton-Raphson method 
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length method to analyze doubly reinforced con-

crete beam with fixed and sliding support and a 

cantilever beam with nearly uniform bending mo-

ment. For both of the examples, strain-softening 

constitutive relation was incorporated in the ana-

lysis which produced singular points on the load- 

deflection path and strain localization. Due to the 

use of the arc-length method, it was possible to 

trace the complete load-deflection path of the ex-

amples which otherwise was not possible with 

traditional methods. 

 

 

CONCLUSION 

 

The arc-length method has become a powerful 

tool to use with finite element formulation for 

complete analysis of the load-deflection path. After 

introduction, the method got high praise of re-

searchers and many research papers on it have been 

published. This paper reviews some of the modi-

fications and provides in-depth insight of the 

method. In addition to papers on the modification 

of the existing method, a good number of papers 

have also been published for use of the method in 

finite element analysis. It can be seen from the 

review that the method is performing quite well, but 

to the best knowledge of the authors, the validity of 

the method has not reported for three-dimensional 

solid modeling of reinforced concrete structures in 

general or for strain softening in compression in 

particular. 
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