autodesk’

VISUAL LISP REFERENCE GUIDE

Copyright © 2000 Autodesk, Inc.
All Rights Reserved

AUTODESK, INC. MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, REGARDING THESE MATERIALS
AND MAKES SUCH MATERIALS AVAILABLE SOLELY ON AN “AS-IS” BASIS.

IN NO EVENT SHALL AUTODESK, INC. BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF PURCHASE OR USE OF THESE MATERIALS. THE
SOLE AND EXCLUSIVE LIABILITY TO AUTODESK, INC., REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE
PURCHASE PRICE OF THE MATERIALS DESCRIBED HEREIN.

Autodesk, Inc. reserves the right to revise and improve its products as it sees fit. This publication describes the state of this product
at the time of its publication, and may not reflect the product at all times in the future.

Autodesk Trademarks

The following are registered trademarks of Autodesk, Inc., in the USA and/or other countries: 3D Plan, 3D Props, 3D Studio, 3D
Studio MAX, 3D Studio VIZ, 3DSurfer, ActiveShapes, Actrix, ADE, ADI, Advanced Modeling Extension, AEC Authority (logo), AEC-
X, AME, Animator Pro, Animator Studio, ATC, AUGI, AutoCAD, AutoCAD Data Extension, AutoCAD Development System,
AutoCAD LT, AutoCAD Map, Autodesk, Autodesk Animator, Autodesk (logo), Autodesk MapGuide, Autodesk University,
Autodesk View, Autodesk WalkThrough, Autodesk World, AutoLISP, AutoShade, AutoSketch, AutoSurf, AutoVision, Biped,
bringing information down to earth, CAD Overlay, Character Studio, Design Companion, Drafix, Education by Design, Fire,
Flame, Flint, Frost, Generic, Generic 3D Drafting, Generic CADD, Generic Software, Geodyssey, Heidi, HOOPS, Hyperwire,
Inferno, Inside Track, Kinetix, MaterialSpec, Mechanical Desktop, Mountstone, Multimedia Explorer, NAAUG, ObjectARX, Office
Series, Opus, PeopleTracker, Physique, Planix, Powered with Autodesk Technology, Powered with Autodesk Technology (logo),
RadioRay, Rastation, Riot, Softdesk, Softdesk (logo), Solution 3000, Stone, Stream, Tech Talk, Texture Universe, The AEC
Authority, The Auto Architect, TinkerTech, Vapour, VISION, WHIP!, WHIP! (logo), Wire, Woodbourne, WorkCenter, and World-
Creating Toolkit.

The following are trademarks of Autodesk, Inc., in the USA and/or other countries: 3D on the PC, ACAD, Advanced User Interface,
AEC Office, AME Link, Animation Partner, Animation Player, Animation Pro Player, A Studio in Every Computer, ATLAST, Auto-
Architect, AutoCAD Architectural Desktop, AutoCAD Architectural Desktop Learning Assistance, AutoCAD Learning Assistance,
AutoCAD LT Learning Assistance, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface, Autodesk Animator
Clips, Autodesk Animator Theatre, Autodesk Device Interface, Autodesk Inventor, Autodesk PhotoEDIT, Autodesk Software
Developer's Kit, Autodesk View DwgX, AutoFlix, AutoPAD, AutoSnap, AutoTrack, Built with ObjectARX (logo), ClearScale,
Combustion, Concept Studio, Content Explorer, cornerStone Toolkit, Dancing Baby (image), Design 2000 (logo), DesignCenter,
Design Doctor, Designer's Toolkit, DesignProf, DesignServer, Design Your World, Design Your World (logo), Discreet, DWG
Linking, DWG Unplugged, DXF, Extending the Design Team, FLI, FLIC, GDX Driver, Generic 3D, Heads-up Design, Home Series,
Kinetix (logo), Lightscape, ObjectDBX, onscreen onair online, Ooga-Chaka, Photo Landscape, Photoscape, Plugs and Sockets,
PolarSnap, Pro Landscape, QuickCAD, SchoolBox, Simply Smarter Diagramming, SketchTools, Suddenly Everything Clicks,
Supportdesk, The Dancing Baby, Transform Ideas Into Reality, Visual LISP, Visual Syllabus, Volo, and Where Design Connects.

]) Third Party Trademarks

Elan License Manager is a trademark of Elan Computer Group, Inc. Microsoft, Visual Basic, Visual C++, and Windows are registered

trademarks and Visual FoxPro and the Microsoft Visual Basic Technology logo are trademarks of Microsoft Corporation in the

United States and other countries. All other brand names, product names, or trademarks belong to their respective holders.
Third Party Software Program Credits

ACIS ® © 1994, 1997, 1999 Spatial Technology, Inc., Three-Space Ltd., and Applied Geometry Corp. All rights reserved.

Active Delivery™ 2.0 © 1999-2000 Inner Media, Inc. All rights reserved.

© 2000 Microsoft Corporation. All rights reserved.

International CorrectSpell™ Spelling Correction System © 1995 by Lernout & Hauspie Speech Products, N.V. All rights reserved.

InstallShield™ 3.0. © 1997 InstallShield Software Corporation. All rights reserved.

Portions © 1991-1996 Arthur D. Applegate. All rights reserved.

Portions of this software are based on the work of the Independent JPEG Group.

Typefaces from the Bitstream ® typeface library © 1992.

Typefaces from Payne Loving Trust © 1996. All rights reserved.

The license management portion of this product is based on Elan License Manager © 1989, 1990, 1998 Elan Computer Group,
Inc. All rights reserved.

WexTech AnswerWorks © 2000 WexTech Systems, Inc. All rights reserved.
Wise for Installation System for Windows Installer © 2000 Wise Solutions, Inc. All rights reserved.
GOVERNMENT USE

Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in FAR 12.212 (Commercial Computer
Software-Restricted Rights) and DFAR 267.7202 (Rights in Technical Data and Computer Software), as applicable.

12345678910

Contents

AutoLISP Functions. i 1
FAAA) . e 2
—(SUDLTAC). e 3
Fmultiply) ..o e 3
J(AIVIAe) ..o e 4
=(equal tO) ..ot e e 4
/=(@otequal to) e 5
<(lessthan)ot e e 6
<=(lessthanorequalto).......... i . 6
>(greaterthan) e e 7
>= (greater thanorequalto).......... i 7
~ (DItWiSE NOT) . . vttt et e e e e e e e 8
1+ (INCTEMENT). .« .\ o e e e e e e e e e e e e e e e e 8
1- (deCrement)vvvi ittt e et e e e 9
ADS L e e 9
acad_colordlg.o e 10
acad_helpdlg e 10
acad_Strlsort. e 11
action_tile 11
add LISt . .. e 12
alert . .. 13
alloC . . . e e 14
AN, . . e e 14
ANGle . .. e e 15

iv | Contents

ANGIOf . . e e 16

ANGEOS .« o« e 17
APPENA . .. e e e 18
APPLY - e e e 19
.) 19
arxXload e 20
arxunload 21
ASCH . v et e e e 22
ASSOC & et et e e e e e e e e e e e 22
L7 1 o 23
0 24
0) 25
Y0 0 0 26
atoms-family. e 27
autoarxload. e 28
autoload e e 28
BOOle . .. e 29
boundp e 31
[T [§ 32
[T 32
) 33
[5 34
CRT. L e e 35
client data_tile 35
ClOSE o e e 36
COMMANA . .ttt e e 36
COMA .ottt e e e 38
00 0 1 39
O e e e e e e et e e e e e e e e e 40
674 0§ 0 1 40
defun. e e 41
defun-q . ..ot e e 42
defun-g-list-ref e 44
defun-g-list-set e 44
dictadd e 46
AiCtneXt. .o e 47
AiCtreIMOVE . . . e 49
dictrename e 50
dictsearCh i 50
dimx_tile. e 51
dimy_tile. e e 52
AiStanCe. . . .t e 52
AiStOf . ..o e 53
done_dialog e 54

eNA_IMAaZe . . . oot e e 55

end LISt ... 55
entdel. e 55
BNt . . e 56
eNtlaSt . .. 57
eNtmake. e 58
ENtMAKeX . . o oo e e 60
eNtMOA . . .ttt e 61
CBNENEXt . . e e 63
BNtSel . . e 64
ENEUPA . . . et e e 65
T 66
equAl .. e e 67
B 5 (0 68
BVaAl L e 69
BXIt. . o 70
XD -« e e e e e e e e e e e 70
EXPANA. . ¢ et e e e e 71
)4 0 72
fill_image.o e 72
findfile. e 74
5 75
float . .o e 76
foreach. o e 76
fUNCHION. . ..t 77
B e e et 78
GO . ettt e 78
gt attr. . .. 79
get tile. ... e 79
getangle e e 80
et . . o 81
GetCNAMICo e 82
GeLCOTTIOT o e e e e e e e 82
getdist e 83
GO IV .« L e 84
getfiled. e e 85
getint . L L 87
getkWord 88
GetOTIeNt e 89
GetPOINto 91
getreal 92
getSITing.o 92
GOIVAT . . . L 93
GIAPNSCT . . e e 94

Contents | v

vi | Contents

GIATaAW . . e e e 95
GITRAA . . ettt i e e e e 96
L8 D« 98
BIVECS o o ettt e 99
handent. e 101
help. . e 102
e 103
initdia 104
NIt . . 105
OIS . . 109
L - 110
lambda 110
LSt oot e 111
layoutlist. . .. oo e e 112
length e 112
] 113
1 0 113
load . . o e 114
load_dialog oo e e 116
10 116
logand. . ..ot e e 117
LOgIOT. . e e 117
ISh o 118
TNAPCAT . o v vttt et et e e e e e e e e e e e e 119
00T D G 120
0 T<) 0 0 121
MeMDeT. . . .o e e 122
MENUCINA . .ttt ettt e e e e e e e e 123
TNENUZTOUD - & e e et e 125
THIL © .o e e e e e e e e e 125
IINUSD . o oottt 126
mode_tile 126
namedobjdict e 127
NeNtSel . .. e 127
NeNtSelD ...ttt e e 129
new_dialog e 130
0 T P 131
nth .. 132
null .. e e 133
NUMDEIP . . .t ettt e e e e e e e e e 134
0 01 o L 135
0) 136
OSTIAP . -« e e et e e e e e e e e e e e e e 137

PIiN T .o 138
PIINC . . 140
PIint. . 141
9 (0 <4 o 141
PIOIPE . . e e e e e 142
QUIt .o e 143
QUOTE .« o e e 143
- Lo 144
read-Char e 145
read-line. 146
TEATAW . ot ittt e e e 147
1S3 2 10 o 148
0 00 149
TOPEAL . . ot e 150
V4=] 150
TEOS . o ot et e e e 151
] 153
set tile ... 154
SEECEg « o e 154
S BTV, & ot i e e 155
setfunhelp 156
£S5 158
S AT L . it e e e e e 159
SE VI W . L o e 160
STl e 160
slide_image i e 161
SVAlid e e 162
STt o e 164
SSAAd .. e e 165
SSAEL. .ot e e 166
S8t . e 167
SSEetiirSt. . . o e e 170
sslengtho e 171
SSINEIMID e 171
L 8 1 0 < 172
R 8 1 0 1= < 173
SSSEUIITSt . . o o e 175
SEATTADD - & e 178
start_dialog e 179
start_image 179
Start LISt . . . e 180
SETCASE . ot it e e 181
SETCAt . . o e e 181

Contents | vii

viii

ST . . . o e 182

SUDSt & o e e 183
SUD ST, & ot e e e 184
tablet. . . e 185
thIneXt. . .o e 186
thlobjname e 188
thlsearch 188
term_dialog. e 189
1S3 03 & P 189
1eXtDOX . e 190
XD, - ottt 191
BEXESCT . o e e e 191
18 2 L 191
BTAIIS . ot it e e e e 193
1172 1S 195
unload_dialog. e 197
L0 0 1 - L 197
VeCtor_image. 198
7<) 199
vl-acad-defun e 200
vl-acad-undefun e 200
VI-arx-import. e 201
VI-bb-ref. . e 202
7 0] 0 X 203
vl-catch-all-apply e 203
vl-catch-all-error-message. oottt e 204
vl-catch-all-error-p oo e 205
VI-emdf .. e 206
VI COMS . e e 208
vl-directory-files e 208
VI-dOC-eXPOTt. . . oot e e 209
VI-doc-Import e 210
VI-doC-Tef. . o e 211
7 B o Y 211
VeV eIy . o e e 212
VI-eXit-With-e1ror e 213
vl-exit-with-value e 214
VIle-COPY . vttt 215
vi-file-delete e 216
VI-file-direCtory-p . .. oo o e e 217
Vi-file-rename e 217
VI-file-SiZe . .. e 218
vifile-systime e 218
vi-filename-base e 219

Contents

vl-filename-directory. L e 220

vl-filename-extension L L i i 220
vl-filename-mktemp 221
VI-get-TeSOUICE . . . o oottt e e e 222
VISt e 223
VEIISt->Stringo oo e 224
vl-list-exported-functions L i i 224
vl-ist-length 225
vl-list-loaded-vIX L 226
vl-load-all. 227
vl-load-com 227
vl-load-reactors 228
vl-member-if 228
vl-member-if-not. L 229
vI-position 230
vl-prinl-to-string. 231
vl-princ-to-string L 231
vl-propagate. e 232
vl-registry-delete 232
vl-registry-descendents i 233
vl-registry-read. 234
vl-registry-write 235
VI-TEMOVE. . . o e 235
vl-temove-if. 236
vl-remove-if-not L 236
VI-SOMe ... e 237
VI-SOTt. .o e 238
VISSOTt-1 oo e 239
vl-string->listo 240
vl-string-elt e 241
vl-string-left-trim. 241
vl-string-mismatch e 242
vl-string-position. L e 243
vl-string-right-trim e 244
vl-string-search 244
vl-string-subst 245
vl-string-translate 246
vI-string-trim 247
vl-symbol-name. e 247
vl-symbol-value. 248
vl-symbolp. 249
vi-unload-vIX 249
vl-vbaload e 250
VI-Vbarun e 251

Contents | ix

x | Contents

vI-vix-loaded-p . ..o e 251

VIax-3D-point 252
vlax-add-cmd 253
vlax-create-object e 255
VIaX-Curve-getAreat e 256
vlax-curve-getClosestPointTo. 257
vlax-curve-getClosestPointToProjection 258
vlax-curve-getDistAtParam. 258
vlax-curve-getDistAtPoint. 260
vlax-curve-getEndParam. 260
vlax-curve-getEndPoint L 261
vlax-curve-getFirstDeriv 261
vlax-curve-getParamAtDist. 262
vlax-curve-getParamAtPoint. L 263
vlax-curve-getPointAtDist. 263
vlax-curve-getPointAtParam. 264
vlax-curve-getSecondDeriv. 265
vlax-curve-getStartParam L e 265
vlax-curve-getStartPoint L 266
vlax-curve-isClosed. 267
vlax-curve-isPeriodic. 267
vlax-curve-isPlanar 268
vlax-dump-object e 268
vlax-ename->vla-object. L 270
VIaxX-erased-P. .. oo e e 270
VIAX-fOr . .o 271
vlax-get-acad-object 271
vlax-get-object e 272
vlax-get-or-create-object. e 273
VIaX-get-PIroPertyttt e e 273
vlax-import-type-library L 274
vlax-invoke-method 276
vlax-ldata-delete 277
viax-ldata-get e 278
vlax-Idata-list L 280
viax-ldata-puto 281
vlax-Idata-test L 282
vlax-make-safearray e 282
vlax-make-variant. L L 284
vlax-map-collection i e 287
vlax-method-applicable-p. 288
vlax-object-released-p. i 288
vlax-product-Key. L e 289
vlax-property-available-p 290

VIaX-put-propertyt e 291

vlax-read-enabled-p. L 291
vlax-release-object. 292
viax-remove-Cmd. e 292
vlax-safearray-fill. 293
vlax-safearray-get-dim. 294
vlax-safearray-get-element i, 295
vlax-safearray-get-l-bound. L 296
vlax-safearray-get-u-bound o 297
vlax-safearray-put-element i i 298
vlax-safearray-type. e 299
vlax-safearray->list. e 300
VIaX-tmatriX. . . oo e e 301
vlax-typeinfo-available-p. 303
vlax-variant-change-type. 303
viax-variant-type e e 305
vlax-variant-value 307
vlax-vla-object->ename. 307
vlax-write-enabled-p 308
vlisp-compile. 308
vir-acdb-reactor 310
Vir-add . ..o 311
vir-added-p e e 311
vir-beep-reaction e 312
vir-command-reactor. e 312
vlr-current-reaction-name. L i 313
vir-data. e e 313
vir-data-set. e 314
vlr-deepclone-reactor. 315
vlr-docmanager-reactor. 316
VIF-dwg-reactor 319
VIr-dXf-1eactor oo e 320
vir-editor-reactor e 322
VIr-insert-reactor e e 326
vir-linker-reactor e 328
VIE-LSP-TeaCtOr . . . oot 329
vir-miscellaneous-reactor 330
VIr-mMouse-reactorttt e 331
vir-notification 332
vir-object-reactor. 333
vir-owner-add e 335
VIF-OWNeTI-TeRIMOVEttt ettt ettt e et e e ee e 336
VIF-OWNIOTS .« . .ottt e e e 337
VIE-DeIS. .« e 337

Contents | xi

Appendix A

VI DOIS-P. o ot 338
vir-pers-release 339
Vir-reaction-name e 339
VIr-reaction-set e 340
VIr-1eaCtionS . ..ot e 341
VIT@aACTOTS &« ottt et e e 341
7§ i 0 10)74 342
vir-remove-all e 343
vir-set-notification 344
VIE-SySVar-reactor.ottt e 345
Vir-toolbar-reactor. 346
VIr-trace-reaction. it 347
VIE-EyPe .« o 348
VIE-EYPeS ..o 349
VIr-UNdo-T€aCtOr it e e 350
VIr-WbIOCK-1€aCtOr. i e 352
VIr-WindoW-Teactor it e 354
VIr-Xref-TeacCtOr . .. oo e 355
VPOIES oot 362
WCIAtCH L . oo e e 363
WHile . .. e e 366
WIIte-ChaT .« . . . e 366
WIite-line. . .. e 367
XATOOIN . . ottt e 368
XASIZE . ot e 369
<]] 0 370
Externally Defined Commands........................... 371
176 13 o 372
BASOUL . . ot e 373
align .. e 374
Cal L e 375
0 375
gL, . o 376
Isedit . .. e 385
ISIiD . et e 386
IS W . . ot e 389
matlib ... e 390
MEITOT3d . . ottt e 391
(50 U6 1< 392
renderupdate. e e 396
TOPlAY . . e e e 397
3010 U 398

xii | Contents

510) 1S 412
SAVEIIIIE .« . . vttt e 415
R0l] 0 (S 416
SEEUV L. it 420
Showmat 422
SOIPTOf . .. e e 423
St . o e e 423
g T 3 425

Contents | xiii

xiv | Contents

AutoLISP Functions

The following is a catalog of the AutoLISP® functions
available in AutoCAD. The functions are listed

alphabetically.

In this chapter, each listing contains a brief description
of the function’s use and a function syntax statement
showing the order and the type of arguments required

by the function.

Note that any functions, variables, or features not
described here or in other parts of the documentation
are not officially supported and are subject to change in

future releases.

In this chapter

B Alphabetical listing of AutoLISP
functions available in AutoCAD

+ (add)

The following diagram illustrates the format of the function syntax state-
ments in this chapter:

function name
required argument(s)

optional argument(s) in brackets

(foo string [number ...])

\ \ _right parenthesis
left parenthesis possible additional arguments

denoted by ellipsis (...)

The number argument needs additional information: a number can be a real
number, an integer, or a symbol set to a real or integer value. If all arguments
are integers, the result is an integer. If any of the arguments are real numbers,
the integers are promoted to real numbers and the result is a real number.

For more information on syntax statements, see AutoLISP Function Syntax
in the Visual LISP Developer’s Guide.

Note that the value returned by some functions is categorized as unspecified.
This indicates you cannot rely on using the value returned from this
function.

Returns the sum of all numbers

(+ [number number] ...)

Arguments

number A number.

Return Values

The result of the addition. If you supply only one number argument, this
function returns the result of adding it to zero. If you supply no arguments,
the function returns 0.

Examples

(+ 1 2) returns 3

(+ 1 2 3 4.5) returns 10.5
(+ 12 3 4.0) returns 10.0

2 | AutoLISP Functions

— (subtract)

Subtracts the second and following numbers from the first and returns the difference

(— [number number] ...)

Arguments

number A number.

Return Values

The result of the subtraction. If you supply more than two number argu-
ments, this function returns the result of subtracting the sum of the second
through the last numbers from the first number. If you supply only one
number argument, this function subtracts the number from zero, and returns
a negative number. Supplying no arguments returns O.

Examples
(- 50 40) returns 10
(- 50 40.0) returns 10.0
(- 50 40.0 2.5) returns 7.5
(- 8) returns -8
% .
(multiply)

Returns the product of all numbers

(* [number number] ...)

Arguments

number A number.

Return Values

The result of the multiplication. If you supply only one number argument,
this function returns the result of multiplying it by one; it returns the num-
ber. Supplying no arguments returns 0.

— (subtract) | 3

Examples

(* 2 3) returns 6

(* 2 3.0) returns 6.0
(* 2 3 4.0) returns 24.0
(* 3 -4.5) returns -13.5
(* 3) returns 3

I (divide)

Divides the first number by the product of the remaining numbers and returns the quo-
tient

(/ [number number] ...)

Arguments

number A number.

Return Values

The result of the division. If you supply more than two number arguments,
this function divides the first number by the product of the second through
the last numbers, and returns the final quotient. If you supply one number
argument, this function returns the result of dividing it by one; it returns the
number. Supplying no arguments returns O.

Examples

(/ 100 2) returns 50
(/ 100 2.0) returns 50.0
(/ 100 20.0 2) returns 2.5
(/ 100 20 2) returns 2

(/ 4) returns 4

= (equal to)

Compares arguments for numerical equality

(= numstr [numstr] ...)

Arguments

numstr A number or a string.

4 | AutoLISP Functions

Return Values

T, if all arguments are numerically equal, nil otherwise. If only one argument
is supplied, = returns T.

Examples

(= 4 4.0) returns T
(= 20 388) returns nil
(= 2.4 2.4 2.4) returns T
(= 499 499 500) returns nil
(= "me" nmen) retllrns T
(= "me" "you") returns nil
See Also

The eq and equal functions.

/= (not equal to)

Compares arguments for numerical inequality

(/= numstr [numstr] ...)

Arguments

numstr A number or a string.

Return Values

T, if no two successive arguments are the same in value, nil otherwise. If only
one argument is supplied, /=returns T.

Note that the behavior of /= does not quite conform to other LISP dialects.
The standard behavior is to return T if no two arguments in the list have the
same value. In AutoLISP, /=returns T if no successive arguments have the
same value; see the examples that follow.

Examples

(/= 10 20) returns T
(/= "you" "you") returns nil
(/= 5.43 5.44) returns T
(/= 10 20 10 20 20) returns nil
(/= 10 20 10 20) returns T

Note in the last example that although there are two arguments in the list
with the same value, they do not follow one another, and thus /= evaluates
to T.

/= (not equal to) | 5

< (less than)

Returns T if each argument is numerically less than the argument to its right, and returns
nil otherwise

(< numstr [numstr] ...)

Arguments

numstr A number or a string.

Return Values

T, if each argument is numerically less than the argument to its right, and
returns nil otherwise. If only one argument is supplied, < returns T.

Examples

(< 10 20) returns T
(< "b" "c") returns T
(< 357 33.2) returns nil
(<2 3 88) returns T
(<23 4 4) returns nil

<= (less than or equal to)

Returns T if each argument is numerically less than or equal to the argument to its right,

and returns nil otherwise

6

(<= numstr [numstr] ...)

Arguments

numstr A number or a string.

Return Values

T, if each argument is numerically less than or equal to the argument to its
right, and returns nil otherwise. If only one argument is supplied, <=returns
T.

AutoLISP Functions

Examples

(<= 10 20) returns T
(<= "b" "b") returns T
(<= 357 33.2) returns nil
(<=2 9 9) returns T
(<=2 9 4 5) returns nil

> (greater than)

Returns T if each argument is numerically greater than the argument to its right, and
returns nil otherwise

(> numstr [numstr] ...)

Arguments

numstr A number or a string.

Return Values

T, if each argument is numerically greater than the argument to its right, and
nil otherwise. If only one argument is supplied, > returns T.

Examples

(> 120 17) returns T
(> "c" "b") returns T
(> 3.5 1792) returns nil
(> 77 4 2) returns T
(> 77 4 4) returns nil

>= (greater than or equal to)

Returns T if each argument is numerically greater than or equal to the argument to its
right, and returns nil otherwise

(>= numstr [numstr] ...)

Arguments

numstr A number or a string.

> (greater than) | 7

Return Values

T, if each argument is numerically greater than or equal to the argument to
its right, and nil otherwise. If only one argument is supplied, >= returns T.

Examples

(>= 120 17) returns T
(>= "c" "c") returns T
(>= 3.5 1792) returns nil
(>= 77 4 4) returns T
(>= 77 4 9) returns nil

~ (bitwise NOT)

Returns the bitwise NOT (1’s complement) of the argument

(~ int)

Arguments

int An integer.

Return Values

The bitwise NOT (1’s complement) of the argument.

Examples

(~ 3) returns -4
(~ 100) returns -101
(~ -4) returns 3

1+ (increment)

Increments a number by 1

(1+ number)

Arguments

number Any number.

Return Values

The argument, increased by 1.

8 | AutoLISP Functions

Examples

(1+ 5) returns 6
(1+ -17.5) returns -16.5

1= (decrement)

Decrements a number by 1

abs

(1— number)

Arguments

number Any number.

Return Values

The argument, reduced by 1.

Examples
(1- 5) returns 4
(1- -17.5) returns -18.5

Returns the absolute value of a number

(abs number)

Arguments

number Any number.

Return Values

The absolute value of the argument.

Examples

(abs 100) returns 100
(abs -100) returns 100
(abs -99.25) returns 99.25

1- (decrement) | 9

acad_colordlg

Displays the standard AutoCAD color selection dialog box

(acad_colordlg colornum [flag])

Arguments

colornum An integer in the range 0-256 (inclusive), specifying the
AutoCAD color number to display as the initial default.

flag If set to nil, disables the ByLayer and ByBlock buttons.

Omitting the flag argument or setting it to a non-nil
value enables the ByLayer and ByBlock buttons.

A colornum value of 0 defaults to ByBlock, and a value of 256 defaults to
ByLayer.

Return Values

The user-selected color number, or nil, if the user cancels the dialog box.

Examples
Prompt the user to select a color, and default to green if none is selected:

(acad_colordlg 3)

acad_helpdig

Invokes the help facility (obsolete)

10

(acad_helpdlg helpfile topic)

This externally defined function has been replaced by the built-in function
help. It is provided for compatibility with previous releases of AutoCAD.

See Also

The help function for a complete description of this function.

AutoLISP Functions

acad_strlsort

Sorts a list of strings by alphabetical order

(acad_strlsort list)

Arguments

list The list of strings to be sorted.

Return Values

The list in alphabetical order. If the list is invalid or if there is not enough
memory to do the sort, acad_strlsort returns nil.

Examples

Sort a list of abbreviated month names:

Command: (setq mos '("Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug"

"Sep" lloctn "NOV" nDecll))
("Ian" "Feb" "Mar" "Apr" "May" I|Iunl| I|Iu|l| "Aug" "Sep" "OCt" "NOV" "Dec")

Command: (acad_strlsort mos)
(HApr" l|Augl| l|Decll llFebH HJanH HJUIII llJunll llMarll llMay" "NOV" "Oct'l "Sep'l)

action_tile

Assigns an action to evaluate when the user selects the specified tile in a dialog box

(action_tile key action-expression)

The action assigned by action_tile supersedes the dialog box’s default
action (assigned by new_dialog) or the tile’s action attribute, if these are
specified. The expression can refer to the tile’s current value as $value, its
name as skey, its application-specific data (as set by client_data_tile) as
$data, its callback reason as $reason, and its image coordinates (if the tile is
an image button) as $x and $y.

acad_strilsort | 11

add list

Arguments

key A string that names the tile that triggers the action
(specified as its key attribute). This argument is case-
sensitive.

action- A string naming the expression evaluated when the tile is

expression selected.

NOTE You cannot call the AutoLISP command function from the action_tile
function.

Return Values

T

Examples

If edit1 is a text box, the action expression in the following action_tile call
is evaluated when the user exits the text box:

(action_tile "editl" "(setq ns $value)")

See Also
The “Default and DCL Actions” topic in the Visual LISP Developer’s Guide.

Adds or modifies a string in the currently active dialog box list

(add_list string)

Before using add_1ist, you must open the list and initialize it with a call to
start_list. Depending on the operation specified in start_1ist, the string
is either added to the current list or replaces the current list item.
Arguments

string A string.

Return Values

Returns the string added to the list, if successful, nil otherwise.

12 | AutoLISP Functions

alert

Examples

Assuming the currently active DCL file has a popup_list Or list_box with a
key of longlist, the following code fragment initializes the list and adds to
it the text strings in 11list.

(setqg 1llist ' ("first line" "second line" "third line"))
(start_list "longlist")

(mapcar 'add list 1llist)

(end_list)

After the list has been defined, the following code fragment changes the text
in the second line to "2nd line".

(start_list "longlist" 1 0)

(add_list "2nd line")

(end_list)

See Also

The start_list and end_list functions.

Displays a dialog box containing an error or warning message

(alert string)

Arguments

string The string to appear in the alert box.

Return Values

nil

Examples

Display a message in an alert box:

(alert "That function is not available.")

Display a multiple line message, by using the newline character in string:

(alert "That function\nis not available.")

NOTE Linelength and the number of lines in an alert box are platform, device,
and window dependent. AutoCAD truncates any string that is too long to fit
inside an alert box.

alert | 13

alloc

Sets the size of the segment to be used by the expand function

(alloc n-alloc)

Arguments

n-alloc An integer indicating the amount of memory to be
allocated. The integer represents the number of symbols,
strings, usubrs, reals, and cons cells.

Return Values

The previous setting of n-alloc.

Examples

_$ (alloc 100)
1000

See Also

The expand function.

and

Returns the logical AND of the supplied arguments

(and [expr ...])

Arguments

expr Any expression.

Return Values

Nil, if any of the expressions evaluate to nil, otherwise T. If and is issued
without arguments, it returns T.

14 | AutoLISP Functions

angle

Examples
Command: (setq a 103 b nil c "string")
"string"

Command: (and 1.4 a ¢)
T

Command: (and 1.4 a b ¢)
nil

Returns an angle in radians of a line defined by two endpoints

(angle ptl pt2)

Arguments
ptl An endpoint.
pt2 An endpoint.

Return Values

An angle, in radians.

The angle is measured from the X axis of the current construction plane, in
radians, with angles increasing in the counterclockwise direction. If 3D
points are supplied, they are projected onto the current construction plane.
Examples

Command: (angle '(1.0 1.0) '(1.0 4.0))

1.5708

Command: (angle '(5.0 1.33) '(2.4 1.33))
3.14159

See Also

The “Angular Conversion” topic in the Visual LISP Developer’s Guide.

angle | I5

angtof

Converts a string representing an angle into a real (floating-point) value in radians

16

(angtof string [units])

Arguments

string A string describing an angle based on the format specified
by the mode argument. The string must be a string that
angtof can parse correctly to the specified unit. It can be
in the same form that angtos returns, or in a form that
AutoCAD allows for keyboard entry.

units Specifies the units in which the string is formatted. The

value should correspond to values allowed for the
AutoCAD system variable AUNITS. If unit is omitted,
angtof uses the current value of AUNITS. The following
units may be specified:

0 Degrees

1 Degrees/minutes/seconds
2 Grads
3 Radians
4

Surveyor’s units

Return Values

A real value, if successful, otherwise nil.

The angtof and angtos functions are complementary: if you pass angtof a
string created by angtos, angtof is guaranteed to return a valid value, and
vice versa (assuming the unit values match).

Examples

Command: (angtof "45.0000")

0.785398

Command: (angtof "45.0000" 3)
1.0177

See Also

The angtos function.

AutoLISP Functions

angtos

Converts an angular value in radians into a string

(angtos angle [unit [precision]])

Arguments

angle A real number, in radians.

unit An integer that specifies the angular units. If unit is
omitted, angtos uses the current value of the AutoCAD
system variable AUNITS. The following units may be
specified:

0 Degrees

1 Degrees/minutes/seconds
2 Grads

3 Radians

4 Surveyor’s units

precision An integer specifying the number of decimal places of
precision to be returned. If omitted, angtos uses the
current setting of the AutoCAD system variable AUPREC.

The angtos function takes angle and returns it edited into a string according
to the settings of unit, precision, the AutoCAD UNITMODE system variable, and
the DIMZIN dimensioning variable.

The angtos function accepts a negative angle argument, but always reduces
it to a positive value between zero and 2 pi radians before performing the
specified conversion.

The UNITMODE system variable affects the returned string when surveyor’s
units are selected (a unit value of 4). If UNITMODE = 0, spaces are included in
the string (for example, “N 45d E”); if UNITMODE = 1, no spaces are included
in the string (for example, “N45dE”).

Return Values

A string, if successful, otherwise nil.

angtos | 17

append

Examples

Command: (angtos 0.785398 0 4)
"45.0000"

Command: (angtos -0.785398 0 4)
"315.0000"

Command: (angtos -0.785398 4)
"S 45d E"

NOTE Routines that use the angtos function to display arbitrary angles (those
not relative to the value of ANGBASE) should check and consider the value of
ANGBASE.

See Also

The angtof function, and “String Conversions” in the Visual LISP Developer’s
Guide.

Takes any number of lists and appends them together as one list

(append [list ...])

Arguments
list A list.

Return Values

A list with all arguments appended to the original. If no arguments are sup-
plied, append returns nil.

Examples
Command: (append '(a b) '(c d))
(ABCD)

Command: (append '((a)(b)) '((c)(d)))
((A) (B) (©) (D))

18 | AutoLISP Functions

apply

Passes a list of arguments to, and executes, a specified function

(apply 'function list)

Arguments

‘function A function. The function argument can be either a symbol
identifying a defun, Or a 1ambda expression.

list A list. Can be nil, if the function accepts no arguments.

Return Values

The result of the function call.

Examples
Command: (apply '+ '(1 2 3))
6

Command: (apply 'strcat '("a" "b" "c"))
l|abcl|

arx

Returns a list of the currently loaded ObjectARX applications

(arx)

Return Values

Alist of ObjectARX application file names; the path is not included in the file
name.

Examples

Command: (arx)
("acadapp.arx" "acmted.arx

oleaprot.arx")

See Also

The arxload and arxunload functions.

apply | 19

arxload

Loads an ObjectARX application

(arxload application [onfailure])

Arguments

application A quoted string or a variable that contains the name of an
executable file. You can omit the .arx extension from the
file name.

You must supply the full path name of the ObjectARX
executable file, unless the file is in a directory that is in the
AutoCAD Support File Search Path.

onfailure An expression to be executed if the load fails.

Return Values

The application name, if successful. If unsuccessful and the onfailure argu-
ment is supplied, arxload returns the value of this argument, otherwise, fail-
ure results in an error message.

If you attempt to load an application that is already loaded, arxload issues
an error message. You may want to check the currently loaded ObjectARX
applications with the arx function before using arxload.

Examples
Load the acbrowse.arx file supplied in the AutoCAD install directory:

Command: (arxload "c:/program files/autocad 2000i/acbrowse.arx")
"c:/program files/autocad 2000i/acbrowse.arx"

See Also

The arxunload function.

20 | AutoLISP Functions

arxunload

Unloads an ObjectARX application

(arxunload application [onfailure])

Arguments

application A quoted string or a variable that contains the name of a
file that was loaded with the arxload function. You can
omit the .arx extension and the path from the file name.

onfailure An expression to be executed if the unload fails.

Return Values

The application name, if successful. If unsuccessful and the onfailure argu-
ment is supplied, arxunload returns the value of this argument, otherwise,
failure results in an error message.

Note that locked ObjectARX applications cannot be unloaded. ObjectARX
applications are locked by default.

Examples

Unload the acbrowse application that was loaded in the arxload function
example:

Command: (arxunload "acbrowse")
"acbrowse"

See Also

The arxload function.

arxunload | 21

ascii

Returns the conversion of the first character of a string into its ASCII character code (an
integer)

(ascii string)

Arguments

string A string.

Return Values

An integer.

Examples

Command: (ascii "A")
65

Command: (ascii "a")
97

Command: (ascii "BIG")
66

assocC

Searches an association list for an element and returns that association list entry

(assoc element alist)

Arguments
element Key of an element in an association list.
alist An association list to be searched.

22 | AutoLISP Functions

atan

Return Values

The alist entry, if successful. If assoc does not find element as a key in alist, it
returns nil.

Examples

Command: (setq al '((name box) (width 3) (size 4.7263) (depth 5)))
((NAME BOX) (WIDTH 3) (SIZE 4.7263) (DEPTH 5))

Command: (assoc 'size al)
(SIZE 4.7263)

Command: (assoc 'weight al)
nil

Returns the arctangent of a number in radians

(atan numl [num2])

Arguments
numl A number.
num?2 A number.

Return Values

The arctangent of num1, in radians, if only num1 is supplied. If you supply
both num1 and num?2 arguments, atan returns the arctangent of num1/num2,
in radians. If num2 is zero, it returns an angle of plus or minus 1.570796 radi-
ans (+90 degrees or —-90 degrees), depending on the sign of numl1. The range
of angles returned is —pi/2 to +pi/2 radians.

atan | 23

Examples

Command: (atan 1)
0.785398

Command: (atan 1.0)
0.785398

Command: (atan 0.5)
0.463648

Command: (atan 1.0)
0.785398

Command: (atan -1.0)
-0.785398

Command: (atan 2.0 3.0)
0.588003

Command: (atan 2.0 -3.0)
2.55359

Command: (atan 1.0 0.0)
1.5708

atof

Converts a string into a real number

(atof string)

Arguments

string A string to be converted into a real number.

Return Values

A real number.

24 | AutoLISP Functions

atoi

Examples

Command: (atof "97.1")
97.1

Command: (atof "3")
3.0

Command: (atof "3.9")
3.9

Converts a string into an integer

(atoi string)

Arguments

string A string to be converted into an integer.

Return Values

An integer.

Examples

Command: (atoi "97")
97

Command: (atoi "3")
3

Command: (atoi "3.9")
3

See Also

The itoa function.

atoi

25

atom

Verifies that an item is an atom

(atom item)

Arguments

item Any AutoLISP element.

Some versions of LISP differ in their interpretation of atom, so be careful
when converting from non-AutoLISP code.

Return Values

Nil if item is a list, otherwise T. Anything that is not a list is considered an
atom.

Examples

Command: (setq a'(x y z))

(XY 2)

Command: (setq b 'a)
A

Command: (atom 'a)
T

Command: (atom a)
nil

Command: (atom 'b)
T

Command: (atom b)
T

Command: (atom '(a b ¢))
nil

26 | AutoLISP Functions

atoms-family

Returns a list of the currently defined symbols

(atoms-family format [symlist])

Arguments

format An integer value of O or 1 that determines the format in
which atoms-family returns the symbol names:
0 Return the symbol names as a list
1 Return the symbol names as a list of strings

symlist A list of strings that specify the symbol names you want

atoms-family to search for.

Return Values

Alist of symbols. If you specify symlist, then atoms-family returns the spec-
ified symbols that are currently defined, and returns nil for those symbols
that are not defined.

Examples

Command: (atoms-family 0)

(BNS_PRE_SEL FITSTR2LEN C:AI_SPHERE ALERT DEFUN C:BEXTEND
REM_GROUP

B_RESTORE_SYSVARS BNS_CMD_EXIT LISPED FNSPLITL...

The following code verifies that the symbols car, cbRr, and xyz are defined,
and returns the list as strings:

Command: (atoms-family 1 '("CAR" "CDR" "XYZ"))
("CAR" "CDR" nil)

The return value shows that the symbol xvz is not defined.

atoms-family | 27

autoarxload

Predefines command names to load an associated ObjectARX file

(autoarxload filename cmdlist)

The first time a user enters a command specified in cmadlist, AutoCAD loads
the ObjectARX application specified in filename, then continues the
command.

If you associate a command with filename and that command is not defined
in the specified file, AutoCAD alerts you with an error message when you
enter the command.

Arguments

filename A string specifying the .arx file to be loaded when one of
the commands defined by the cmdlist argument is entered
at the Command prompt. If you omit the path from
filename, AutoCAD looks for the file in the Support File
Search Path.

cmdlist A list of strings.

Return Values

nil
Examples

The following code defines the c:app1, c:aPP2, and c:app3 functions to load
the bonusapp.arx file:

(autoarxload "BONUSAPP" '("APP1l" "APP2" "APP3"))

autoload

Predefines command names to load an associated AutoLISP file

(autoload filename cmdlist)

The first time a user enters a command specified in cmadlist, AutoCAD loads
the application specified in filename, then continues the command.

28 | AutoLISP Functions

Boole

Arguments

filename A string specifying the .Isp file to be loaded when one of
the commands defined by the cmdlist argument is entered
at the Command prompt. If you omit the path from
filename, AutoCAD looks for the file in the Support File
Search Path.

cmdlist A list of strings.

Return Values
nil
If you associate a command with filename and that command is not defined

in the specified file, AutoCAD alerts you with an error message when you
enter the command.

Examples

The following causes AutoCAD to load the bonusapp.isp file the first time the
APP1, APP2, or APP3 commands are entered at the Command prompt:

(autoload "BONUSAPP" ' ("APP1l" "APP2" "APP3"))

Serves as a general bitwise Boolean function

(Boole operator intl [int2 ...])

Arguments

operator An integer between O and 15 representing one of the 16
possible Boolean functions in two variables.

intl, int2... Integers.

Note that Boole will accept a single integer argument, but
the result is unpredictable.

Boole | 29

30

Successive integer arguments are bitwise (logically) combined based on this
function and on the following truth table:

Boolean truth table

Int1 Int2 operator
bit

0 0 8

0 1 4

1 0 2

Each bit of intl is paired with the corresponding bit of int2, specifying one
horizontal row of the truth table. The resulting bit is either O or 1, depending
on the setting of the operator bit that corresponds to this row of the truth
table.

If the appropriate bit is set in operator, the resulting bit is 1; otherwise the
resulting bit is 0. Some of the values for operator are equivalent to the stan-
dard Boolean operations AND, OR, XOR, and NOR.

Boole function bit values

Operator Operation Resulting bit is 1 if

1 AND Both input bits are 1

6 XOR Only one of the two input bits is 1

7 OR Either or both of the input bits are 1

8 NOR Both input bits are 0 (1’s complement)

Return Values

An integer.

Examples

The following specifies a logical AND of the values 12 and 5:

Command: (Boole 112 5)
4

AutoLISP Functions

boundp

The following specifies a logical XOR of the values 6 and 5:

Command: (Boole 6 6 5)
3

You can use other values of operator to perform other Boolean operations for
which there are no standard names. For example, if operator is 4, the resulting
bits are set if the corresponding bits are set in int2 but not in int1:

Command: (Boole 4 3 14)
12

Verifies if a value is bound to a symbol

(boundp sym)

Arguments

sym A symbol.

Return Values

T if sym has a value bound to it. If no value is bound to sym, or if it has been
bound to nil, boundp returns nil. If sym is an undefined symbol, it is auto-
matically created and is bound to nil.

Examples

Command: (setq a 2 b nil)

nil

Command: (boundp 'a)
T

Command: (boundp 'b)
nil

The atoms-family function provides an alternative method of determining
the existence of a symbol without automatically creating the symbol.

See Also

The atoms-family function.

boundp | 31

caddr

Returns the third element of a list

cadr

(caddr list)

In AutoLISP, caddr is frequently used to obtain the Z coordinate of a 3D
point (the third element of a list of three reals).

Arguments

list A list.

Return Values

The third element in list; or nil, if the list is empty or contains fewer than
three elements.

Examples

Command: (setq pt3 '(5.25 1.0 3.0))

(5.251.03.0)

Command: (caddr pt3)
3.0

Command: (caddr '(5.25 1.0))
nil

See Also
The “Point Lists” topic in the Visual LISP Developer’s Guide.

Returns the second element of a list

(cadr list)

In AutoLISP, cadr is frequently used to obtain the Y coordinate of a 2D or 3D
point (the second element of a list of two or three reals).

Arguments
list A list.

32 | AutolLISP Functions

Return Values

The second element in /list, or nil, if the list is empty or contains only one
element.

Examples

Command: (setq pt2 '(5.25 1.0))
(5.251.0)

Command: (cadr pt2)
1.0

Command: (cadr '(4.0))
nil

Command: (cadr '(5.25 1.0 3.0))
1.0

See Also
The “Point Lists” topic in the Visual LISP Developer’s Guide.

car

Returns the first element of a list

(car list)

Arguments
list A list.

Return Values

The first element in list; or nil, if the list is empty.

Examples

Command: (car '(a b ¢))
A

Command: (car '((a b) c))
(AB)

Command: (car '())
nil

car | 33

See Also
The “Point Lists” topic in the Visual LISP Developer’s Guide.
cdr

Returns a list containing all but the first element of the specified list

(cdr list)

Arguments
list A list.

Return Values

Alist containing all the elements of list, except the first element (but see Note
below). If the list is empty, cdr returns nil.

NOTE When the list argument is a dotted pair, cdr returns the second ele-
ment without enclosing it in a list.

Examples

Command: (cdr '(a b ¢))
B0

Command: (cdr '((a b) c))
()

Command: (cdr ')
nil

Command: (cdr '(a . b))
B

Command: (cdr '(1 . "Text"))
"Text"

See Also
The “Point Lists” topic in the Visual LISP Developer’s Guide.

34 | AutolLISP Functions

chr

Converts an integer representing an ASCII character code into a single-character string

(chr integer)

Arguments

list An integer.

Return Values

A string containing the ASCII character code for integer. If the integer is not
in the range of 1-255, the return value is unpredictable.

Examples

Command: (chr 65)
I|Al|

Command: (chr 66)
I|Bl|

Command: (chr 97)

a

client_data_tile

Associates application-managed data with a dialog box tile

(client_data_tile key clientdata)

Arguments

key A string that specifies a tile. This argument is case-
sensitive.

clientdata A string to be associated with the key tile. An action
expression or callback function can refer to the string as
$data.

Return Values

nil

chr | 35

close

Closes an open file

(close file-desc)

Arguments

file-desc A file descriptor obtained from the open function.

Return Values

Nil if file-desc is valid, otherwise results in an error message.

After a close, the file descriptor is unchanged but is no longer valid. Data
added to an open file is not actually written until the file is closed.

Examples

The following code counts the number of lines in the file somefile.txt and sets
the variable ct equal to that number:

(setq fil "SOMEFILE.TXT")
(setq x (open fil "r") ct 0)
(while (read-line x)

(setg ct (1+ ct))
)

(close x)

command

Executes an AutoCAD command

(command [arguments] ...)

Arguments

arguments AutoCAD commands and their options.

The arguments to the command function can be strings,
reals, integers, or points, as expected by the prompt
sequence of the executed command. A null string (") is
equivalent to pressing ENTER on the keyboard. Invoking
command with no argument is equivalent to pressing ESC
and cancels most AutoCAD commands.

36 | AutoLISP Functions

The command function evaluates each argument and sends it to AutoCAD in
response to successive prompts. It submits command names and options as
strings, 2D points as lists of two reals, and 3D points as lists of three reals.
AutoCAD recognizes command names only when it issues a Command
prompt.

Note that if you issue command from Visual LISP, focus does not change to the
AutoCAD window. If the command requires user input, you'll see the return
value (nil) in the Console window, but AutoCAD will be waiting for input.
You must manually activate the AutoCAD window and respond to the
prompts. Until you do so, any subsequent commands will fail.

Return Values
nil
Examples

The following example sets two variables pt1 and pt2 equal to two point
values 1,1 and 1,5. It then uses the command function to issue the LINE com-
mand and pass the two point values.

Command: (setq pt1'(1 1) pt2'(15))
(15)

Command: (command "line" pt1 pt2 "")
line From point:

To point:

To point:

Command: nil

Restrictions and Notes

The AutoCAD SKETCH command reads the digitizer directly and therefore
cannot be used with the AutoLISP command function. If the SCRIPT command
is used with the command function, it should be the last function call in the
AutoLISP routine.

Also, if you use the command function in an acad.lsp or .mnl file, it should be
called only from within a defun statement. Use the s: :sTarTuP function to
define commands that need to be issued immediately when you begin a
drawing session.

For AutoCAD commands that require the selection of an object (like the
BREAK and TRIM commands), you can supply a list obtained with entsel
instead of a point to select the object. For examples, see “Passing Pick Points
to AutoCAD Commands” in the Visual LISP Developer’s Guide.

command | 37

Commands executed from the command function are not echoed to the com-
mand line if the CMDECHO system variable (accessible from setvar and
getvar) is set to O.

See Also

The vl-cmdf function in this reference and “Command Submission” in the
Visual LISP Developer’s Guide.

cond

Serves as the primary conditional function for AutoLISP

(cond [(test result ...) ...])

The cond function accepts any number of lists as arguments. It evaluates the
first item in each list (in the order supplied) until one of these items returns
a value other than nil. It then evaluates those expressions that follow the
test that succeeded.

Return Values

The value of the last expression in the sublist. If there is only one expression
in the sublist (that is, if result is missing), the value of the test expression is
returned. If no arguments are supplied, cond returns nil.

Examples
The following example uses cond to perform an absolute value calculation:

(cond
((minusp a) (- a))
(t a)

)

If the variable a is set to the value -10, this returns 10.

As shown, cond can be used as a case type function. It is common to use T as
the last (default) test expression. Here’s another simple example. Given a user
response string in the variable s, this function tests the response and returns
lifitis v ory, O if it is N or n, and nil otherwise.

(cond
((='s "Y") 1)
((=s "y") 1)
((=s "N") 0)
((='s "n") 0)
(t nil)

38 | AutoLISP Functions

cons

Adds an element to the beginning of a list, or constructs a dotted list

(cons new-first-element list-or-atom)

Arguments

new-first- Element to be added to the beginning of a list. This
element element can be an atom or a list.

list-or-atom A list or an atom.

Return Values

The value returned depends on the data type of list-or-atom. If list-or-atom is
a list, cons returns that list with new-first-element added as the first item in the
list. If list-or-atom is an atom, cons returns a dotted pair consisting of new-
first-element and list-or-atom.

Examples

Command: (cons 'a'(b c d))

(ABCD)

Command: (cons '(a) '(b c d))
(A)BCD)

Command: (cons 'a 2)
(A.2)

See Also
The “List Handling” topic in the Visual LISP Developer’s Guide.

cons | 39

COos

Returns the cosine of an angle expressed in radians

cvunit

(cos ang)

Arguments

ang An angle, in radians.

Return Values

The cosine of ang, in radians.

Examples
Command: (cos 0.0)
1.0

Command: (cos pi)
-1.0

Converts a value from one unit of measurement to another

(cvunit value from-unit to-unit)

Arguments

value The numeric value or point list (2D or 3D point) to be
converted.

from-unit The unit that value is being converted from.

to-unit The unit that value is being converted to.

The from-unit and to-unit arguments can name any unit type found in the
acad.unt file.

Return Values

The converted value, if successful, or nil1, if either unit name is unknown
(not found in the acad.unt file), or if the two units are incompatible (for
example, trying to convert grams into years).

40 | AutoLISP Functions

Examples

nn

Command: (cvunit 1 "minute
60.0

second")

Command: (cvunit 1 "gallon" "furlong")
nil

Command: (cvunit 1.0 "inch" "cm")
2.54

nn

Command: (cvunit 1.0 "acre
4840.0

sq yard")
Command: (cvunit '(1.0 2.5) "ft" "in")
(12.0 30.0)

Command: (cvunit '(1 2 3) "ft" "in")
(12.0 24.0 36.0)

NOTE If you have several values to convert in the same manner, it is more
efficient to convert the value 1.0 once and then apply the resulting value as a
scale factor in your own function or computation. This works for all predefined
units except temperature, where an offset is involved as well.

See Also
The “Unit Conversion” topic in the Visual LISP Developer’s Guide.

defun

Defines a function

(defun sym ([arguments] [/ variables...]) expr...)

Arguments

sym A symbol naming the function.

arguments The names of arguments expected by the function.

/ variables The names of one or more local variables for the function.

The slash preceding the variable names must be separated
from the first local name and from the last argument, if
any, by at least one space.

defun | 41

defun-q

expr Any number of AutoLISP expressions to be evaluated
when the function executes.

If you do not declare any arguments or local symbols, you must supply an
empty set of parentheses after the function name.

If duplicate argument or symbol names are specified, AutoLISP uses the first
occurrence of each name and ignores the following occurrences.

Return Values

The result of the last expression evaluated.

WARNING! Never use the name of a built-in function or symbol for the sym
argument to defun. This overwrites the original definition and makes the built-
in function or symbol inaccessible. To get a list of built-in and previously defined
functions, use the atoms-family function.

Examples

(defun myfunc (X y) ...) Function takes two arguments
(defun myfunc (/ a b) ...) Function has two local variables
(defun myfunc (x / temp) ...) One argument, one local variable
(defun myfunc () ...) No arguments or local variables
See Also

The “Symbol and Function Handling” topic in the Visual LISP Developer’s
Guide.

Defines a function as a list

(defun-q sym ([arguments] [/ variables...]) expr...)

The defun-q function is provided strictly for backward-compatibility with
previous versions of AutoLISP, and should not be used for other purposes.
You can use defun-q in situations where you need to access a function defi-
nition as a list structure, which is the way defun was implemented in previ-
ous, non-compiled versions of AutoLISP.

42 | AutoLISP Functions

Arguments

sym A symbol naming the function.
arguments The names of arguments expected by the function.
/ variables The names of one or more local variables for the function.

The slash preceding the variable names must be separated
from the first local name and from the last argument, if
any, by at least one space.

expr Any number of AutoLISP expressions to be evaluated
when the function executes.

If you do not declare any arguments or local symbols, you must supply an
empty set of parentheses after the function name.

If duplicate argument or symbol names are specified, AutoLISP uses the first
occurrence of each name and ignores the following occurrences.
Return Values

The result of the last expression evaluated.

Examples

_$ (defun-q my-startup (x) (print (list x)))
MY-STARTUP

_$ (my-startup 5)
(5) (5)

Use defun-g-list-ref to display the list structure of my-startup:

_$ (defun-qg-list-ref 'my-startup)
((X) (PRINT (LIST X)))

See Also

The defun-q-list-ref and defun-g-list-set functions.

defun-q | 43

defun-q-list-ref

Displays the list structure of function defined with defun-q

(defun-g-list-ref 'function)

Arguments

function A symbol naming the function.

Return Values

The list definition of the function, or nil, if the argument is not a list.

Examples

Define a function using defun-q:

_$ (defun-q my-startup (x) (print (list x)))
MY-STARTUP

Use defun-g-list-ref to display the list structure of my-startup:

_$ (defun-g-list-ref 'my-startup)
((X) (PRINT (LIST X)))

See Also

The defun-q and defun-qg-list-set functions.

defun-g-list-set

Sets the value of a symbol to be a function defined by a list

44

(defun-g-list-set 'sym list)

Arguments
sym A symbol naming the function
list A list containing the expressions to be included in the

function.

Return Values
The sym defined.

AutoLISP Functions

Examples

_$ (defun-g-list-set 'foo '((x) x))
FOO

_$ (foo 3)

3

The following example illustrates the use of defun-q-list-set to combine
two functions into a single function. First, from the Visual LISP Console win-
dow, define two functions with defun-q:

_$ (defun-q s::startup (x) (print x))
S: :STARTUP

_$ (defun-q my-startup (x) (print (list x)))
MY-STARTUP

Use defun-q-list-set to combine the functions into a single function:

_$ (defun-g-list-set 's::startup (append
(defun-qg-list-ref 's::startup)
(cdr (defun-g-list-ref 'my-startup))))
S: :STARTUP

The following illustrates how the functions respond individually, and how
the functions work after being combined using defun-q-list-set:

_$ (defun-q foo (x) (print (list 'foo x)))
FOO

$ (foo 1)

(FOO 1) (FOO 1)

_$ (defun-q bar (x) (print (list 'bar x)))
BAR

_$ (bar 2)
(BAR 2) (BAR 2)

_$ (defun-g-list-set
'foo
(append (defun-q-list-ref 'foo)
(cdr (defun-q-list-ref 'bar))
)
FOO

_$ (foo 3)
(FOO 3)
(BAR 3) (BAR 3)

See Also

The defun-q and defun-qg-list-ref functions.

defun-g-list-set | 45

dictadd

Adds a nongraphical object to the specified dictionary

(dictadd ename symbol newobj)

Arguments

ename Name of the dictionary the object is being added to.

symbol The key name of the object being added to the dictionary;
symbol must be a unique name that does not already exist
in the dictionary.

newobj A nongraphical object to be added to the dictionary.

As a general rule, each object added to a dictionary must be unique to that
dictionary. This is specifically a problem when adding group objects to the
group dictionary. Adding the same group object using different key names
results in duplicate group names which can send the dictnext function into
an infinite loop.

Return Values
The entity name of the object added to the dictionary.

Examples

The examples that follow create objects and add them to the named object
dictionary.

Create a dictionary entry list:

Command: (setq dictionary (list '(0 . "DICTIONARY") '(100 .
"AcDbDictionary")))
((0 . "DICTIONARY") (100 . "AcDbDictionary"))

Create a dictionary object using the entmakex function:

Command: (setq xname (entmakex dictionary))
<Entity name: 1d98950>

Add the dictionary to the named object dictionary:

Command: (setq newdict (dictadd (namedobjdict)
"MY_WAY_COOL_DICTIONARY" xname))
<Entity name: 1d98950>

46 | AutoLISP Functions

dictnext

Create an Xrecord list:

Command: (setq datalist (append (list '(0 . "XRECORD")'(100 .
"AcDbXrecord")) '((1 . "This is my data") (10 1. 2. 3.) (70 . 33))))

((0 . "XRECORD") (100 . "AcDbXrecord") (1 . "This is my data") (10 1.0 2.0 3.0)
(70 . 33))

Make an Xrecord object:

Command: (setq xname (entmakex datalist))
<Entity name: 1d98958>

Add the Xrecord object to the dictionary:
Command: (dictadd newdict "DATA_RECORD_1" xname)
<Entity name: 1d98958>

See Also

The dictnext, dictremove, dictrename, dictsearch, and namedobjdict func-
tions.

Finds the next item in a dictionary

(dictnext ename [rewind])

Arguments
ename Name of the dictionary being viewed.
rewind If this argument is present and is not nil, the dictionary

is rewound and the first entry in it is retrieved.

Return Values

The next entry in the specified dictionary, or nil, when the end of the dic-
tionary is reached. Entries are returned as lists of dotted pairs of DXF-type
codes and values. Deleted dictionary entries are not returned.

The dictsearch function specifies the initial entry retrieved.

Use namedobjdict to obtain the master dictionary entity name.

dictnext | 47

48

NOTE Once you begin stepping through the contents of a dictionary, passing
a different dictionary name to dictnext will cause the place to be lost in the
original dictionary. In other words, only one global iterator is maintained for use
in this function.

Examples

Create a dictionary and an entry as shown in the example for dictadd. Then
make another Xrecord object:

Command: (setq xname (entmakex datalist))
<Entity name: 1b62d60>

Add this Xrecord object to the dictionary, as the second record in the dictio-
nary:

Command: (dictadd newdict "DATA_RECORD_2" xname)
<Entity name: 1b62d60>

Return the entity name of the next entry in the dictionary:

Command: (cdr (car (dictnext newdict)))
<Entity name: 1bac958>

dictnext returns the name of the first entity added to the dictionary.
Return the entity name of the next entry in the dictionary:

Command: (cdr (car (dictnext newdict)))
<Entity name: 1bac960>

dictnext returns the name of the second entity added to the dictionary.
Return the entity name of the next entry in the dictionary:

Command: (cdr (car (dictnext newdict)))

nil

There are no more entries in the dictionary, so dictnext returns nil.

Rewind to the first entry in the dictionary and return the entity name of that
entry:

Command: (cdr (car (dictnext newdict T)))
<Entity name: 1bac958>

Specifying T for the optional rewind argument causes dictnext to return the
first entry in the dictionary.

AutoLISP Functions

See Also

The dictadd, dictremove, dictrename, dictsearch, and namedobjdict func-
tions.

dictremove

Removes an entry from the specified dictionary

(dictremove ename symbol)

By default, removing an entry from a dictionary does not delete it from the
database. This must be done with a call to entdel. Currently the exceptions
to this rule are groups and mlinestyles. The code that implements these
features requires that the database and these dictionaries be up to date, and
therefore automatically deletes the entity when it is removed (with
dictremove) from the dictionary.

Arguments
ename Name of the dictionary being modified.
symbol The entry to be removed from ename.

The dictremove function does not allow the removal of an mlinestyle from
the mlinestyle dictionary if it is actively referenced by an mline in the data-
base.

Return Values

The entity name of the removed entry. If ename is invalid or symbol is not
found, dictremove returns nil.

Examples

The following example removes the dictionary created in the dictadd exam-
ple:

Command: (dictremove (namedobijdict) "my_way_cool_dictionary")
<Entity name: 1d98950>

See Also

The dictadd, dictnext, dictrename, dictsearch, and namedobjdict functions.

dictremove | 49

dictrename

Renames a dictionary entry

(dictrename ename oldsym newsym)

Arguments

ename Name of the dictionary being modified.
oldsym Original key name of the entry.

newsym New key name of the entry.

Return Values

The newsym value, if the rename is successful. If either the oldname is not
present in the dictionary, or ename is invalid, or newname is invalid, or
newname is already present in the dictionary, dictrename returns nil.
Examples

The following example renames the dictionary created in the dictadd sam-
ple:

Command: (dictrename (namedobjdict) "my_way_cool_dictionary" "An even
cooler dictionary")
"An even cooler dictionary"

See Also

The dictadd, dictnext, dictremove, dictsearch, and namedobjdict functions.

dictsearch

Searches a dictionary for an item

50

(dictsearch ename symbol [setnext])

Arguments
ename Name of the dictionary being searched.
symbol A string that specifies the item to be searched for within

the dictionary.

AutoLISP Functions

setnext If present and not nil, the dictnext entry counter is
adjusted so the following dictnext call returns the entry
after the one returned by this dictsearch call.

Return Values

The entry for the specified item, if successful, or nil, if no entry is found.

Examples

The following example illustrates the use of dictsearch to obtain the dictio-
nary added in the dictadd example:

Command: (setq newdictlist (dictsearch (namedobjdict)
"my_way_cool_dictionary"))

((-1 . <Entity name: 1d98950>) (0 . "DICTIONARY") (5 . "52") (102 .
"{ACAD_REACTORS") (330 . <Entity name: 1d98860>) (102 . "}") (330 . <Entity
name: 1d98860>) (100 . "AcDbDictionary") (280 . 0) (281 .1) (3.
"DATA_RECORD_1") (350 . <Entity name: 1d98958>))

See Also

The dictadd, dictnext, dictremove, and namedobjdict functions.

dimx_tile

Retrieves the width of a tile in dialog box units

(dimx_tile key)

Arguments

key A string specifying the tile to be queried. The key
argument is case-sensitive.

Return Values
The width of the tile.

The coordinates returned are the maximum allowed within the tile. Because
coordinates are zero based, this functions return one less than the total X
dimension (X-1). The dimx_tile and dimy_tile functions are provided for
use with vector_image, fill_image, and slide_image, which require you to
specify absolute tile coordinates.

Examples

(setqg tile width (dimx_tile "my tile"))

dimx_tile | 51

dimy_tile

Retrieves the

distance

Returns the 3

height of a tile in dialog box units

(dimy_tile key)

Arguments

key A string specifying the tile to be queried. The key
argument is case-sensitive.

Return Values

The height of the tile.

The coordinates returned are the maximum allowed within the tile. Because
coordinates are zero based, this functions return one less than the total Y
dimension (Y-1). The dimx_tile and dimy_tile functions are provided for
use with vector_image, fill_image, and slide_image, which require you to
specify absolute tile coordinates.

Examples

(setqg tile_height (dimy tile "my tile"))

D distance between two points

(distance ptl pt2)

Arguments
ptl A 2D or 3D point list.
ptl A 2D or 3D point list.

Return Values
The distance.
If one or both of the supplied points is a 2D point, then distance ignores the

Z coordinates of any 3D points supplied and returns the 2D distance between
the points as projected into the current construction plane.

52 | AutolLISP Functions

Examples

Command: (distance '(1.0 2.5 3.0) '(7.7 2.5 3.0))

6.7

Command: (distance '(1.0 2.0 0.5) '(3.0 4.0 0.5))

2.82843

See Also

The “Geometric Utilities” topic in the Visual LISP Developer’s Guide.

distof

Converts a string that represents a real (floating-point) value into a real value

(distof string [mode])

The distof and rtos functions are complementary. If you pass distof a
string created by rtos, distof is guaranteed to return a valid value, and vice
versa (assuming the mode values are the same).

Arguments

string A string to be converted. The argument must be a string
that distof can parse correctly according to the units
specified by mode. It can be in the same form that rtos
returns, or in a form that AutoCAD allows for keyboard
entry.

mode The units in which the string is currently formatted. The

mode corresponds to the values allowed for the AutoCAD
system variable LUNITS. Specify one of the following
numbers for mode:

1

2
3
4
5

Scientific

Decimal

Engineering (feet and decimal inches)
Architectural (feet and fractional inches)

Fractional

distof | 53

Return Values

A real number, if successful, otherwise nil.

NOTE The distof function treats modes 3 and 4 the same. That is, if mode
specifies 3 (engineering) or 4 (architectural) units, and string is in either of these
formats, distof returns the correct real value.

done_dialog

Terminates a dialog box

54

(done_dialog [status])

Arguments

status A positive integer that start_dialog will return instead of
returning 1 for OK or o for Cancel. The meaning of any
status value greater than 1 is determined by your
application.

You must call done_dialog from within an action expression or callback
function (see “action_tile”).

Return Values

A two-dimensional point list that is the (X,Y) location of the dialog box when
the user exited it.

Usage Notes

If you provide a callback for the button whose key is "accept" or "cancel"
(usually the OK and Cancel buttons), the callback must call done_dialog
explicitly. If it doesn’t, the user can be trapped in the dialog box. If you don’t
provide an explicit callback for these buttons and use the standard exit but-
tons, AutoCAD handles them automatically. Also, an explicit AutoLISP
action for the “accept” button must specify a status of 1 (or an application-
defined value); otherwise, start_dialog returns the default value, 0, which
makes it appear as if the dialog box was canceled.

AutoLISP Functions

end_image

Ends creation of the currently active dialog box image

end list

(end_image)

This function is the complement of start_image.

Return Values
nil

See Also
The start_image function.

Ends processing of the currently active dialog box list

entdel

(end_list)

This function is the complement of start_list.
Return Values

nil

See Also

The add_list and start_list functions.

Deletes objects (entities) or restores previously deleted objects

(entdel ename)

The entity specified by ename is deleted if it is currently in the drawing. The
entdel function restores the entity to the drawing if it has been deleted pre-
viously in this editing session. Deleted entities are purged from the drawing
when the drawing is exited. The entdel function can delete both graphical

and nongraphical entities.

end_image | 55

Arguments

ename Name of the entity to be deleted or restored.

Return Values

The entity name.

Usage Notes

The entdel function operates only on main entities. Attributes and polyline
vertices cannot be deleted independently of their parent entities. You can use
the command function to operate the ATTEDIT or PEDIT commands to modify
subentities.

You cannot delete entities within a block definition. However, you can com-
pletely redefine a block definition, minus the entity you want deleted, with
entmake.

Examples
Get the name of the first entity in the drawing and assign it to variable e1:

Command: (setq el (entnext))
<Entity name: 2¢90520>

Delete the entity named by el:

Command: (entdel e1)
<Entity name: 2¢90520>

Restore the entity named by el:

Command: (entdel e1)
<Entity name: 2¢90520>

entget

Retrieves an object’s (entity’s) definition data

(entget ename [applist])

Arguments

ename Name of the entity being queried. The ename can refer to
either a graphical or nongraphical entity.

applist A list of registered application names.

56 | AutoLISP Functions

entlast

Return Values

An association list containing the entity definition of ename. If you specify

the optional applist argument, entget also returns the extended data associ-
ated with the specified applications. Objects in the list are assigned AutoCAD
DXF group codes for each part of the entity data.

Note that the DXF group codes used by AutoLISP differ slightly from the
group codes in a DXF file. The AutoLISP DXF group codes are documented in
the DXF Reference.

Examples

Assume that the last object created in the drawing is a line drawn from point
(1,2) to point (6,5). The following example shows code that retrieves the
entity name of the last object with the entlast function, and passes that
name to entget:

Command: (entget (entlast))

((-1 . <Entity name: 1bbd1d0>) (0 . "LINE") (330 . <Entity name: 1bbd0c8>) (5 .
"6A") (100 . "AcDbEntity") (67 . 0) (410 . "Model") (8 . "0") (100 . "AcDbLine")
(101.02.00.0) (11 6.0 5.0 0.0) (210 0.0 0.0 1.0))

See Also

The entdel, entlast, entmod, entmake, entnext, and entupd functions. See
“Entity Data Functions” in the Visual LISP Developer’s Guide.

Returns the name of the last nondeleted main object (entity) in the drawing

(entlast)

The entlast function is frequently used to obtain the name of a new entity
that has just been added with the command function. To be selected, the entity
need not be on the screen or on a thawed layer.

Return Values

An entity name, or nil, if there are no entities in the current drawing.

entlast | 57

entmake

Examples
Set variable el to the name of the last entity added to the drawing:

Command: (setq el (entlast))
<Entity name: 2¢90538>

If your application requires the name of the last nondeleted entity (main
entity or subentity), define a function such as the following and call it
instead of entlast.

(defun lastent (/ a b)
(if (setq a (entlast)) Gets last main entity
(while (setqg b (entnext a)) If subentities follow, loops
until there are no more

(setq a b) subentities
)
)
a Returns last main entity
) or subentity
See Also

The entdel, entget, entmod, entnext, and entsel functions.

Creates a new entity in the drawing

58

(entmake [elist])

The entmake function can define both graphical and nongraphical entities.

Arguments

elist A list of entity definition data in a format similar to that
returned by the entget function. The elist argument must
contain all of the information necessary to define the
entity. If any required definition data is omitted, entmake
returns nil and the entity is rejected. If you omit optional
definition data (such as the layer), entmake uses the
default value.

AutoLISP Functions

The entity type (for example, CIRCLE or LINE) must be the
first or second field of the elist. If entity type is the second
field, it can be preceded only by the entity name. The
entmake function ignores the entity name when creating
the new entity. If the elist contains an entity handle,
entmake ignores that too.

Return Values

If successful, entmake returns the entity’s list of definition data. If entmake is
unable to create the entity, it returns nil.

Completion of a block definition (entmake of an endblk) returns the block’s
name rather than the entity data list normally returned.

Examples

The following code creates a red circle (color 62), centered at (4,4) with a
radius of 1. The optional layer and linetype fields have been omitted and
therefore assume default values.

Command: (entmake '((0 . "CIRCLE") (62. 1) (10 4.0 4.0 0.0) (40 . 1.0)))
((0 . "CIRCLE") (62 .1) (10 4.0 4.0 0.0) (40 . 1.0))

Notes on Using entmake

You cannot create viewport objects with entmake.

A group 66 code is honored only for insert objects (meaning attributes follow).
For polyline entities, the group 66 code is forced to a value of 1 (meaning
vertices follow), and for all other entities it takes a default of 0. The only entity
that can follow a polyline entity is a vertex entity.

The group code 2 (block name) of a dimension entity is optional for the
entmake function. If the block name is omitted from the entity definition list,
AutoCAD creates a new one. Otherwise, AutoCAD creates the dimension
using the name provided.

See Also

The entdel, entget, and entmod functions. In the Visual LISP Developer’s
Guide, refer to “Entity Data Functions” for additional information on creat-
ing entities in a drawing, “Adding an Entity to a Drawing” for specifics on
using entmake, and “Creating Complex Entities” for information on creating
complex entities.

entmake | 59

entmakex

Makes a new object or entity, gives it a handle and entity name (but, does not assign an
owner), and then returns the new entity name

(entmakex [elist])

The entmakex function can define both graphical and nongraphical entities.

Arguments

elist A list of entity definition data in a format similar to that
returned by the entget function. The elist argument must
contain all of the information necessary to define the
entity. If any required definition data is omitted, entmakex
returns nil and the entity is rejected. If you omit optional
definition data (such as the layer), entmakex uses the
default value.

Return Values
If successful, entmakex returns the name of the entity created. If entmakex is
unable to create the entity, the function returns nil.

Examples

_$ (entmakex '((0 . "CIRCLE") (62 . 1) (10 4.0 3.0 0.0) (40 . 1.0)))
<Entity name: 1d45558>

WARNING! Objects and entities without owners are not written out to .dwg
or .dxffiles. Be sure to set an owner at some point after using entmakex. For
example, you can use dictadd to set a dictionary to own an object.

See Also

The entmake function.

60 | AutoLISP Functions

entmod

Modifies the definition data of an object (entity)

(entmod elist)

The entmod function updates database information for the entity name spec-
ified by the -1 group in elist. The primary mechanism through which
AutoLISP updates the database is by retrieving entities with entget, modify-
ing the list defining an entity, and updating the entity in the database with
entmod. The entmod function can modify both graphical and nongraphical
objects.

Arguments

elist A list of entity definition data in a format similar to that
returned by the entget function.

For entity fields with floating-point values (such as
thickness), entmod accepts integer values and converts
them to floating point. Similarly, if you supply a floating-
point value for an integer entity field (such as color
number), entmod truncates it and converts it to an integer.

Return Values
If successful, entmod returns the elist supplied to it. If entmod is unable to
modify the specified entity, the function returns nil.

Examples

The following sequence of commands obtains the properties of an entity,
then modifies the entity.

Set the en1 variable to the name of the first entity in the drawing:

Command: (setq en1 (entnext))
<Entity name: 2¢90520>

Set a variable named ed to the entity data of entity en1:

Command: (setq ed (entget en1))

((-1 . <Entity name: 2c90520>) (0 . "CIRCLE") (5 . "4C") (100 . "AcDbEntity") (67
.0)(8."0") (100 . "AcDbCircle") (10 3.45373 6.21635 0.0) (40 . 2.94827) (210
0.0 0.0 1.0))

entmod | 61

62

Changes the layer group in ed from layer O to layer 1:

Command: (setq ed (subst (cons 8 "1") (assoc 8 ed) ed))

((-1 . <Entity name: 2c¢90520>) (0 . "CIRCLE") (5. "4C") (100 . "AcDbEntity") (67
.0)(8."1") (100 . "AcDbCircle") (10 3.45373 6.21635 0.0) (40 . 2.94827) (210
0.0 0.0 1.0))

Modify the layer of the enl entity in the drawing:

Command: (entmod ed)

((-1 . <Entity name: 2c¢90520>) (0 . "CIRCLE") (5. "4C") (100 . "AcDbEntity") (67
.0)(8."1") (100 . "AcDbCircle") (10 3.45373 6.21635 0.0) (40 . 2.94827) (210
0.0 0.0 1.0))

Restrictions on Using entmod

There are restrictions on the changes the entmod function can make:

® An entity’s type and handle cannot be changed. If you want to do this, use
entdel to delete the entity, then make a new entity with the command or
entmake functions.

m The entmod function cannot change internal fields such as the entity
name in the -2 group of a seqend entity—attempts to change such fields
are ignored.

® You cannot use the entmod function to modify a viewport entity.

You can change an entity’s space visibility field to O or 1 (except for viewport
objects). If you use entmod to modify an entity within a block definition, the
modification affects all instances of the block in the drawing.

Before performing an entmod on vertex entities, you should read or write the
polyline entity’s header. If the most recently processed polyline entity is dif-
ferent from the one to which the vertex belongs, width information (the 40
and 41 groups) can be lost.

WARNING! You can use entmod to modify entities within a block definition,
but doing so can create a self-referencing block, which will cause AutoCAD to
stop.

See Also

The entdel, entget, entmake, and entnext functions. In the Visual LISP Devel-
oper’s Guide, refer to “Modifying an Entity” and “Entity Data Functions and
the Graphics Screen.”

AutoLISP Functions

entnext

Returns the name of the next object (entity) in the drawing

(entnext [ename])

Arguments

ename The name of an existing entity.

Return Values

If entnext is called with no arguments, it returns the entity name of the first
nondeleted entity in the database. If an ename argument is supplied to ent-
next, the function returns the entity name of the first nondeleted entity fol-
lowing ename in the database. If there is no next entity in the database, it

returns nil. The entnext function returns both main entities and subentities.

Examples

(setq el (entnext)) ; Sets el to the name of the first entity in the drawing
(setq e2 (entnext el)) ; Sets e2 to the name of the entity following el
Notes

The entities selected by ssget are main entities, not attributes of blocks or
vertices of polylines. You can access the internal structure of these complex
entities by walking through the subentities with entnext. Once you obtain a
subentity’s name, you can operate on it like any other entity. If you obtain
the name of a subentity with entnext, you can find the parent entity by step-
ping forward with entnext until a seqend entity is found, then extracting the
-2 group from that entity, which is the main entity’s name.

See Also

The entdel, entget, entmake, and entnext functions.

entnext | 63

entsel

Prompts the user to select a single object (entity) by specifying a point

(entsel [msg])

Arguments

msg A prompt string to be displayed to users. If omitted,
entsel prompts with the message, "Select object".

Return Values

A list whose first element is the entity name of the chosen object and whose
second element is the coordinates (in terms of the current UCS) of the point
used to pick the object.

The pick point returned by entsel does not represent a point that lies on the
selected object. The point returned is the location of the crosshairs at the
time of selection. The relationship between the pick point and the object will
vary depending on the size of the pickbox and the current zoom scale.

Examples

The following AutoCAD command sequence illustrates the use of the entsel
function and the list returned:

Command: line
From point: 1,1
To point: 6,6

To point: ENTER

Command: (setq e (entsel "Please choose an object: "))
Please choose an object: 3,3
(<Entity name: 60000014> (3.0 3.0 0.0))

Sometimes when operating on objects, you will want to simultaneously
select an object and specify the point by which it was selected. Examples of
this in AutoCAD can be found in Object Snap and in the BREAK, TRIM, and
EXTEND commands. The entsel function allows AutoLISP programs to per-
form this operation. It selects a single object, requiring the selection to be a
point pick. The current Osnap setting is ignored by this function unless you
specifically request it while you are in the function. The entsel function
honors keywords from a preceding call to initget.

64 | AutoLISP Functions

See Also

The entget, entmake, and entnext functions.

entupd

Updates the screen image of an object (entity)

(entupd ename)

Arguments

ename The name of the entity to be updated on the screen.

Return Values

The entity (ename) updated, or nil, if nothing was updated.

Examples

Assuming that the first entity in the drawing is a 3D polyline with several
vertices, the following code modifies and redisplays the polyline:

(setqg el (entnext))
(setqg e2 (entnext el))
(setqg ed (entget e2))
(setq ed
(subst '(10 1.0 2.0)
(assoc 10 ed)
ed
)

)
(entmod ed)
(entupd el)

2
2

2

2

2

Sets el to the polyline’s entity name

; Sets e2 to its first vertex

Sets ed to the vertex data

Changes the vertex’s location in ed
to point (1,2)

; Moves the vertex in the drawing

Regenerates the polyline entity el

Updating Polylines and Blocks

When a 3D (or old-style) polyline vertex or block attribute is modified with
entmod, the entire complex entity is not updated on the screen. The entupd
function can be used to cause a modified polyline or block to be updated on
the screen. This function can be called with the entity name of any part of
the polyline or block; it need not be the head entity. While entupd is
intended for polylines and blocks with attributes, it can be called for any
entity. It always regenerates the entity on the screen, including all subenti-

ties.

entupd | 65

eq

NOTE If entupd is used on a nested entity (an entity within a block) or on a
block that contains nested entities, some of the entities might not be regener-
ated. To ensure complete regeneration, you must invoke the REGEN command.

See Also

The entget, entmod, and entnext functions.

Determines whether two expressions are identical

66

(eq exprl expr2)

The eq function determines whether exprl and expr2 are bound to the same
object (by setgq, for example).

Arguments
exprl The expression to be compared.
expr2 The expression to compare with exprl.

Return Values

T if the two expressions are identical, nil otherwise.

Examples

Given the following assignments:
(setqg f1 '(a b c))

(setqg f2 '(a b c¢))

(setqg £3 £2)

Compare £1 and £3:
Command: (eq f1 f3)

nil

eq returns nil because £1 and £3, while containing the same value, do not
refer to the same list.

AutoLISP Functions

equal

Compare £3 and f2:

Command: (eq f3 2)
T

eq returns T because £3 and £2 refer to the same list.

See Also

The = (equal to) and equal functions.

Determines whether two expressions are equal

(equal exprl expr2 [fuzz])

Arguments

exprl The expression to be compared.

expr2 The expression to compare with exprl.

fuzz A real number defining the maximum amount by which

exprl and expr2 can differ and still be considered equal.

When comparing two real numbers (or two lists of real numbers, as in
points), the two identical numbers can differ slightly if different methods are
used to calculate them. You can specify a fiizz amount to compensate for the
difference that may result from the different methods of calculation.

Return Values

T if the two expressions are equal (evaluate to the same value), nil otherwise.

Examples

Given the following assignments:
(setg f1 '(a b c))

(setqg £2 '(a b c))

(setqg £3 £2)

(setqg a 1.123456)
(setqg b 1.123457)

Compare £1 to £3:

Command: (equal f1 f3)
T

equal | 67

*error®

Compare £3 to £2:

Command: (equal f3 f2)
T

Compare a to b:

Command: (equal a b)

nil

The a and b variables differ by .000001.
Compare a to b:, with fuzz argument of .000001:

Command: (equal a b 0.000001)
T

The a and b variables differ by an amount equal to the specified fuzz factor,
so equal considers the variables equal.
Comparing the eq and equal Functions

If the eq function finds that two lists or atoms are the same, the equal func-
tion also finds them to be the same.

Any atoms that the equal function determines to be the same are also found
equivalent by eq. However, two lists that equal determines to be the same
may be found to be different according to the eq function.

See Also

The = (equal to) and eq functions.

A user-definable error-handling function

error strin
g

If *error* is not nil, it is executed as a function whenever an AutoLISP error
condition exists. AutoCAD passes one argument to *error*, which is a string
containing a description of the error.

Your *error* function can include calls to the command function without
arguments (for example, (command)). This will cancel a previous AutoCAD
command called with the command function.

68 | AutoLISP Functions

Return Values

This function does not return, except when using vl-exit-with-value.

Examples

The following function does the same thing that the AutoLISP standard error
handler does. It prints the word “error,” followed by a description:
(defun *error* (msg)

(princ "error: ")

(princ msg)

(princ)

)
See Also

The vl-exit-with-error, vl-exit-with-value, vl-catch-all-apply, vl-catch-all-
error-message, and vl-catch-all-error-p functions.

eval

Returns the result of evaluating an AutoLISP expression

(eval expr)
Arguments

expr The expression to be evaluated.

Return Values

The result of the expression, after evaluation.

Examples

First, set some variables:

Command: (setq a 123)
123

Command: (setq b 'a)
A

eval | 69

Now evaluate some expressions:

Command: (eval 4.0)
4.0

Command: (eval (abs -10))
10

Command: (eval a)
123

Command: (eval b)
123

exit

Forces the current application to quit

(exit)

If exit is called, it returns the error message quit/exit abort and returns to the
AutoCAD Command prompt.

See Also

The quit function.

exp

Returns the constant e (a real number) raised to a specified power (the natural antilog)

(exp num)

Arguments

num A real number.

Return Values

A real (num), raised to its natural antilogarithm.

70 | AutoLISP Functions

Examples
Command: (exp 1.0)
2.71828

Command: (exp 2.2)
9.02501

Command: (exp -0.4)
0.67032

expand

Allocates additional memory for AutoLISP

(expand n-expand)

Arguments
n-expand An integer indicating the amount of additional memory
to be allocated. Memory is allocated as follows:

m n-alloc free symbols

m n-alloc free strings

m n-alloc free usubrs

m n-alloc free reals

m n-alloc * n-expand cons cells

where n-alloc is the current segment size.

Return Values

An integer indicating the number of free conses divided by n-alloc.

Examples
Set the segment size to 100:

_$ (alloc 100)
1000

Allocate memory for two additional segments:

_$ (expand 2)
82

expand | 71

expt

This ensures that AutoLISP now has memory available for at least 200 addi-
tional symbols, strings, usubrs and reals each, and 8200 free conses.

See Also

The alloc function.

Returns a number raised to a specified power

(expt number power)

Arguments
number Any number.
power The power to raise number to.

Return Values

If both arguments are integers, the result is an integer, otherwise, the result
is a real.

Examples

Command: (expt 2 4)

16

Command: (expt 3.0 2.0)
9.0

fill_image

Draws a filled rectangle in the currently active dialog box image tile

(fill_image x1 yl width height color)

The first (upper-left) corner of the rectangle is located at (x1,y1) and the sec-
ond (lower-right) corner is located the relative distance (width,height) from
the first corner. The origin (0,0) is the upper-left corner of the image. You can
obtain the coordinates of the lower-right corner by calling the dimension
functions dimx_tile and dimy_tile.

72 | AutolLISP Functions

The £ill_image function must be used between start_image and
end_imagefunction calls.

Arguments

x1 X coordinate of the upper-left corner of the rectangle
located at (x1,y1). Must be a positive value.

y1 Y coordinate of upper-left corner. Must be a positive
value.

width Width of the fill area (in pixels), relative to xI.

height Width of the fill area (in pixels), relative to yI.

color An AutoCAD color number, or one of the logical color

numbers shown in the following table:

Symbolic names for color attribute

Color number ADI mnemonic Description

-2 BGLCOLOR Current background of the AutoCAD graphics
screen

-15 DBGLCOLOR Current dialog box background color

-16 DFGLCOLOR Current dialog box foreground color (text)

-18 LINELCOLOR Current dialog box line color

Return Values

An integer representing the fill color.

Examples

(setqg color -2) ;; color of AutoCAD background screen
(fill_image

0

0

(dimx_tile "slide_ tile")

(dimy_tile "slide_ tile")

color
)

(end_image)

fill_image | 73

findfile

Searches the AutoCAD library path for the specified file or directory

(findfile filename)

The findfile function makes no assumption about the file type or extension
of filename. If filename does not specify a drive/directory prefix, findfile
searches the AutoCAD library path. If a drive/directory prefix is supplied,
findfile looks only in that directory.

Arguments

filename Name of the file or directory to be searched for.

Return Values

A string containing the fully qualified file name, or nil, if the specified file
or directory is not found.

The file name returned by £indfile is suitable for use with the open function.

Examples

If the current directory is /AutoCAD 2000i and it contains the file abc.Isp, the
following function call retrieves the path name:

Command: (findfile "abc.Isp")
"C:\\Program Files\\AutoCAD 2000i\\abc.Isp"

If you are editing a drawing in the /AutoCAD 2000i/drawings directory, the
ACAD environment variable is set to /AutoCAD 2000i/support, and the file
xyz.txt exists only in the /AutoCAD 2000i/support directory, then the follow-
ing command retrieves the path name:

Command: (findfile "xyz.txt")
"C:\\Program Files\\AutoCAD 2000i\\support\\xyz.txt"

If the file nosuch is not present in any of the directories on the library search
path, findfile returns nil:

Command: (findfile "nosuch")
nil

74 | AutolLISP Functions

fix

Note that prior to AutoCAD Release 14, findfile only returned a path if you
supplied a valid file name as your argument. If you supplied a directory path,
findfile returned nil even if the path existed. For example, the following

call to findfile returns a path name in AutoCAD 2000:

Command: (findfile "c:/program files/AutoCAD 2000i")
"C:\\program files\\AutoCAD 2000i"

In AutoCAD Release 13, the same command returns nil.

Returns the conversion of a real number into the nearest smaller integer

(fix number)

The fix function truncates number to the nearest integer by discarding the
fractional portion.

Arguments

number A real number.

Return Values

The integer derived from number.
If number is larger than the largest possible integer (+2,147,483,647 or
-2,147,483,648 on a 32-bit platform), fix returns a truncated real (although

integers transferred between AutoLISP and AutoCAD are restricted to 16-bit
values).

Examples

Command: (fix 3)
3

Command: (fix 3.7)
3

fix | 75

float

Returns the conversion of a number into a real number

foreach

(float number)

Arguments

number Any number.

Return Values

The real number derived from number.

Examples

Command: (float 3)
3.0

Command: (float 3.75)
3.75

Evaluates expressions for all members of a list

(foreach name list [expr...])

The foreach function steps through a list, assigning each element in the list
to a variable, and evaluates each expression for every element in the list. Any
number of expressions can be specified.

Arguments

name Variable that each element in the list will be assigned to.
list List to be stepped through and evaluated.

expr Expression to be evaluated for each element in list.

Return Values

The result of the last expr evaluated. If no expr is specified, foreach returns
nil.

76 | AutoLISP Functions

function

Examples

Print each element in a list:

Command: (foreach n '(a b c) (print n))
A

B

ccC

foreach prints each element in the list and returns c, the last element. This
command is equivalent to the following sequence of commands:
(print a)

(print b)
(print c)

except that foreach returns the result of only the last expression evaluated.

Tells the Visual LISP compiler to link and optimize an argument as if it were a built-in

function

(function symbol | lambda-expr)

The function function is identical to the quote function, except it tells the
Visual LISP compiler to link and optimize the argument as if it were a built-
in function or defun.

Compiled 1ambda expressions that are quoted by function will contain
debugging information when loaded into the Visual LISP IDE.

Arguments
symbol A symbol naming a function.
lambda-expr An expression of the following form:

(LAMBDA arguments {S-expression}*)

Return Values

The result of the evaluated expression.

function | 77

gc

Examples

The Visual LISP compiler cannot optimize the quoted lambda expression in
the following code:
(mapcar

'(lambda (x) (* X X))

(12 3))

After adding the function function to the expression, the compiler can opti-
mized the 1ambda expression. For example:
(mapcar

(function (lambda (x) (* x X)))
'(1 2 3))

Forces a garbage collection, which frees up unused memory

ged

(gc)

See Also

The “Memory Management Functions” topic in the Visual LISP Developer’s
Guide.

Returns the greatest common denominator of two integers

78

(gcd intl int2)

Arguments
int1 An integer; must be greater than 0.
int2 An integer; must be greater than 0.

Return Values

An integer representing the greatest common denominator between intl and
int2.

AutoLISP Functions

Examples

Command: (gcd 81 57)
3

Command: (gcd 12 20)
4

get_attr

Retrieves the DCL value of a dialog box attribute

(get_attr key attribute)

Arguments

key A string that specifies the tile. This parameter is case-
sensitive.

attribute A string naming the attribute as it appears in the tile’s

DCL description.

Return Values

A string containing the attribute’s initial value as specified in its DCL descrip-
tion.

get_tile

Retrieves the current runtime value of a dialog box tile

(get_tile key)

Arguments

key A string that specifies the tile. This parameter is case-
sensitive.

Return Values

A string containing the tile’s value.

get_attr | 79

getangle

Pauses for user input of an angle, and returns that angle in radians

(getangle [pt] [msg])

Arguments
pt A 2D base point in the current UCS.

The pt argument, if specified, is assumed to be the first of
two points, so the user can show AutoLISP the angle by
pointing to one other point. You can supply a 3D base
point, but the angle is always measured in the current
construction plane.

msg A string to be displayed to prompt the user.

Return Values

The angle specified by the user, in radians.

The getangle function measures angles with the zero-radian direction (set by
the ANGBASE system variable) with angles increasing in the counterclockwise
direction. The returned angle is expressed in radians with respect to the
current construction plane (the XY plane of the current UCS, at the current
elevation).

Examples

The following code examples show how different arguments can be used
with getangle:

Command: (setq ang (getangle))

Command: (setq ang (getangle '(1.0 3.5)))

Command: (setq ang (getangle "Which way? "))
Command: (setq ang (getangle '(1.0 3.5) "Which way? "))

Usage Notes

Users can specify an angle by entering a number in the AutoCAD current
angle units format. Although the current angle units format might be in
degrees, grads, or some other unit, this function always returns the angle in
radians. The user can also show AutoLISP the angle by pointing to two 2D
locations on the graphics screen. AutoCAD draws a rubber-band line from
the first point to the current crosshairs position to help you visualize the
angle.

80 | AutoLISP Functions

getcfg

It is important to understand the difference between the input angle and the
angle returned by getangle. Angles that are passed to getangle are based on
the current settings of ANGDIR and ANGBASE. However, once an angle is pro-
vided, it is measured in a counterclockwise direction (ignoring ANGDIR) with
zero radians as the current setting of ANGBASE.

The user cannot enter another AutoLISP expression as the response to a
getangle request.

See Also

The illustration and comparison to the getorient function.

Retrieves application data from the AppData section of the acad.cfg file

(getcfg cfgname)

Arguments

cfgname A string (maximum length of 496 characters) naming the
section and parameter value to retrieve.

The cfgname argument must be a string of the following form:
"AppData/application_name/section_name/.../param name"

Return Values

Application data, if successful. If cfgname is not valid, getcfg returns nil.

Examples

Assuming the WallThk parameter in the AppData/ArchStuff section has a
value of 8, the following command retrieves that value:

Command: (getcfg "AppData/ArchStuff/WallThk")
l|8l|

See Also

The setcfg function.

getcfg | 81

getcname

Retrieves the localized or English name of an AutoCAD command

(getcname cname)

Arguments

cname The localized or underscored English command name;
must be 64 characters or less in length.

Return Values

If cname is not preceded by an underscore (assumed to be the localized com-
mand name), getcname returns the underscored English command name. If
cname is preceded by an underscore, getcname returns the localized com-
mand name. This function returns nil if cname is not a valid command
name.

Examples

In a French version of AutoCAD, the following is true.

(getcname "ETIRER") returns " _STRETCH"
(getcname "_STRETCH") returns "ETIRER"
getcorner

Pauses for user input of a rectangle’s second corner

82

(getcorner pt [msqg])

The getcorner function takes a base point argument, based on the current
UCS, and draws a rectangle from that point as the user moves the crosshairs
on the screen.

The user cannot enter another AutoLISP expression in response to a
getcorner request.

Arguments
pt A point to be used as the base point.
msg A string to be displayed to prompt the user.

AutoLISP Functions

getdist

Return Values

The getcorner function returns a point in the current UCS, similar to
getpoint. If the user supplies a 3D point, its Z coordinate is ignored. The cur-
rent elevation is used as the Z coordinate.

Examples

Command: (getcorner '(7.64935 6.02964 0.0))
(17.2066 1.47628 0.0)

Command: (getcorner '(7.64935 6.02964 0.0) "Pick a corner")
Pick a corner(15.9584 2.40119 0.0)

Pauses for user input of a distance

(getdist [pt] [msg])

The user can specify the distance by selecting two points, or by specifying
just the second point, if a base point is provided. The user can also specify a
distance by entering a number in the AutoCAD current distance units for-
mat. Although the current distance units format might be in feet and inches
(architectural), the getdist function always returns the distance as a real.

The getdist function draws a rubber-band line from the first point to the
current crosshairs position to help the user visualize the distance.

The user cannot enter another AutoLISP expression in response to a getdist
request.

Arguments

pt A 2D or 3D point to be used as the base point in the
current UCS. If pt is provided, the user is prompted for the
second point.

msg A string to be displayed to prompt the user. If no string is

supplied, AutoCAD does not display a message.

Return Values

A real number. If a 3D point is provided, the returned value is a 3D distance.
However, setting the 64 bit of the initget function instructs getdist to
ignore the Z component of 3D points and to return a 2D distance.

getdist | 83

getenv

Examples

(setq dist (getdist))

(setqg dist (getdist '(1.0 3.5)))

(setq dist (getdist "How far "))

(setqg dist (getdist '(1.0 3.5) "How far? "))

Returns the string value assigned to a system environment variable

(getenv variable-name)

Arguments

variable-name A string specifying the name of the variable to be read.
Environment variable names must be spelled and cased
exactly as they are stored in the system registry.

Return Values

A string representing the value assigned to the specified system variable. If

the variable does not exist, getenv returns nil.

Examples

Assume the system environment variable acab is set to /acad/support and
there is no variable named NosucH.

Command: (getenv "ACAD")
"/acad/support"

Command: (getenv "NOSUCH")
nil
Assume that the MaxArray environment variable is set to 10000:

Command: (getenv "MaxArray")
"10000"

See Also

The setenv function.

84 | AutoLISP Functions

getfiled

Prompts the user for a file name with the standard AutoCAD file dialog box, and returns

that file name

(getfiled title default ext flags)

The getfiled function displays a dialog box containing a list of available
files of a specified extension type. You can use this dialog box to browse
through different drives and directories, select an existing file, or specify the
name of a new file.

Arguments
title

default

ext

flags

A string specifying the dialog box label.
A default file name to use; can be a null string ("").

The default file name extension. If ext is passed as a null
string ("), it defaults to = (all file types).

If the file type dwg is included in the ext argument, the
getfiled function displays an image preview in the
dialog.

An integer value (a bit-coded field) that controls the
behavior of the dialog box. To set more than one
condition at a time, add the values together to create a
flags value between O and 15. The following flags
arguments are recognized by getfiled:

1 (bit 0) Prompt for the name of a new file to create. Do
not set this bit when you prompt for the name of an
existing file to open. In the latter case, if the user enters
the name of a file that doesn’t exist, the dialog box
displays an error message at the bottom of the box.

If this bit is set and the user chooses a file that already
exists, AutoCAD displays an alert box and offers the
choice of proceeding with or canceling the operation.

4 (bit 2) Let the user enter an arbitrary file name
extension, or no extension at all.

If this bit is not set, getfiled accepts only the extension
specified in the ext argument and appends this extension

getfiled | 85

86

Return Values

to the file name if the user doesn’t enter it in the File text
box.

8 (bit 3) If this bit is set and bit O is not set, getfiled
performs a library search for the file name entered. If it
finds the file and its directory in the library search path, it
strips the path and returns only the file name. (It does not
strip the path name if it finds that a file of the same name
is in a different directory.)

If this bit is not set, getfiled returns the entire file name,
including the path name.

Set this bit if you use the dialog box to open an existing
file whose name you want to save in the drawing (or other
database).

16 (bit 4) If this bit is set, or if the default argument ends
with a path delimiter, the argument is interpreted as a
path name only. The getfiled function assumes that
there is no default file name. It displays the path in the
Look in: line and leaves the File name box blank.

32 (bit 5) If this bit is set and bit O is set (indicating that
a new file is being specified), users will not be warned if
they are about to overwrite an existing file. The alert box
to warn users that a file of the same name already exists
will not be displayed; the old file will just be replaced.

64 (bit 6) Do not transfer the remote file if the user
specifies a URL.

128 (bit 7) Do not allow URLs at all.

If the dialog box obtains a file name from the user, getfiled returns a string
that specifies the file name; otherwise, it returns nil.

Examples

The following call to getfiled displays the Select a Lisp File dialog box:

(getfiled "Select a Lisp File" "c:/program files/autoCAD 2000i/
support/ non lSp" 8)

AutoLISP Functions

AutoCAD displays the following dialog box as a result:

set by the path name

’*set by the title argument

Select a Lisp File

portion of the default
argument (if default
doesn’t specify a path,
this is initially the current
directory)

set by the file name portion
of the default argument

getint

ootk I‘Sl Support j gl
attredef.lxp dde.lsp ddzelect ls
brake.lzp ddgripz.lzp dduczp.lsp
L ddattdef lsp ddinzert lsp ddunitz.lzp
acadrl4.lzp ddattext lsp ddmodify. lzp ddview. |zp
al_utilz lsp ddchprap lsp ddptype lsp ddwpaint Iz
appload.lsp ddcolor. p ddrename. lzp edge.l:p
«| | i
Files of type: ILisp [*lsp) j Cancel |

Find File... |

\» set by the ext argument

Pauses for user input of an integer, and returns that integer

(getint [msg])

Values passed to getint can range from -32,768 to +32,767. If the user enters
something other than an integer, getint displays the message “Requires an
integer value,” and allows the user to try again. The users cannot enter
another AutoLISP expression as the response to a getint request.

Arguments

msg

A string to be displayed to prompt the user; if omitted, no

message is displayed.

Return Values

The integer specified by the user; or nil, if the user presses ENTER without
entering an integer.

getint | 87

Examples

Command: (setq num (getint))
15
15

Command: (setq num (getint "Enter a number:"))
Enter a number:25
25

Command: (setq num (getint))
15.0

Requires an integer value.

15

15

See Also

The initget function in this reference and “The getxxx Functions” in the
Visual LISP Developer’s Guide.

getkword

Pauses for user input of a keyword, and returns that keyword

88

(getkword [msg])

Valid keywords are set prior to the getkword call with the initget function.
The user cannot enter another AutoLISP expression as the response to a
getkword request.

Arguments
msg A string to be displayed to prompt the user; if omitted,
getkword does not display a prompting message.

Return Values

A string representing the keyword entered by the user, or nil, if the user
presses ENTER without typing a keyword. The function also returns nil if it
was not preceded by a call to initget to establish one or more keywords.

If the user enters a value that is not a valid keyword, getkword displays a
warning message and prompts the user to try again.

AutoLISP Functions

Examples

The following example shows an initial call to initget that sets up a list of
keywords (Yes and No) and disallows null input (bits value equal to 1) to the
getkword call that follows:

Command: (initget 1 "Yes No")
nil

Command: (setq x (getkword "Are you sure? (Yes or No) "))
Are you sure? (Yes or No) yes
I|Yesl|

The following sequence illustrates what happens if the user enters invalid
input in response to getkword:

Command: (initget 1 "Yes No")
nil

Command: (setq x (getkword "Are you sure? (Yes or No) "))
Are you sure? (Yes or No) Maybe

Invalid option keyword.

Are you sure? (Yes or No) yes

"Yes"

The user’s response was not one of the keywords defined by the preceding
initget, SO getkword issued an error message and then prompted the user
again with the string supplied in the msg argument.

See Also

The initget function in this reference and“The getxxx Functions” in the
Visual LISP Developer’s Guide.

getorient

Pauses for user input of an angle, and returns that angle in radians

(getorient [pt] [msg])

The getorient function measures angles with the zero-radian direction to
the right (east) and angles that are increasing in the counterclockwise direc-
tion. The angle input by the user is based on the current settings of ANGDIR
and ANGBASE, but once an angle is provided, it is measured in a counterclock-
wise direction, with zero radians being to the right (ignoring ANGDIR and

getorient | 89

90

ANGBASE). Therefore, some conversion must take place if you select a differ-
ent zero-degree base or a different direction for increasing angles by using the
UNITS command or the ANGBASE and ANGDIR system variables.

Use getangle when you need a rotation amount (a relative angle). Use
getorient to obtain an orientation (an absolute angle).

The user cannot enter another AutoLISP expression as the response to a
getorient request.

Arguments
pt A 2D base point in the current UCS.

The pt argument, if specified, is assumed to be the first of
two points, so that the user can show AutoLISP the angle
by pointing to one other point. You can supply a 3D base
point, but the angle is always measured in the current
construction plane.

msg A string to be displayed to prompt the user.

Return Values

The angle specified by the user, in radians, with respect to the current con-
struction plane.

Examples

Command: (setq pt1 (getpoint "Pick point: "))

(4.55028 5.84722 0.0)

Command: (getorient pt1 "Pick point: ")
5.61582
See Also

The getangle function in this reference and “The getxxx Functions” in the
Visual LISP Developer’s Guide.

AutoLISP Functions

getpoint

Pauses for user input of a point, and returns that point

(getpoint [pt] [msg])

The user can specify a point by pointing or by entering a coordinate in the
current units format. If the pt argument is present, AutoCAD draws a rubber-
band line from that point to the current crosshairs position.

The user cannot enter another AutoLISP expression in response to a getpoint
request.

Arguments
pt A 2D or 3D base point in the current UCS.

Note that getpoint will accept a single integer or real
number as the pt argument, and use the AutoCAD direct
distance entry mechanism to determine a point. This
mechanism uses the value of the LASTPOINT system
variable as the starting point, the pt input as the distance,
and the current cursor location as the direction from
LASTPOINT. The result is a point that is the specified
number of units away from LASTPOINT in the direction of
the current cursor location.

msg A string to be displayed to prompt the user.

Return Values

A 3D point, expressed in terms of the current UCS.

Examples

(setq p (getpoint))
(setq p (getpoint "Where? "))
(setq p (getpoint '(1.5 2.0) "Second point: "))

See Also

The getcorner and initget functions in this reference and “The getxxx Func-
tions” in the Visual LISP Developer’s Guide.

getpoint | 91

getreal

Pauses for user input of a real number, and returns that real number

(getreal [msg])

The user cannot enter another AutoLISP expression as the response to a
getreal request.

Arguments

msg A string to be displayed to prompt the user.

Return Values

The real number entered by the user.

Examples

(setqg val (getreal))
(setqg val (getreal "Scale factor: "))

getstring

Pauses for user input of a string, and returns that string

(getstring [cr] [msg])

The user cannot enter another AutoLISP expression as the response to a
getstring request.

Arguments

cr If supplied and not nil, this argument indicates that users
can include blanks in their input string (and must
terminate the string by pressing ENTER). Otherwise, the
input string is terminated by space or ENTER.

msg A string to be displayed to prompt the user.

Return Values

The string entered by the user, or nil, if the user pressed ENTER without typ-
ing a string.

92 | AutoLISP Functions

If the string is longer than 132 characters, getstring returns only the first
132 characters of the string. If the input string contains the backslash char-
acter (\), getstring converts it to two backslash characters (\\). This allows
you to use returned values containing file name paths in other functions.

Examples

Command: (setq s (getstring "What'’s your first name? "))
What's your first name? Gary
I|Garyl|

Command: (setq s (getstring T "What's your full name? "))
What's your full name? Gary Indiana Jones
"Gary Indiana Jones"

Command: (setq s (getstring T "Enter filename: "))
Enter filename: c:\my documents\vlisp\secrets
"c:\\my documents\\vlisp\\secrets"

See Also

The initget function.

getvar

Retrieves the value of an AutoCAD system variable

(getvar varname)

Arguments

varname A string or symbol that names a system variable. See the
Command Reference for a list of current AutoCAD system
variables.

Return Values

The value of the system variable, or nil, if varname is not a valid system vari-
able.

getvar | 93

Examples
Get the current value of the fillet radius:

Command: (getvar 'FILLETRAD)
0.25

See Also

The setvar function.

graphscr

Displays the AutoCAD graphics screen

(graphscr)

This function is equivalent to the GRAPHSCR command or pressing the Flip
Screen function key. The textscr function is the complement of graphscr.

Returns
nil
See Also

The textscr function.
grclear

Clears the current viewport (obsolete function)

(grclear)

Returns

nil

94 | AutoLISP Functions

grdraw

Draws a vector between two points, in the current viewport

(grdraw from to color [highlight])

Arguments

from

to

color

highlight

Return Values

nil

See Also

2D or 3D points (lists of two or three reals) specifying one
endpoint of the vector in terms of the current UCS.
AutoCAD clips the vector to fit the screen.

2D or 3D points (lists of two or three reals) specifying the
other endpoint of the vector in terms of the current UCS.
AutoCAD clips the vector to fit the screen.

An integer identifying the color used to draw the vector.
A -1 signifies XOR ink, which complements anything it
draws over and which erases itself when overdrawn.

An integer, other than zero, indicating that the vector is
to be drawn using the default highlighting method of the
display device (usually dashed).

If highlight is omitted or is zero, grdraw uses the normal
display mode.

The grvecs function for a routine that draws multiple vectors.

grdraw | 95

grread

Reads values from any of the AutoCAD input devices

96

(grread [track] [allkeys [curtype]])

Only specialized AutoLISP routines need this function. Most input to
AutoLISP should be obtained through the various getxxx functions.

Arguments

track

allkeys

curtype

AutoLISP Functions

If supplied and not nil, this argument enables the return
of coordinates from a pointing device as it is moved

An integer representing a code that tells grread what
functions to perform. The allkeys bit code values can be
added together for combined functionality. The following
values can be specified:

1 (bit 0) Return drag mode coordinates. If this bit is set
and the user moves the pointing device instead of
selecting a button or pressing a key, grread returns a list
where the first member is a type 5 and the second member
is the (X,Y) coordinates of the current pointing device
(mouse or digitizer) location. This is how AutoCAD
implements dragging.

2 (bit 1) Return all key values, including function and
cursor key codes, and don’t move the cursor when the
user presses a cursor key.

4 (bit 2) Use the value passed in the curtype argument to
control the cursor display.

8 (bit 3) Don't display the error: console break message
when the user presses ESC.

An integer indicating the type of cursor to be displayed.
The allkeys value for bit 2 must be set for the curtype values
to take effect. The curtype argument affects only the cursor
type during the current grread function call. You can
specify one of the following values for curtype:

0 Display the normal crosshairs.
1 Do not display a cursor (no crosshairs).

2 Display the object-selection “target” cursor.

Return Values

The grread function returns a list whose first element is a code specifying the
type of input. The second element of the list is either an integer or a point,
depending on the type of input. The return values are listed in the following

table:

grread return values

First element

Second element

Value Type of input Value Description
2 Keyboard input varies Character code
3 Selected point 3D point Point coordinates
4 Screen/pull-down menu 0 to 999 Screen menu box no.
item (from pointing 1001 to 1999 POP1 menu box no.
device) 2001 to 2999 POP2 menu box no.
3001 to 3999 POP3 menu box no.
... andsoon,to ...andsoon, to
16001 to 16999 POP16 menu box no.
5 Pointing device (returned 3D point Drag mode coordinate
only if tracking is enabled)
6 BUTTONS menu item 0 to 999 BUTTONS1T menu button no.
1000 to 1999 BUTTONS2 menu button no.
2000 to 2999 BUTTONS3 menu button no.
3000 to 3999 BUTTONS4 menu button no.
7 TABLETT menu item 0to 32767 Digitized box no.
8 TABLET2 menu item 0to 32767 Digitized box no.
9 TABLET3 menu item 0to 32767 Digitized box no.
10 TABLET4 menu item 0to 32767 Digitized box no.
11 AUX menu item 0 to 999 AUX1 menu button no.
1000 to 1999 AUX2 menu button no.
2000 to 2999 AUX3 menu button no.
3000 to 3999 AUX4 menu button no.
12 Pointer button (follows a 3D point Point coordinates

type 6 or type 11 return)

grread | 97

grtext

Handling User Input with grread

Entering ESC while a grread is active aborts the AutoLISP program with a
keyboard break (unless the allkeys argument has disallowed this). Any other
input is passed directly to grread, giving the application complete control
over the input devices.

If the user presses the pointer button within a screen menu or pull-down
menu box, grread returns a type 6 or type 11 code, but in a subsequent call,
it does not return a type 12 code: the type 12 code follows type 6 or type 11
only when the pointer button is pressed while it is in the graphics area of the
screen.

It is important to clear the code 12 data from the buffer before attempting
another operation with a pointer button or an auxiliary button. To accom-
plish this, perform a nested grread like this:

(setq code_12 (grread (setq code (grread))))

This sequence captures the value of the code 12 list as streaming input from
the device.

Writes text to the status line or to screen menu areas

(grtext [box text [highlight]])

This function displays the supplied text in the menu area; it does not change
the underlying menu item. The grtext function can be called with no argu-
ments to restore all text areas to their standard values.

Arguments

box An integer specifying the location in which to write the
text.

text A string that specifies the text to be written to the screen
menu or status line location. The text argument is
truncated if it is too long to fit in the available area.

highlight An integer that selects or deselects a screen menu

location.

If called without arguments, grtext restores all text areas to their standard
values. If called with only one argument, grtext results in an error.

98 | AutoLISP Functions

Return Values

The string passed in the text argument, if successful, and nil, if unsuccessful
or no arguments are supplied.

Screen Menu Area

Setting box to a positive or zero value specifies a screen menu location. Valid
box values range from O to the highest-numbered screen menu box minus 1.
The SCREENBOXES system variable reports the maximum number of screen
menu boxes. If the highlight argument is supplied as a positive integer, grtext
highlights the text in the designated box. Highlighting a box automatically
dehighlights any other box already highlighted. If highlight is zero, the menu
item is dehighlighted. If highlight is a negative number, it is ignored. On some
platforms, the text must first be written without the highlight argument and
then must be highlighted. Highlighting of a screen menu location works
only when the cursor is not in that area.

Status Line Area

If grtext is called with a box value of -1, it writes the text into the mode
status line area. The length of the mode status line differs from display to
display (most allow at least 40 characters). The following code uses the
$(linelen) DIESEL expression to report the length of the mode status area.

(setqg modelen (menucmd "M=$(linelen)"))

If a box value of -2 is used, grtext writes the text into the coordinate status
line area. If coordinate tracking is turned on, values written into this field are
overwritten as soon as the pointer sends another set of coordinates. For both
-1 or -2 box values, the highlight argument is ignored.

grvecs

Draws multiple vectors on the graphics screen

(grvecs vlist [trans])

Arguments

vlist A vector list is comprised of a series of optional color
integers and two point lists. See Vector List Format for
details on how to format vlist.

grvecs | 99

trans A transformation matrix used to change the location or
proportion of the vectors defined in your vector list. This
matrix is a list of four lists of four real numbers.

Return Values

nil

Vector List Format

The format for vlist is as follows:
([colorl] froml tol [color2] from2 to2 ...)

The color value applies to all succeeding vectors until vlist specifies another
color. AutoCAD colors are in the range 0-25S5. If the color value is greater
than 255, succeeding vectors are drawn in XOR ink, which complements any-
thing it draws over and which erases itself when overdrawn. If the color value
is less than zero, the vector is highlighted. Highlighting depends on the
display device. Most display devices indicate highlighting by a dashed line,
but some indicate it by using a distinctive color.

A pair of point lists, from and to, specify the endpoints of the vectors,
expressed in the current UCS. These can be 2D or 3D points. You must pass
these points as pairs—two successive point lists—or the grvees call will fail.

AutoCAD clips the vectors as required to fit on the screen.

Examples

The following code draws five vertical lines on the graphics screen, each a
different color:

(grvecs '(1 (1 2)(1 5) Draws a red line from (1,2) to (1,5)
2 (2 2)(2 5) Draws a yellow line from (2,2) to (2,5)
3 (3 2)(3 5) Draws a green line from (3,2) to (3,5)
4 (4 2)(4 5) Draws a cyan line from (4,2) to (4,5)
5 (5 2)(5 5) Draws a blue line from (5,2) to (5,5)

))

The following matrix represents a uniform scale of 1.0 and a translation of
5.0,5.0,0.0. If this matrix is applied to the preceding list of vectors, they will
be offset by 5.0,5.0,0.0.

"((1.0 0.0 0.0 5.0)

o o o
o o o
o o
OO‘C)
o~ o
coo
= o Ww
coo

(0.)
(0.)
(0.)

100 | AutoLISP Functions

See Also

The nentselp function for more information on transformation matrixes and
the grdraw function for a routine that draws a vector between two points.

handent

Returns an object (entity) name based on its handle

(handent handle)

The handent function returns the entity name of both graphic and non-
graphic entities.

Arguments

handle A string identifying an entity handle.

Return Values

If successful, handent returns the entity name associated with handle in the
current editing session. If handent is passed an invalid handle or a handle not
used by any entity in the current drawing, it returns nil.

The handent function returns entities that have been deleted during the cur-
rent editing session. You can undelete them with the entdel function.

An entity’s name can change from one editing session to the next, but an
entity’s handle remains constant.

Examples

Command: (handent "5A2")

<Entity name: 60004722>

Used with the same drawing but in another editing session, the same call
might return a different entity name. Once obtained, you can use the entity
name to manipulate the entity with any of the entity-related functions.

handent | 101

help

Invokes the help facility

102

(help [helpfile [topic [command]]])

Arguments

helpfile

topic

command

Return Values

A string naming the help file. The file extension is not
required with the helpfile argument. If a file extension is
provided, AutoCAD looks only for a file with the exact
name specified.

If no file extension is provided, AutoCAD looks for helpfile
with an extension of .chm. If no file of that name is found,
AutoCAD looks for a file with an extension of .hip.

A string identifying a Help topic ID. If you are calling a
topic within a CHM file, provide the file name without
the extension; AutoCAD adds an .htm extension.

A string that specifies the initial state of the Help window.
The command argument is a string used by the
uCommand (in HTML Help) or the fuCommand (in
WinHelp) argument of the HtmIHelp() and WinHelp()
functions as defined in the Microsoft Windows SDK.

For HTML Help files, the command parameter can be
HH_ALINK_LOOKUP or HH_DISPLAY_TOPIC. For
Windows Help files, the command parameter can be
HELP_CONTENTS, HELP_HELPONHELP, or
HELP_PARTIALKEY.

The helpfile string, if successful, otherwise nil. If you use help without any
arguments, it returns an empty string (") if successful, and nil if it fails.

The only error condition that the help function returns to the application is
the existence of the file specified by helpfile. All other error conditions are
reported to the user through a dialog box.

AutoLISP Functions

Examples

The following code calls help to display the information on MycoMManD in the
help file achelp.chm:

(help "achelp.chm" "mycommand")

See Also

The setfunhelp function associates context-sensitive help (when the user
presses F1) with a user-defined command.

if

Conditionally evaluates expressions

(if testexpr thenexpr [elseexpr])

Arguments

testexpr Expression to be tested.

thenexpr Expression evaluated if testexpr is not nil.
elseexpr Expression evaluated if testexpr is nil.

Return Values

The if function returns the value of the selected expression. If elseexpr is
missing and testexpr is nil, then if returns nil.

Examples

Command: (if (=1 3) "YES!!" "no.")

"nO."

Command: (if (=2 (+ 1 1)) "YES!!")
"YESII"

Command: (if (= 2 (+ 3 4)) "YES!!")
nil

See Also

The progn function.

if [103

initdia

Forces the display of the next command’s dialog box

(initdia [dialogflag])

Currently, the following commands make use of the initdia function:
ATTDEF, ATTEXT, BHATCH, BLOCK, COLOR, IMAGE, IMAGEADJUST, INSERT,
LAYER, LINETYPE, MTEXT, PLOT, RENAME, STYLE, TOOLBAR, and VIEW.

Arguments

dialogflag An integer. If this argument is not present or is present
and nonzero, the next use (and next use only) of a
command will display that command’s dialog box rather
than its command line prompts.

If dialogflag is zero, any previous call to this function is
cleared, restoring the default behavior of presenting the
command line interface.

Return Values

nil

Examples

Issue the PLOT command without calling initdia first:

Command: (command "_.PLOT")
plot

Enter a layout name <Model>: nil
Enter a layout name <Model>:

AutoCAD prompts for user input in the command window.

Use the following sequence of function calls to make AutoCAD display the
Plot dialog box:

(initdia)
(command "_.PLOT")

104 | AutoLISP Functions

initget

Establishes keywords for use by the next user-input function call

(initget [bits] [string])

The functions that honor keywords are getint, getreal, getdist, getangle,
getorient, getpoint, getcorner, getkword, entsel, nentsel, and nentselp.
The getstring function is the only user-input function that does not honor
keywords.

The keywords are checked by the next user-input function call when the user
does not enter the expected type of input (for example, a point to getpoint).
If the user input matches a keyword from the list, the function returns that
keyword as a string result. The application can test for the keywords and per-
form the action associated with each one. If the user input is not an expected
type and does not match a keyword, AutoCAD asks the user to try again. The
initget bit values and keywords apply only to the next user-input function
call.

If initget sets a control bit and the application calls a user-input function
for which the bit has no meaning, the bit is ignored.

If the user input fails one or more of the specified conditions (as in a zero
value when zero values are not allowed), AutoCAD displays a message and
asks the user to try again.

Arguments

bits A bit-coded integer that allows or disallows certain types
of user input. The bits can be added together in any
combination to form a value between 0 and 255. If no bits
argument is supplied, zero (no conditions) is assumed.
The bit values are as follows:

1 (bit 0) Prevents the user from responding to the
request by entering only ENTER.

2 (bit 1) Prevents the user from responding to the
request by entering zero.

initget | 105

106

string

Return Values

nil

AutoLISP Functions

4 (bit 2) Prevents the user from responding to the
request by entering a negative value.

8 (bit 3) Allows the user to enter a point outside the
current drawing limits. This condition applies to the next
user-input function even if the AutoCAD system variable
LIMCHECK is currently set.

16 (bit 4) (Not currently used.)

32 (bit5) Usesdashed lines when drawing a rubber-band
line or box. For those functions with which the user can
specify a point by selecting a location on the graphics
screen, this bit value causes the rubber-band line or box to
be dashed instead of solid. (Some display drivers use a
distinctive color instead of dashed lines.) If the system
variable POPUPS is 0, AutoCAD ignores this bit.

64 (bit 6) Prohibits input of a Z coordinate to the
getdist function; lets an application ensure that this
function returns a 2D distance.

128 (bit 7) Allows arbitrary input as if it is a keyword,
first honoring any other control bits and listed keywords.
This bit takes precedence over bit 0; if bits 7 and O are set
and the user presses ENTER, a null string is returned.

NOTE Future versions of AutoLISP may use additional
initget control bits, so avoid setting bits that are not listed
here.

A string representing a series of keywords. See “Keyword
Specifications” on page 107 for information on defining
keywords.

Function Applicable Control Bits

The special control values are honored only by those getxxx functions for
which they make sense, as indicated in the following table:

User-input functions and applicable control bits

Honors Control bits values

Function key
words No No No No Uses 2D Arbitrary

null zero negative limits dashes distance Input

O) (4) (8) (32) (64) (128)
getint
getreal i d 4 4 d
getdist
getangle e
getorient e
getpoint e
getcorner e o . . .
getkword e . .
entsel .
nentsel .

nentselp e

Keyword Specifications

The string argument is interpreted according to the following rules:

1 Each keyword is separated from the following keyword by one or more
spaces. For example, "width Height Depth" defines three keywords.

2 Fach keyword can contain only letters, numbers, and hyphens (-).

initget | 107

108

There are two methods for abbreviating keywords:

m The required portion of the keyword is specified in uppercase characters,
and the remainder of the keyword is specified in lowercase characters. The
uppercase abbreviation can be anywhere in the keyword (for example,
"LType", "eXit", OT "toP").

m The entire keyword is specified in uppercase characters, and it is followed
immediately by a comma, which is followed by the required characters
(for example, "LTYPE,LT"). The keyword characters in this case must
include the first letter of the keyword, which means that "ExIT, x" is not
valid.

The two brief examples, "LType" and "LTYPE,LT", are equivalent: if the user
types LT (in either uppercase or lowercase letters), this is sufficient to identify
the keyword. The user can enter characters that follow the required portion
of the keyword, provided they don’t conflict with the specification. In the
example, the user could also enter LTY or LTYP, but L would not be sufficient.

If string shows the keyword entirely in uppercase or lowercase characters with
no comma followed by a required part, AutoCAD recognizes the keyword
only if the user enters all of it.

The initget function provides support for localized keywords. The following
syntax for the keyword string allows input of the localized keyword while it
returns the language independent keyword:

"locall local2 localn _indepl indep2 indepn"

where locall through localn are the localized keywords, and indep1 through
indepn are the language-independent keywords.

There must always be the same number of localized keywords as language-
independent keywords, and the first language-independent keyword is
prefixed by an underscore as shown in the following example:

(initget "Abc Def _Ghi Jk1")
(getkword "\nEnter an option (Abc/Def): ")

Entering A returns Ghi and entering _J returns JkI.

See Also

The “Control of User-Input Function Conditions” topic in the Visual LISP
Developer’s Guide.

AutoLISP Functions

inters

Finds the intersection of two lines

(inters ptl pt2 pt3 pt4 [onseg])

All points are expressed in terms of the current UCS. If all four point argu-
ments are 3D, inters checks for 3D intersection. If any of the points are 2D,
inters projects the lines onto the current construction plane and checks
only for 2D intersection.

Arguments

ptl One endpoint of the first line.

pt2 The other endpoint of the first line.

pt3 One endpoint of the second line.

pt4 The other endpoint of the second line.

onseg If specified as nil, the lines defined by the four pt

arguments are considered infinite in length. If the onseg
argument is omitted or is not nil, the intersection point
must lie on both lines or inters returns nil.

Return Values

If the onseg argument is present and is nil, inters returns the point where
the lines intersect, even if that point is off the end of one or both of the lines.
If the onseg argument is omitted or is not nil, the intersection point must lie
on both lines or inters returns nil. The inters function returns nil if the
two lines do not intersect.

Examples

(setg a '(1.0 1.0) b '"(9.0 9.0))
(setg ¢ '(4.0 1.0) d '(4.0 2.0))

Command: (inters a b c d)
nil

Command: (intersab cd T)
nil

Command: (inters a b c d nil)
(4.0 4.0)

inters | 109

itoa

Returns the conversion of an integer into a string

(itoa int)

Arguments

int An integer.

Return Values

A string derived from int.

Examples
Command: (itoa 33)
l|33l|

Command: (itoa -17)
l|_’| 7l|

See Also

The atoi function.

lambda

Defines an anonymous function

(lambda arguments expr...)

Use the 1lambda function when the overhead of defining a new function is not
justified. It also makes the programmer’s intention more apparent by laying
out the function at the spot where it is to be used. This function returns the
value of its last expr, and is often used in conjunction with apply and/or
mapcar to perform a function on a list.

Arguments
arguments Arguments passed to an expression.
expr An AutoLISP expression.

110 | AutoLISP Functions

Return Values

The value of the last expr.

Examples

The following examples demonstrate the 1ambda function from the Visual
LISP Console window:
_$ (apply '(lambda (x y 2z)

(* x (- v 2))

)
(5 20 14)

)
30

_$ (setq counter 0)

(mapcar ' (lambda (x)
(setq counter (1+ counter))
(* x 5)

)
"(2 4 -6 10.2)

)
0

(10 20 -30 51.0)

last

Returns the last element in a list

(last Ist)

Arguments
Ist A list.

Return Values

An atom or a list.

Examples

Command: (last '(ab cd e))
E

Command: (last '(a b c (d e)))
(DE)

last | 111

layoutlist

Returns a list of all paper space layouts in the current drawing

(layoutlist)

Return Values

A list of strings.

Examples

Command: (layoutlist)
("Layout1" "Layout2")

length

Returns an integer indicating the number of elements in a list

(length 1st)

Arguments
Ist A list.

Return Values

An integer.

Examples

Command: (length '(a b c d))
4

Command: (length '(a b (c d)))
3

Command: (Iength '())
0

See Also
The vl-list-length function.

112 | AutoLISP Functions

list

Takes any number of expressions, and combines them into one list

listp

(list [expr...])

This function is frequently used to define a 2D or 3D point variable (a list of
two or three reals).

Arguments

expr An AutoLISP expression.

Return Values

A list, unless no expressions are supplied, in which case 1ist returns nil.

Examples

_$ (list'a'b'c)
(A B C)

_$ (list'a'(bc)'d)
(A (B C) D)

s (list3.96.7)
(3.9 6.7)

As an alternative to using the list function, you can explicitly quote a list
with the quote function if there are no variables or undefined items in the
list. The single quote character (') is defined as the quote function.

_$'396.7) means the same as (list 3.9 6.7)

This can be useful for creating association lists and defining points.

See Also

The quote, vl-list*, and vl-list-length functions.

Verifies that an item is a list

(listp item)

Arguments

item Any atom, list, or expression.

list | 113

Return Values

T if item is a list, ni1 otherwise. Because nil is both an atom and a list, the
listp function returns T when passed nil.
Examples

Command: (listp '(a b c))

T

Command: (listp 'a)

nil

Command: (listp 4.343)

nil

Command: (listp nil)

T

Command: (listp (setq v1 '(1 2 43)))
T
See Also

The vl-list* and vl-list-length functions.

load

Evaluates the AutoLISP expressions in a file

(load filename [onfailure])

The 1o0ad function can be used from within another AutoLISP function, or
even recursively (in the file being loaded).

Arguments

filename A string that represents the file name. If the filename
argument does not specify a file extension, load adds an
extension to the name when searching for a file to load.
The function will try several extensions, if necessary, in
the following order:

m vix
m .fas
m sp

114 | AutoLISP Functions

onfailure

Return Values

As soon as load finds a match, it stops searching and loads
the file.

The filename can include a directory prefix, as in “c:/
function/test1”. A forward slash (/) or two backslashes (\\)
are valid directory delimiters. If you don't include a
directory prefix in the filename string, 1oad searches the
AutoCAD library path for the specified file. If the file is
found anywhere on this path, 1oad then loads the file.

A value returned if 1oad fails.

If the onfailure argument is a valid AutoLISP function, it is
evaluated. In most cases, the onfailure argument should be
a string or an atom. This allows an AutoLISP application
calling load to take alternative action upon failure.

Unspecified, if successful. If 1o0ad fails, it returns the value of onfailure; if
onfailure is not defined, failure results in an error message.

Examples

For the following examples, assume that file /fred/test1.lsp contains the

expressions

(defun MY-FUNC1 (x)
. « « function body. . .

)

(defun MY-FUNC2 (x)
. « « function body. . .

and that no file named test2 with a .Isp, .fas, or .vlx extension exists:

Command: (load "/fred/test1")

MY-FUNC2

Command: (load "\\fred\\test1")

MY-FUNC2

Command: (load "/fred/test1" "bad")

MY-FUNC2

Command: (load "test2" "bad")

"bad"

Command: (load "test2") causes an AutoLISP error

load 115

See Also

The defun and vl-load-all functions in this reference, and “Symbol and Func-
tion Handling” in the Visual LISP Developer’s Guide.

load_dialog

Loads a DCL file

log

(load_dialog dclfile)

The 1oad_dialog function searches for files according to the AutoCAD
library search path.

This function is the complement of unload_dialog. An application can load
multiple DCL files with multiple 1oad_dialog calls.

Arguments

dclfile A string that specifies the DCL file to load. If the dclfile
argument does not specify a file extension, .dcl is
assumed.

Return Values

A positive integer value (dc1_id) if successful, or a negative integer if
load_dialog can’t open the file. The del_idisused as a handle in subsequent
new_dialog and unload_dialog calls.

Returns the natural log of a number as a real number

116

(log num)

Arguments

num A positive number.

Return Values

A real number.

AutoLISP Functions

Examples

Command: (log 4.5)
1.50408

Command: (log 1.22)
0.198851

logand

Returns the result of the logical bitwise AND of a list of integers

(logand [int int...])

Arguments

int An integer.

Return Values

An integer (0, if no arguments are supplied).

Examples

Command: (logand 7 15 3)
3

Command: (logand 2 3 15)
2

Command: (logand 8 3 4)
0

logior

Returns the result of the logical bitwise inclusive OR of a list of integers

(logior [int int...])

Arguments

int An integer.

logand | 117

Ish

Return Values

An integer (0, if no arguments are supplied).

Examples
Command: (logior 1 2 4)
7

Command: (logior 9 3)
11

Returns the logical bitwise shift of an integer by a specified number of bits

118

(1sh [int numbits])

Arguments
int An integer.
numbits Number of bits to shift int.

If numbits is positive, int is shifted to the left; if numbits is
negative, int is shifted to the right. In either case, zero bits
are shifted in, and the bits shifted out are discarded.

If numbits is not specified, no shift occurs.

Return Values

The value of int after the bitwise shift. The returned value is positive if the
significant bit (bit number 31) contains a O after the shift operation, other-
wise it is negative. If no arguments are supplied, 1sh returns O.

The behavior is different from other languages (>> & << of C, C++, or Java)
where more than 32 left shifts (of a 32 bit integer) results 0. In right shift also
the integer appears again on every 32 shifts.

AutoLISP Functions

Examples

Command: (Ish 2 1)
4

Command: (Ish 2 -1)
1

Command: (Ish 40 2)
160

mapcar

Returns a list of the result of executing a function with the individual elements of a list
or lists are supplied as arguments to the function

(mapcar function listl... listn)

Arguments
function A function.
list1... listn One or more lists. The number of lists must match the

number of arguments required by function.

Return Values
A list.

Examples
Command: (setq a 10 b 20 c 30)
30

Command: (mapcar "1+ (list a b c))

(11 21 31)

This is equivalent to the following series of expressions:
(1+ a)

(1+ b)

(1+ ¢)

except that mapcar returns a list of the results.

mapcar | 119

max

The 1ambda function can specify an anonymous function to be performed by
mapcar. This is useful when some of the function arguments are constant or
are supplied by some other means. The following example, entered from the
Visual LISP Console window, demonstrates the use of 1ambda with mapcar:

_$ (mapcar '(lambda (x)
(+ x 3)

)
(10 20 30)

)
(13 23 33)

Returns the largest of the numbers given

120

(max [number number...])

Arguments

number A number.

Return Values

A number. If any of the arguments are real numbers, a real is returned, oth-
erwise an integer is returned. If no argument is supplied, max returns O.
Examples

Command: (max 4.07 -144)

4.07

Command: (max -88 19 5 2)
19

Command: (max 2.1 4 8)
8.0

AutoLISP Functions

mem

Displays the current state of the AutoLISP memory

(mem)

The mem function displays statistics on AutoLISP memory usage. The first line
of this statistics report contains the following information:

GC calls Number of garbage collection calls since AutoLISP started.
GC run time Total time spent collecting garbage (in milliseconds).

LISP objects are allocated in dynamic (heap) memory that is organized in seg-
ments and divided into pages. Memory is described under the heading,
“Dynamic memory segments statistics:”

PgSz Dynamic memory page size (in KB).

Used Number of pages used.

Free Number of free (empty) pages.

FMCL Largest contiguous area of free pages.

Segs Number of segments allocated.

Type Internal description of the types of objects allocated in

this segment. These include:

lisp stacks—LISP internal stacks

bytecode area—compiled code function modules
CONS memory—CONS objects

:new—untyped memory requests served using this
segment

DM Str—dynamic string bodies
DMxx memory—all other LISP nodes

bstack body—internal structure used for IO operations

mem 121

member

The final line in the report lists the minimal segment size and the number of
allocated segments. AutoLISP keeps a list of no more than three free seg-
ments, in order to save system calls for memory requests.

All heap memory is global; that is, all AutoCAD documents share the same
heap. This could change in future releases of AutoCAD.

Note that mem does not list all memory requested from the operating system,
only those requests served by the AutoLISP Dynamic Memory (DM) sub-
system; some AutoLISP classes do not use DM for memory allocation.

Return Values

nil

Examples

Command: (mem)

; GC calls: 23; GC run time: 298 ms
Dynamic memory segments statistic:
PgSz Used Free FMCL Segs Type
512 79 48 48 1 1lisp stacks
256 3706 423 142 16 bytecode area
4096 320 10 10 22 CONS memory

32 769 1213 1089 1 ::new
4096 168 12 10 12 DM Str
4096 222 4 4 15 DMxX memory
128 4 507 507 1 bstack body
Segment size: 65536, total used: 68, free: 0
nil

Searches a list for an occurrence of an expression and returns the remainder of the list,
starting with the first occurrence of the expression

122

(member expr 1lst)

Arguments
expr The expression to be searched for.
Ist The list in which to search for expr.

Return Values

A list, or nil, if there is no occurrence of expr in Ist.

AutoLISP Functions

Examples
Command: (member 'c'(ab cd e))
(CDE)

Command: (member 'q '(ab cd e))
nil

menucmd

Issues menu commands, or sets and retrieves menu item status

(menucmd string)

The menuemd function can switch between subpages in an AutoCAD menu.
This function can also force the display of menus. This allows AutoLISP pro-
grams to use image tile menus and to display other menus from which the
user can make selections. AutoLISP programs can also enable, disable, and
place marks in menu items.

Arguments

string A string that specifies a menu area and the value to assign
to that menu area. The string argument has the following
parameters.

"menu_area=value"

The allowed values of menu_area, shown in the following
list, are the same as they are in menu file submenu
references. For more information, see “Pull-Down and
Shortcut Menus” in the Customization Guide.

B1-B4 BUTTONS menus 1 through 4.

A1-A4 AUX menus 1 through 4.

PO-P16 Pull-down (POP) menus O through 16.
I Image tile menus.

S SCREEN menu.

T1-T4 TABLET menus 1 through 4.

M DIESEL string expressions.

Gmenugroup .nametag A menugroup and name tag.

menucmd 123

124

Return Values

nil

Examples

The following code displays the image tile menu MOREICONS.

(menucmd "I=moreicons") Loads the MOREICONS image tile menu
(menucmd "I=*") Displays the menu

The following code checks the status of the third menu item in the pull-
down menu popr11. If the menu item is currently enabled, the menucmd
function disables it.

(setq s (menucmd "P11.3=2")) Gets the status of the menu item
(if (= s "") If the status is an empty string,
(menucmd "P11.3=~") disable the menu item

)

The previous code is not foolproof. In addition to being enabled or disabled,
menu items can also receive marks. The code (menucmd "P11.3=2") could
return "!.", indicating that the menu item is currently checked. This code
would assume that the menu item is disabled and continue without disabling
it. If the code included a call to the wematch function, it could check the sta-
tus for an occurrence of the tilde (~) character and then take appropriate
action.

The menuemd function also allows AutoLISP programs to take advantage of the
DIESEL string expression language. Some things can be done much easier
with DIESEL than with the equivalent AutoLISP code. The following code
returns a string containing the current day and date:

(menucmd "M=$ (edtime, $ (getvar,date),DDDD\",\" D MONTH YYYY)")
returns "Sunday, 16 July 1995"

See Also

The Customization Guide for more information on using AutoLISP to access
menu label status, and for information on using DIESEL.

AutoLISP Functions

menugroup

Verifies that a menugroup is loaded

min

(menugroup groupname)

Arguments

groupname A string that specifies the menugroup name.

Return Values

If groupname matches a loaded menugroup the function returns the group-
name string; otherwise, it returns nil.

Returns the smallest of the numbers given

(min [number number...])

Arguments

number A number.

Return Values

A number. If any number argument is a real, a real is returned, otherwise an
integer is returned. If no argument is supplied, min returns O.

Examples

Command: (min 683 -10.0)
-10.0

Command: (min 73 2 48 5)
2

Command: (min 73.0 2 48 5)
2.0

Command: (min 2 4 6.7)
2.0

menugroup | 125

minusp

Verifies that a number is negative

(minusp num)
Arguments

num A number.

Return Values

T if number is negative, nil otherwise.

Examples
Command: (minusp -1)
T

Command: (minusp -4.293)
T

Command: (minusp 830.2)
nil

mode_tile

Sets the mode of a dialog box tile

126

(mode_tile key mode)

Arguments

key A string that specifies the tile. The key argument is case-
sensitive.

mode An integer that can be one of the following:

0 Enable tile

1 Disable tile

2 Set focus to tile

3 Select edit box contents
4

Flip image highlighting on or off

AutoLISP Functions

Return Values

nil

namedobjdict

Returns the entity name of the current drawing’s named object dictionary, which is the
root of all nongraphical objects in the drawing

(namedobjdict)

Using the name returned by this function and the dictionary access func-
tions, an application can access the nongraphical objects in the drawing.

nentsel

Prompts the user to select an object (entity) by specifying a point, and provides access
to the definition data contained within a complex object

(nentsel [msg])

The nentsel function prompts the user to select an object. The current
Object Snap mode is ignored unless the user specifically requests it. To pro-
vide additional support at the Command prompt, nentsel honors keywords
defined by a previous call to initget.

Arguments

msg A string to be displayed as a prompt. If omitted, the Select
object prompt is issued.

Return Values

When the selected object is not complex (i.e., not a 3D polyline or block),
nentsel returns the same information as entsel. However, if the selected
object is a 3D polyline, nentsel returns a list containing the name of the sub-
entity (vertex) and the pick point. This is similar to the list returned by
entsel, except that the name of the selected vertex is returned instead of the
polyline header. The nentsel function always returns the starting vertex of
the selected 3D polyline segment. Picking the third segment of the polyline,
for example, returns the third vertex. The Seqend subentity is never returned
by nentsel for a 3D polyline.

namedobjdict | 127

128

NOTE A lightweight polyline (Iwpolyline entity) is defined in the drawing
database as a single entity; it does not contain subentities.

Selecting an attribute within a block reference returns the name of the
attribute and the pick point. When the selected object is a component of a
block reference other than an attribute, nentsel returns a list containing four
elements.

The first element of the list returned from picking an object within a block is
the selected entity’s name. The second element is a list containing the coor-
dinates of the point used to pick the object.

The third element is called the Model to World Transformation Matrix. It is
a list consisting of four sublists, each of which contains a set of coordinates.
This matrix can be used to transform the entity definition data points from
an internal coordinate system called the Model Coordinate System (MCS), to
the World Coordinate System (WCS). The insertion point of the block that

contains the selected entity defines the origin of the MCS. The orientation of
the UCS when the block is created determines the direction of the MCS axes.

NOTE nentsel is the only AutoLISP function that uses a matrix of this type;
the nentselp function returns a matrix similar to those used by other AutoLISP
and ObjectARX functions.

The fourth element is a list containing the entity name of the block that con-
tains the selected object. If the selected object is in a nested block (a block
within a block), the list additionally contains the entity names of all blocks
in which the selected object is nested, starting with the innermost block and
continuing outward until the name of the block that was inserted in the
drawing is reported.

For information on converting MCS coordinates to WCS, see “Entity Context
and Coordinate Transform Data” in the “Using AutoLISP to Manipulate
AutoCAD Obijects” chapter of the Visual LISP Developer’s Guide.

Examples

Draw a 3Dpolyline with multiple line segments, then load and run the fol-
lowing function and select different segments of the line. Pick off of the line
and then pick the same segments again to see the subentity handle. Try it
with a lightweight polyline to see the difference.

AutoLISP Functions

(defun c:subent ()
(while
(setq Ent (entsel "\nPick an entity: "))
(print (strcat "Entity handle is: "
(cdr (assoc 5 (entget (car Ent))))))
)
(while
(setq Ent (nentsel "\nPick an entity or subEntity: "))
(print (strcat "Entity or subEntity handle is: "
(cdr (assoc 5 (entget (car Ent))))))
)
(prompt "\nDone.")
(princ)

)

See Also

The entsel, initget, and nentselp functions in this reference and “Entity
Name Functions” in the Visual LISP Developer’s Guide.

nentselp

Provides similar functionality to that of the nentsel function without the need for user
input

(nentselp [msg] [pt])

Arguments

msg A string to be displayed as a prompt. If omitted, the Select
object prompt is issued.

pt A selection point. This allows object selection without

user input.

Return Values
The nentselp function returns a 4 x 4 transformation matrix, defined as
follows:

Moo Mgy Mgz M3
Mo Mgy My; Mys
Mao My Mg, Mys
(Mzp M3y Mg, Mgy

nentselp | 129

The first three columns of the matrix specify scaling and rotation. The fourth
column is a translation vector.

The functions that use a matrix of this type treat a point as a column vector
of dimension 4. The point is expressed in homogeneous coordinates, where the
fourth element of the point vector is a scale factor that is normally set to 1.0.
The final row of the matrix, the vector [M3q M31; M3, M33], has the nominal
value of [0 0 0 1]; it is currently ignored by the functions that use this matrix
format. In this convention, applying a transformation to a point is a matrix
multiplication that appears as follows:

X’ Moo Mg; Mgz Mg X
Y’ Mg Mgy My, Myg| 1Y

Z' MZO I\/|21 I\/|22 M23 Z
100 |00 00 00 10] (10

This multiplication gives us the individual coordinates of the point as

follows:
X’ = XMgy+ YMg; + ZMg, + M5(1.0)
Y’ = XMy +YMy; +ZMy, + M 5(1.0)

Z/

XMoo+ Y My + ZM .y + Mg(1.0)

As these equations show, the scale factor and the last row of the matrix have
no effect and are ignored.

See Also

The nentsel function.

new_dialog

Begins a new dialog box and displays it, and can also specify a default action

(new_dialog dlgname dcl_id [action [screen-pt]])

Arguments

digname A string that specifies the dialog box.

130 | AutoLISP Functions

hot

dcl_id The DCL file identifier obtained by load_dialog.

action A string that contains an AutoLISP expression to use as the
default action. If you don’t want to define a default
action, specify an empty string (""). The action argument
is required if you specify screen-pt.

The default action is evaluated when the user picks an
active tile that doesn’t have an action or callback
explicitly assigned to it by action_tile or in DCL.

screen-pt A 2D point list that specifies the X, Y location of the dialog
box on the screen. The point specifies the upper-left
corner of the dialog box. If you pass the point as' (-1 -1),
the dialog box is opened in the default position (the
center of the AutoCAD graphics screen).

Return Values

T, if successful, otherwise nil.

See Also
The “Managing Dialog Boxes” chapter of the Visual LISP Developer’s Guide.

Verifies that an item evaluates to nil

(not item)

Typically, the null function is used for lists, and not is used for other data
types along with some types of control functions.

Arguments

item An AutoLISP expression.

Return Values

T if item evaluates to nil, nil otherwise.

not | 131

Examples

Command: (setq a 123 b "string" c nil)
nil

Command: (not a)
nil

Command: (not b)
nil

Command: (not ¢)
T

Command: (not '())
T

See Also

The null function.

nth

Returns the nth element of a list

(nth n Ist)

Arguments

n The number of the element to return from the list (zero is
the first element).

Ist The list.

Return Values

The nth element of Ist. If n is greater than the highest element number of Ist,
nth returns nil.

132 | AutoLISP Functions

null

Examples

Command: (nth3'(ab cde))
D

Command: (nth0'(ab cd e))
A

Command: (nth5'(ab cd e))
nil

Verifies that an item is bound to nil

(null item)

Arguments

item An AutoLISP expression.

Return Values

T if item evaluates to nil, nil otherwise.

Examples

Command: (setq a 123 b "string" c nil)
nil

Command: (null a)

nil

Command: (null b)

nil

Command: (null ¢)

T

Command: (null '())
T

See Also

The not function.

null

133

numberp

Verifies that an item is a real number or an integer

(numberp item)

Arguments

item An AutoLISP expression.

Return Values

T if item evaluates to a real or an integer, nil otherwise.

Examples

Command: (setq a 123 b 'a)
A

Command: (numberp 4)
T

Command: (numberp 3.8348)
T

Command: (numberp "Howdy")
nil

Command: (numberp a)
T

Command: (numberp b)
nil

Command: (numberp (eval b))
T

134 | AutoLISP Functions

open

Opens a file for access by the AutoLISP I/O functions

(open filename mode)

Arguments

filename

mode

Return Values

A string that specifies the name and extension of the file
to be opened. If you do not specify the full path name of
the file, open assumes you are referring to the AutoCAD
start-up directory.

Indicates whether the file is open for reading, writing, or
appending. Specify a string containing one of the
following letters:

r Open for reading.

w Open for writing. If filename does not exist, a new file
is created and opened. If filename already exists, its
existing data is overwritten. Data passed to an open file is
not actually written until the file is closed with the close
function.

a Open for appending. If filename does not exist, a new
file is created and opened. If filename already exists, it is
opened and the pointer is positioned at the end of the
existing data, so new data you write to the file is appended
to the existing data.

The mode argument can be uppercase or lowercase. Note
that in releases prior to AutoCAD 2000, mode had to be
specified in lowercase.

If successful, open returns a file descriptor that can be used by the other I/O
functions. If mode "r is specified and filename does not exist, open returns

nil.

open | 135

or

NOTE On DOS systems, some programs and text editors write text files with
an end-of-file marker (CTRL +Z, decimal ASCII code 26) at the end of the text.
When reading a text file, DOS returns an end-of-file status if a CTRL+Z marker
is encountered, even if that marker is followed by more data. If you intend to use
OPEN's "a" mode to append data to files produced by another program, be cer-
tain the other program does not insert CTRL+Z markers at the end of its text
files.

Examples
Open an existing file:

Command: (setq a (open "c:/program files/autocad 2000i/help/filelist.txt"

llrll))
#<file "c:/program files/autocad 2000i/help/filelist.txt">

The following examples issue open against files that do not exist:

Command: (setq f (open "c:\\my documents\\new.tst" "w"))
#<file "c:\\my documents\\new.tst">

Command: (setq f (open "nosuch.fil" "r"))
nil

Command: (setq f (open "logfile" "a"))
#<file "logfile">

Returns the logical OR of a list of expressions

136

(or [expr...])
The or function evaluates the expressions from left to right, looking for a

non-nil expression.

Arguments

expr The expressions to be evaluated.

AutoLISP Functions

osnap

Return Values

T, if a non-nil expression is found, or nil, if all of the expressions are nil or
no arguments are supplied.

Note that or accepts an atom as an argument and returns T if one is supplied.

Examples

Command: (or nil 45 '())
T

Command: (or nil '())
nil

Returns a 3D point that is the result of applying an Object Snap mode to a specified point

(osnap pt mode)

Arguments

pt A point.

mode A string that consists of one or more valid Object Snap
identifiers such as mid, cen, and so on, separated by
commas.

Return Values

A point, or nil, if the pick did not return an object (for example, there is no
geometry under the pick aperture, or the geometry is not applicable to the
selected object snap mode). The point returned by osnap depends on the cur-
rent 3D view, the AutoCAD entity around pt, and the setting of the APERTURE
system variable.

Examples

Command: (setq pt1 (getpoint))
(11.8637 3.28269 0.0)

Command: (setq pt2 (osnap pt1"_end,_int"))
(12.1424 3.42181 0.0)

osnap | 137

polar

Returns the UCS 3D point at a specified angle and distance from a point

(polar pt ang dist)

Arguments

pt A 2D or 3D point.

ang An angle expressed in radians relative to the X axis, with
respect to the current construction plane. Angles increase
in the counterclockwise direction.

dist Distance from the specified pt.

Return Values
A 2D or 3D point, depending on the type of point specified by pt.

Examples
Supplying a 3D point to polar:

Command: (polar '(1 1 3.5) 0.785398 1.414214)
(2.0 2.0 3.5)

Supplying a 2D point to polar:
Command: (polar '(1 1) 0.785398 1.414214)

(2.0 2.0)
prinl

Prints an expression to the command line or writes an expression to an open file

(prinl [expr [file-desc]])

Arguments

expr A string or AutoLISP expression. Only the specified expr is
printed; no newline or space is included.

file-desc A file descriptor for a file opened for writing.

138 | AutoLISP Functions

Return Values

The value of the evaluated expr. If called with no arguments, prinl returns a
null symbol.

Used as the last expression in a function, prin1 without arguments results in
a blank line printing when the function completes, allowing the function to
exit “quietly.”

Examples

Command: (setq a 123 b '(a))
A

Command: (prin1 'a)

AA

The previous command printed A and returned A.

Command: (prin1 a)
123123

The previous command printed 123 and returned 123.
Command: (prin1 b)

(A)A)

The previous command printed (A) and returned (A).

Each preceding example is displayed on the screen because no file-desc was
specified. Assuming that £ is a valid file-descriptor for a file opened for writ-
ing, the following function call writes a string to that file and returns the
string:

Command: (prin1 "Hello" f)
"Hello"

If expr is a string containing control characters, prinl expands these charac-
ters with a leading \, as shown in the following table:

Control codes

Code Description

A\ \ character

\" " character

\e Escape character

prinl | 139

princ

Control codes (continued)

Code Description

\n Newline character

\r Return character

\t TAB character

\nnn Character whose octal code is nnn

The following example shows how to use control characters:

Command: (prin1 (chr 2))
"\002""\002"

See Also
The “Displaying Messages” topic in the Visual LISP Developer’s Guide.

Prints an expression to the command line, or writes an expression to an open file

(princ [expr [file-desc]])

This function is the same as prinl, except control characters in expr are
printed without expansion. In general, prin1 is designed to print expressions
in a way that is compatible with 1oad, while princ prints them in a way that
is readable by functions such as read-1ine.

Arguments

expr A string or AutoLISP expression. Only the specified expr is
printed; no newline or space is included.

file-desc A file descriptor for a file opened for writing.

Return Values

The value of the evaluated expr. If called with no arguments, princ returns a
null symbol.

See Also
The “Displaying Messages” topic in the Visual LISP Developer’s Guide.

140 | AutoLISP Functions

print

Prints an expression to the command line, or writes an expression to an open file

progn

(print [expr [file-desc]])

This function is the same as prin1, except it prints a newline character before
expr, and prints a space following expr.

Arguments

expr A string or AutoLISP expression. Only the specified expr is
printed; no newline or space is included.

file-desc A file descriptor for a file opened for writing.

Return Values

The value of the evaluated expr. If called with no arguments, print returns a
null symbol.

See Also
The “Displaying Messages” topic in the Visual LISP Developer’s Guide.

Evaluates each expression sequentially and returns the value of the last expression

(progn [expr]...)

You can use progn to evaluate several expressions where only one expression
is expected.

Arguments

expr One or more AutoLISP expressions.

Return Values

The result of the last evaluated expression.

print | 141

Examples

The if function normally evaluates one then expression if the test expression
evaluates to anything but nil. The following example uses progn to evaluate
two expressions following if:
(if (= a b)
(progn
(princ "\nA = B ")
(setg a (+ a 10) b (- b 10))
)
)

See Also

The if function.

prompt

Displays a string on your screen’s prompt area

(prompt msg)

On dual-screen AutoCAD configurations, prompt displays msg on both
screens and is, therefore, preferable to princ.

Arguments

msg A string.
Return Values

nil

Examples

Command: (prompt "New value: ")
New value: nil

See Also
The “Displaying Messages” topic in the Visual LISP Developer’s Guide.

142 | AutoLISP Functions

quit

Forces the current application to quit

(quit)

If quit is called, it returns the error message quit/exit abort and returns to the
AutoCAD Command prompt.

See Also

The exit function.

quote

Returns an expression without evaluating it

(quote expr)

Arguments

expr An AutoLISP expression.

Return Values

The expr argument.

Examples

Command: (quote a)
A

The previous expression can also be written as 'a. For example:

Command: !'a
A

Command: (quote (a b))
(AB)

See Also

The function function.

quit | 143

read

Returns the first list or atom obtained from a string

(read [string])

The read function parses the string representation of any LISP data and
returns the first expression in the string, converting it to a corresponding
data type.

Arguments
string A string. The string argument should not contain blanks,
except within a list or string.

Return Values

A list or atom. The read function returns its argument converted into the cor-
responding data type. If no argument is specified, read returns nil.

If the string contains multiple LISP expressions separated by LISP symbol
delimiters such as blanks, new-line, tabs, or parentheses, only the first
expression is returned.

Examples

Command: (read "hello")
HELLO

Command: (read "hello there")
HELLO

Command: (read "\"Hi Y’all\"")
"Hi Y'all"

Command: (read "(a b ¢)")
(ABQ)

Command: (read "(a b c) (d)")
(ABCQ)

Command: (read "1.2300")
1.23

144 | AutoLISP Functions

Command: (read "87")
87

Command: (read "87 3.2")
87

read-char

Returns the decimal ASCII code representing the character read from the keyboard input
buffer or from an open file

(read-char [file-desc])

Arguments

file-desc A file descriptor (obtained from open) referring to an open
file. If no file-desc is specified, read-char obtains input
from the keyboard input buffer.

Return Values

An integer representing the ASCII code for a character. The read-char func-
tion returns a single newline character (ASCII code 10) whenever it detects
an end-of-line character or character sequence.

Examples

The following example omits file-desc, so read-char looks for data in the key-
board buffer:

Command: (read-char)

The keyboard buffer is empty, so read-char waits for user input.

ABC
65

The user entered ABC; read-char returned the ASCII code representing the
first character entered (A). The next three calls to read-char return the data

read-char | 145

read-line

remaining in the keyboard input buffer. This data translates to 66 (the ASCII
code for the letter B), 67 (C), and 10 (newline), respectively:

Command: (read-char)
66

Command: (read-char)
67

Command: (read-char)
10

With the keyboard input buffer now empty, read-char waits for user input
the next time it is called:

Command: (read-char)

Reads a string from the keyboard or from an open file, until an end-of-line marker is

encountered

146

(read-line [file-desc])

Arguments

file-desc A file descriptor (obtained from open) referring to an open
file. If no file-desc is specified, read-1ine obtains input
from the keyboard input buffer.

Return Values

The string read by read-1ine, without the end-of-line marker. If read-1ine

encounters the end of the file, it returns nil.

Examples

Open a file for reading:

Command: (setq f (open "c:\\my documents\\new.tst" "r"))
#<file "c:\\my documents\\new.tst">

Use read-1line to read a line from the file:

Command: (read-line f)
"To boldly go where nomad has gone before."

AutoLISP Functions

redraw

Obtain a line of input from the user:

Command: (read-line)
To boldly go
"To boldly go"

Redraws the current viewport or a specified object (entity) in the current viewport

(redraw [ename [mode]])

If redraw is called with no arguments, the function redraws the current view-
port. If called with an entity name argument, redraw redraws the specified
entity.

The redraw function has no effect on highlighted or hidden entities, how-
ever a REGEN command forces the entities to redisplay in their normal man-
ner.

Arguments
ename The name of the entity name to be redrawn.
mode An integer value that controls the visibility and

highlighting of the entity. The mode can be one of the
following values:

1 Show entity

2 Hide entity (blank it out)
3 Highlight entity

4 Unhighlight entity

The use of entity highlighting (mode 3) must be balanced
with entity unhighlighting (mode 4).

If ename is the header of a complex entity (a polyline or a block reference
with attributes), redraw processes the main entity and all its subentities if the
mode argument is positive. If the mode argument is negative, redraw operates
on only the header entity.

Return Values

The redraw function always returns nil.

redraw | 147

regapp

Registers an application name with the current AutoCAD drawing in preparation for
using extended object data

(regapp application)

Arguments

application A string naming the application. The name must be a
valid symbol table name. See the description of snvalid for
the rules AutoLISP uses to determine if a symbol name is
valid.

Return Values

If an application of the same name has already been registered, this function
returns nil; otherwise it returns the name of the application.

If registered successfully, the application name is entered into the APPID
symbol table. This table maintains a list of the applications that are using
extended data in the drawing.

Examples

(regapp "ADESK 4153322344")
(regapp "DESIGNER-v2.1-124753")

NOTE Itis recommended that you pick a unique application name. One way
of ensuring this is to adopt a naming scheme that uses the company or product
name and a unique number (like your telephone number or the current date/
time). The product version number can be included in the application name or
stored by the application in a separate integer or real-number field; for example,
(1040 2.1).

148 | AutoLISP Functions

rem

Divides the first number by the second, and returns the remainder

(rem [number number...])

Arguments

number Any number.

If you provide more than two numbers, rem divides the
result of dividing the first number by the second with the
third, and so on.

If you provide more than two numbers, rem evaluates the
arguments from left to right. For example, if you supply
three numbers, rem divides the first number by the
second, then takes the result and divides it by the third
number, returning the remainder of that operation.

Return Values

A number. If any number argument is a real, rem returns a real, otherwise rem
returns an integer. If no arguments are supplied, rem returns 0. If a single
number argument is supplied, rem returns number.

Examples

Command: (rem 42 12)
6

Command: (rem 12.0 16)
12.0

Command: (rem 26 7 2)
1

rem 149

repeat

Evaluates each expression a specified number of times, and returns the value of the last
expression

(repeat int [expr...])

Arguments
int An integer. Must be a positive number.
expr One or more atoms or expressions.

Return Values

The value of the last expression or atom evaluated. If expr is not supplied,
repeat returns nil.

Examples

Command: (setq a 10 b 100)
100

Command: (repeat 4 (setq a (+ a 10)) (setq b (+ b 100)))
500

After evaluation, a is 50, b is 500, and repeat returns 500.
If strings are supplied as arguments, repeat returns the last string:

Command: (repeat 100 "Me" "You")
I|Youl|

reverse

Returns a copy of a list with its elements reversed

(reverse 1lst)

Arguments
Ist A list.

Return Values
A list.

150 | AutoLISP Functions

Examples

Command: (reverse '((a) b ¢))
(CBA)

rtos

Converts a number into a string

(rtos number [mode [precision]])

The rtos function returns a string that is the representation of number
according to the settings of mode, precision, and the system variables UNIT-
MODE, DIMZIN, LUNITS, and LUPREC.

Arguments

number A number.

mode An integer specifying the linear units mode. The mode
corresponds to the values allowed for the AutoCAD
system variable lunits and can be one of the following
numbers:

1 Scientific
Decimal
Engineering (feet and decimal inches)

Architectural (feet and fractional inches)

v A W N

Fractional
precision An integer specifying the precision.

The mode and precision arguments correspond to the system variables LUNITS
and LUPREC. If you omit the arguments, rtos uses the current settings of
LUNITS and LUPREC.

Return Values

A string. The UNITMODE system variable affects the returned string when
engineering, architectural, or fractional units are selected (mode values 3, 4,
or5).

rtos 151

Examples

Set variable x:

Command: (setq x 17.5)
17.5

Convert the value of x to a string in scientific format, with a precision of 4:

Command: (setq fmtval (rtos x 1 4))
"1.7500E+01"

Convert the value of x to a string in decimal format, with 2 decimal places:

Command: (setq fmtval (rtos x 2 2))
"17.50"

Convert the value of x to a string in engineering format, with a precision of 2:

Command: (setq fmtval (rtos x 3 2))
l|'| I_S'SO\HH

Convert the value of x to a string in architectural format:

Command: (setq fmtval (rtos x 4 2))
l|'||_5 1/2\""

Convert the value of x to a string in fractional format:

Command: (setq fmtval (rtos x 5 2))
n—l 7 1/2n

Setting UNITMODE to 1 causes units to be displayed as entered. This affects
the values returned by rtos for engineering, architectural, and fractional for-
mats, as shown in the following examples:

Command: (setvar "unitmode" 1)
1

Command: (setq fmtval (rtos x 3 2))
l|'|l5'50\l|l|

Command: (setq fmtval (rtos x 4 2))
l|'| l5_'|/2\l|l|

Command: (setq fmtval (rtos x 5 2))
n—l 7_—| /2n

152 | AutoLISP Functions

See Also
The “String Conversions” topic in the Visual LISP Developer’s Guide.
set

Sets the value of a quoted symbol name to an expression

(set sym expr)

The set function is similar to setq except that set evaluates both of its argu-
ments whereas setq only evaluates its second argument.

Arguments
sym A symbol.
expr An AutoLISP expression.

Return Values

The value of the expression.

Examples
Each of the following commands sets symbol a to 5.0:

(set 'a 5.0)
(set (read "a") 5.0)
(setqg a 5.0)

Both set and setq expect a symbol as their first argument, but set accepts
an expression that returns a symbol, whereas setq does not, as the following
shows:

Command: (set (read "a") 5.0)
5.0

Command: (setq (read "a") 5.0)
; *** ERROR: syntax error

See Also

The setq function.

set | 153

set_tile

Sets the value of a dialog box tile

(set_tile key value)

Arguments
key

value

Return Values

A string that specifies the tile.

A string that names the new value to assign (initially set
by the value attribute).

The value the tile was set to.

setcfg

Writes application data to the AppData section of the acad.cfg file

154

(setcfg cfgname cfgval)

Arguments

cfgname

cfgval

Return Values

A string that specifies the section and parameter to set
with the value of cfgval. The cfgname argument must be a
string of the following form:

AppData/application_name/section_name/.../param_name

The string can be up to 496 characters long.

A string. The string can be up to 512 characters in length.
Larger strings are accepted by setcfg, but cannot be
returned by getcfg.

If successful, setcfg returns cfgval. If cfgname is not valid, setcfg returns nil.

AutoLISP Functions

Examples

The following code sets the WallThk parameter in the AppData/ArchStuff
section to 8, and returns the string “8”:

Command: (setcfg "AppData/ArchStuff/WallThk" "8")
l|8l|

See Also
The getcfg function.

setenv

Sets a system environment variable to a specified value

(setenv varname value)

Arguments

varname A string specifying the name of the environment variable
to be set. Environment variable names must be spelled
and cased exactly as they are stored in the system registry.

value A string specifying the value to set varname to.

Return Values

value

Examples

The following command sets the value of the MaxArray environment variable
to 10000:

Command: (setenv "MaxArray" "10000")
"10000"

Note that changes to settings might not take effect until the next time
AutoCAD is started.

See Also

The getenv function.

setenv | 155

setfunhelp

Registers a user-defined command with the Help facility so the appropriate help file and
topic are called when the user requests help on that command

156

(setfunhelp c:fname [helpfile [topic [command]]])

Arguments

c:fname A string specifying the user-defined command (the c:xxx
function). You must include the c: prefix.

helpfile A string naming the help file. The file extension is not
required with the helpfile argument. If a file extension is
provided, AutoCAD looks only for a file with the exact
name specified.

If no file extension is provided, AutoCAD looks for helpfile
with an extension of .chm. If no file of that name is found,
AutoCAD looks for file with an extension of .hlp.

topic A string identifying a Help topic ID. If you are calling a
topic within a CHM file, provide the file name without
the extension; AutoCAD adds an .htm extension.

command A string that specifies the initial state of the Help window.
The command argument is a string used by the
uCommand (in HTML Help) or the fuCommand (in
WinHelp) argument of the HtmlHelp() and WinHelp()
functions as defined in the Microsoft Windows SDK.

For HTML Help files, the command parameter can be
HH_ALINK_LOOKUP or HH_DISPLAY_TOPIC. For
Windows Help files, the command parameter can be
HELP_CONTENTS, HELP_HELPONHELP, or
HELP_PARTIALKEY.

Return Values

The string passed as c:fname, if successful, otherwise, nil.

This function verifies only that the c:fname argument has the c: prefix. It
does not verify that the c: fname function exists, nor does it verify the correct-
ness of the other arguments supplied.

AutoLISP Functions

Examples

The following example illustrates the use of set funhelp by defining a simple
function and issuing setfunhelp to associate the function with the circle
topic in the AutoCAD help file (acad.chm):

(defun c:foo ()
(getstring "Press Fl1 for help on the foo command:")

)

(setfunhelp "c:foo" "acad.chm" "circle")

After loading this code, issuing the foo command and then pressing F1 dis-
plays the circle topic.

This example works, but serves no real purpose. In the real world, you would
create your own help file and associate that help file and topic with your
function.

Define a function named test:

Command: (defun c:test()(getstring "\nTEST: ")(princ))
C:TEST

Associate the function with a call to help with the string “line”:

Command: (setfunhelp "c:test" "acad.chm" "line")
"c:test"

Run the test command and at the prompt, press F1; you should see the Help
topic for the AutoCAD LINE command.

NOTE When you use the defun function to define a c:xxx function, it
removes that function’s name from those registered by setfunhelp (if one
exists). Therefore, setfunhelp should only be called after the defun call, which
defines the user-defined command.

See Also

The defun and help functions.

setfunhelp | 157

setq

Sets the value of a symbol or symbols to associated expressions

(setq sym expr [sym expr]...)

This is the basic assignment function in AutoLISP. The setq function can
assign multiple symbols in one call to the function.

Arguments
sym A symbol. This argument is not evaluated.
expr An expression.

Return Values

The result of the last expr evaluated.

Examples
The following function call set variable a to 5.0:

Command: (setq a 5.0)
5.0

Whenever a is evaluated, it returns the real number 5.0.
The following command sets two variables, b and c:

Command: (setq b 123 c 4.7)
4.7

setq returns the value of the last variable set.
In the following example, s is set to a string:

Command: (setq s "it")
l|itl|

The following example assigns a list to x:

Command: (setq x '(a b))
(AB)

See Also
The “AutoLISP Variables” topic in the Visual LISP Developer’s Guide.

158 | AutoLISP Functions

setvar

Sets an AutoCAD system variable to a specified value

(setvar varname value)

Arguments
varname A string or symbol naming a variable.
value An atom or expression whose evaluated result is to be

assigned to varname. For system variables with integer
values, the supplied value must be between -32,768 and
+32,767.

Return Values

If successful, setvar returns value.

Examples
Set the AutoCAD fillet radius to 0.5 units:

Command: (setvar "FILLETRAD" 0.50)
0.5

Notes on Using setvar

Some AutoCAD commands obtain the values of system variables before
issuing any prompts. If you use setvar to set a new value while a command
is in progress, the new value might not take effect until the next AutoCAD
command.

When using the setvar function to change the AutoCAD system variable
ANGBASE, the value argument is interpreted as radians. This differs from the
AutoCAD SETVAR command, which interprets this argument as degrees.
When using the setvar function to change the AutoCAD system variable
SNAPANG, the value argument is interpreted as radians relative to the
AutoCAD default direction for angle 0, which is east or 3 o’clock. This also dif-
fers from the SETVAR command, which interprets this argument as degrees
relative to the ANGBASE setting.

NOTE The UNDO command does not undo changes made to the CVPORT sys-
tem variable by the setvar function.

setvar | 159

You can find a list of the current AutoCAD system variables in the Command
Reference.

See Also

The getvar function.

setview

Establishes a view for a specified viewport

(setview view_descriptor [vport_ id])

Arguments

view_descriptor An entity definition list similar to that returned by
tblsearch when applied to the VIEW symbol table.

vport_id An integer identifying the viewport to receive the new
view. If vport_id is O, the current viewport receives the new
view.

You can obtain the vport_id number from the CVPORT
system variable.

Return Values

If successful, the setview function returns the view_descriptor.
sin

Returns the sine of an angle as a real number expressed in radians

(sin ang)

Arguments

ang An angle, in radians.

Return Values

A real number representing the sine of ang, in radians.

160 | AutoLISP Functions

Examples

Command: (sin 1.0)

0.841471

Command: (sin 0.0)

0.0

slide_image

Displays an AutoCAD slide in the currently active dialog box image tile

(slide_image x1 yl width height sldname)

Arguments

x1

y1

width
height

sldname

X-offset from the upper-left corner of the tile, in pixels.
Must be a positive value.

Y-offset from the upper-left corner of the tile, in pixels.
Must be a positive value.

Width of the image, in pixels.
Height of the image, in pixels.

Identifies the slide. This argument can be a slide file (.sld)
or a slide in a slide library file (.slb). Specify sldname the
same way you would specify it for the VSLIDE command or
for a menu file (see the “Creating Images” topic in the
Visual LISP Developer’s Guide). Use one of the following
formats for sldname:

sldname or libname(sldname)

The first (upper-left) corner of the slide—its insertion point—is located at

(x1,y1), and the second (lower-right) corner is located at the relative distance
(wid, hgt) from the first (wid and hgt must be positive values). The origin (0,0)
is the upper-left corner of the image. You obtain the coordinates of the lower-
right corner by calling the dimension functions (dimx_tile and dimy_tile).

Return Values

A string containing sldname.

slide_image | 161

Examples

(slide_image
0
0
(dimx_tile "slide_ tile")
(dimy_tile "slide_ tile")
"myslide"

)

(end_image)

snvalid

Checks the symbol table name for valid characters

(snvalid sym name [flag])

The snvalid function inspects the system variable EXTNAMES to determine
the rules to enforce for the active drawing. If EXTNAMES is O, snvalid vali-
dates using the symbol name rules in effect prior to AutoCAD 2000. If
EXTNAMES is 1 (the default value), snvalid validates using the rules for
extended symbol names introduced with AutoCAD 2000. The following are
not allowed in any symbol names, regardless of the setting of EXTNAMES:

m Control and graphic characters
m Null strings
m Vertical bars as the first or last character of the name

AutoLISP does not enforce restrictions on the length of symbol table names
if extnames is 1.

Arguments
sym_name A string that specifies a symbol table name.
flag An integer that specifies whether the vertical bar character

is allowed within sym_name. The flag argument can be one
of the following:

0 Do not allow vertical bar characters anywhere in
sym_name. This is the default.

1 Allow vertical bar characters in sym_name, as long as
they are not the first or last characters in the name.

Return Values

T, if sym_name is a valid symbol table name, otherwise nil.

162 | AutoLISP Functions

If extnames is 1, all characters are allowed except control and graphic charac-
ters and the following:

Characters disallowed in symbol table names

<> less-than and greater-than symbol

/\ forward slash and backslash

n

quotation mark

colon

? question mark

* asterisk

vertical bar

, comma

= equal sign

backquote

; Semi-colon (ASCII 59)

A symbol table name may contain spaces.

If extnames is O, symbol table names can consist of upper- and lowercase
alphabetic letters (e.g., A-Z), numeric digits (e.g., 0-9), and the dollar sign ($),
underscore (_), and hyphen (-) characters.

Examples

The following examples assume EXTNAMES is set to 1:

Command: (snvalid "hocus-pocus")
T

Command: (snvalid "hocus pocus")
T

Command: (snvalid "hocus%pocus")
T

snvalid | 163

The following examples assume EXTNAMES is set to O:

Command: (snvalid "hocus-pocus")
T

Command: (snvalid "hocus pocus")

nil

Command: (snvalid "hocus%pocus")

nil

The following example includes a vertical bar in the symbol table name:
Command: (snvalid "hocuslpocus")

nil

By default, the vertical bar character is considered invalid in all symbol table

names.

In the following example, the flag argument is set to 1, so snvalid considers
the vertical bar character to be valid in sym_name, as long as it is not the first
or last character in the name:

Command: (snvalid "hocuslpocus" 1)
T

sqrt

Returns the square root of a number as a real number

(sqrt num)

Arguments

num A number (integer or real).

Return Values

A real number.

Examples

Command: (sqrt 4)
2.0

Command: (sqrt 2.0)
1.41421

164 | AutoLISP Functions

ssadd

Adds an object (entity) to a selection set, or creates a new selection set

(ssadd [ename [ss]])

Arguments
ename An entity name.
ss A selection set.

If called with no arguments, ssadd constructs a new selection set with no
members. If called with the single entity name argument ename, ssadd con-
structs a new selection set containing that single entity. If called with an
entity name and the selection set ss, ssadd adds the named entity to the
selection set.

Return Values

The new or modified selection set.

Examples

When adding an entity to a set, the new entity is added to the existing set,
and the set passed as ss is returned as the result. Thus, if the set is assigned to
other variables, they also reflect the addition. If the named entity is already
in the set, the ssadd operation is ignored and no error is reported.

Set el to the name of the first entity in drawing:

Command: (setq el (entnext))
<Entity name: 1d62d60>

Set ss to a null selection set:

Command: (setq ss (ssadd))
<Selection set: 2>

The following command adds the el entity to the selection set referenced by
ss:

Command: (ssadd e1 ss)
<Selection set: 2>

ssadd | 165

ssdel

Get the entity following e1:

Command: (setq e2 (entnext el))
<Entity name: 1d62d68>

Add e2 to the ss entity:

Command: (ssadd e2 ss)
<Selection set: 2>

Deletes an object (entity) from a selection set

(ssdel ename ss)

Arguments
ename An entity name.
ss A selection set.

Return Values

The name of the selection set, or nil, if the specified entity is not in the set.

Note that the entity is actually deleted from the existing selection set, as
opposed to a new set being returned with the element deleted.

Examples

In the following examples, entity name el is a member of selection set ss,
while entity name e3 is not a member of ss:

Command: (ssdel e1 ss)
<Selection set: 2>

Selection set ss is returned with entity el removed.

Command: (ssdel e3 ss)
nil

The function returns nil because e3 is not a member of selection set ss.

166 | AutoLISP Functions

ssget

Creates a selection set from the selected object

(ssget [sel-method] [ptl [pt2]] [pt-list] [filter-list])

Selection sets can contain objects from both paper and model space, but
when the selection set is used in an operation, ssget filters out objects from
the space not currently in effect. Selection sets returned by ssget contain
main entities only (no attributes or polyline vertices).

Arguments

sel-method

A string that specifies the object selection method. Valid
selection methods are:

C Crossing selection.

CP Cpolygon selection (all objects crossing and inside of
the specified polygon).
F Fence selection.

I Implied selection (objects selected while PICKFIRST is in
effect).

L Last visible object added to the database.

P Last selection set created.

W Window selection.

WP WPolygon (all objects within the specified polygon).

X Entire database. If you specify the x selection method
and do not provide a filter-list, ssget selects all entities in
the database, including entities on layers that are off,
frozen, and out of the visible screen.

:E Everything within the cursor’s object selection
pickbox.

:N Call ssnamex for additional information on container
blocks and transformation matrices for any entities
selected during the ssget operation. This additional
information is available only for entities selected via
graphical selection methods such as Window, Crossing,
and point picks.

ssget | 167

168

Unlike the other object selection methods, :N may return
multiple entities with the same entity name in the
selection set. For example, if the user selects a subentity of
a complex entity such as a BlockReference, PolygonMesh,
or old style polyline, ssget looks at the subentity that is
selected when determining if it has already been selected.
However, ssget actually adds the main entity
(BlockReference, PolygonMesh, etc.) to the selection set.
The result could be multiple entries with the same entity
name in the selection set (each will have different
subentity information for ssnamex to report).

:S Allow single selection only.

ptl A point relative to the selection.

pt2 A point relative to the selection.

pt-list A list of points.

filter-list An association list that specifies object properties. Objects

that match the filter-list are added to the selection set.

If you omit all arguments, ssget prompts the user with the Select objects
prompt, allowing interactive construction of a selection set.

If you supply a point but do not specify an object selection method,
AutoCAD assumes the user is selecting an object by picking a single point.

Return Values

The name of the created selection set, if successful, or nil, if no objects were
selected.

Notes on the Object Selection Methods

m When using the :N selection method, if the user selects a subentity of a
complex entity such as a BlockReference, PolygonMesh, or old style
polyline, ssget looks at the subentity that is selected when determining if
it has already been selected. However, ssget actually adds the main entity
(BlockReference, PolygonMesh, etc.) to the selection set. It is therefore
possible to have multiple entries with the same entity name in the selec-
tion set (each will have different subentity information for ssnamex to
report). Because the :N method does not guarantee that each entry will be
unique, code that relies on uniqueness should not use selection sets cre-
ated using this option.

m When using the L selection method in an MDI environment, you cannot
always count on the last object drawn to remain visible. For example, if

AutoLISP Functions

your application draws a line, and the user subsequently minimizes or cas-
cades the AutoCAD drawing window, the line may no longer be visible. If
this occurs, ssget with the "L option will return nil.

Examples

Prompt the user to select the objects to be placed in a selection set:

Command: (ssget)

<Selection set: 2>

Create a selection set of the object passing through (2,2):

Command: (ssget '(2 2))

nil

Create a selection set of the most recently selected objects:

Command: (ssget "_P")

<Selection set: 4>

Create a selection set of the objects crossing the box from (0,0) to (1,1):

Command: (ssget "_C" '(0 0) '(1 1))

<Selection set: b>

Create a selection set of the objects inside the window from (0,0):

Command: (ssget "_W" '(0 0) '(5 5))

<Selection set: d>

By specitying filters, you can obtain a selection set that includes all objects of
a given type, on a given layer, or of a given color. The following example
returns a selection set that consists only of blue lines that are part of the
implied selection set (those objects selected while PICKFIRST is in effect):

Command: (ssget "_I"'((0 . "LINE") (62 . 5)))
<Selection set: 4>

The following examples of ssget require that a list of points be passed to the
function. The pt_1list variable cannot contain points that define zero-length
segments.

Create a list of points:

Command: (setq pt_list '((1 1)(3 1)(5 2)(2 4)))
@@NHENG22)

ssget | 169

ssgetfirst

Create a selection set of all objects crossing and inside the polygon defined
by pt_list:

Command: (ssget "_CP" pt_list)
<Selection set: 13>

Create a selection set of all blue lines inside the polygon defined by pt_list:

Command: (ssget "_WP" pt_list '((0 . "LINE") (62 . 5)))
<Selection set: 8>

The selected objects are highlighted only when ssget is used with no argu-
ments. Selection sets consume AutoCAD temporary file slots, so AutoLISP is
not permitted to have more than 128 open at one time. If this limit is
reached, AutoCAD refuses to create any more selection sets and returns nil
to all ssget calls. To close an unnecessary selection set variable, set it to nil.

A selection set variable can be passed to AutoCAD in response to any Select
objects prompt at which selection by Last is valid. It selects all the objects in
the selection set variable.

The current setting of Object Snap mode is ignored by ssget unless you spe-
cifically request it while you are in the function.

See Also

The “Selection Set Handling” and “Selection Set Filter Lists” topics in the
Visual LISP Developer’s Guide.

Determines which objects are selected and gripped

170

(ssgetfirst)

Returns a list of two selection sets similar to those passed to sssetfirst. The
first element in the list is a selection set of entities that are gripped but not
selected. The second element is a selection set of entities that are both
gripped and selected. Either (or both) elements of the list can be nil.

NOTE Only entities from the current drawing’s model space and paper space,
not nongraphical objects or entities in other block definitions, can be analyzed
by this function.

AutoLISP Functions

See Also

The ssget and sssetfirst functions.

sslength

Returns an integer containing the number of objects (entities) in a selection set

(sslength ss)

Arguments

ss A selection set.

Return Values

An integer.

Examples

Add the last object to a new selection set:

Command: (setq sset (ssget "L"))
<Selection set: 8>

Use sslength to determine the number of objects in the new selection set:

Command: (sslength sset)
1

ssmemb

Tests whether an object (entity) is a member of a selection set

(ssmemb ename ss)

Arguments
ename An entity name.
ss A selection set.

Return Values

If ename is a member of ss, ssmemb returns the entity name. If ename is not a
member, ssmemb returns nil.

sslength | 171

sshame

Examples

In the following examples, entity name e2 is a member of selection set ss,
while entity name el is not a member of ss:

Command: (ssmemb e2 ss)
<Entity name: 1d62d68>

Command: (ssmemb e1 ss)
nil

Returns the object (entity) name of the indexed element of a selection set

(ssname ss index)

Entity names in selection sets obtained with ssget are always names of main
entities. Subentities (attributes and polyline vertices) are not returned. (The
entnext function allows access to them.)

Arguments
ss A selection set.
index An integer (or real) indicating an element in a selection

set. The first element in the set has an index of zero. To
access entities beyond the 32767th one in a selection set,
you must supply the index argument as a real.

Return Values

An entity name, if successful. If index is negative or greater than the highest
numbered entity in the selection set, ssname returns nil.

Examples

Get the name of the first entity in a selection set:

Command: (setq ent1 (ssname ss 0))
<Entity name: 1d62d68>

Get the name of the fourth entity in a selection set:

Command: (setq ent4 (ssname ss 3))
<Entity name: 1d62d90>

172 | AutoLISP Functions

To access entities beyond the 32767th one in a selection set, you must supply
the index argument as a real, as in the following example:

(setqg entx (ssname sset 50843.0))

See Also

The entnext function.

sshamex

Retrieves information about how a selection set was created

(ssnamex ss [index])

Only selection sets with entities from the current drawing’s model space and
paper space—not nongraphical objects or entities in other block definitions—
can be retrieved by this function.

Arguments
ss A selection set.
index An integer (or real) indicating an element in a selection

set. The first element in the set has an index of zero.

Return Values

If successful, ssnamex returns the name of the entity at index, along with data
describing how the entity was selected. If the index argument is not supplied,
this function returns a list containing the entity names of all of the elements
in the selection set, along with data that describes how each entity was
selected. If index is negative or greater than the highest numbered entity in
the selection set, ssnamex returns nil.

The data returned by ssnamex takes the form of a list of lists that contains
information that either describes an entity and its selection method or a
polygon that was used to select one or more entities. Each sublist that
describes the selection of a particular entity comprises three parts: the selec-
tion method ID (an integer >= 0), the entity name of the selected entity, and
selection method specific data that describes how the entity was selected.

((sel_idl enamel (data))(sel_id2 ename2 (data)) ...)

ssnamex | 173

174

The following table lists the selection method IDs:

Selection method IDs

ID Description

0 nonspecific (i.e., Last All etc.)
1 Pick

2 Window or WPolygon

3 Crossing or CPolygon

4 Fence

Each sublist that describes a polygon and is used during entity selection takes
the form of a polygon ID (an integer < 0), followed by point descriptions.

(polygon_id point_description_1 point_description_n...)

Polygon ID numbering starts at —1 and each additional polygon ID is incre-
mented by -1. Depending on the viewing location, a point is represented as
one of the following: an infinite line, a ray, or a line segment. A point descrip-
tor comprises three parts: a point descriptor ID (the type of item being
described), the start point of the item, and an optional unit vector that
describes either the direction in which the infinite line travels or a vector that
describes the offset to the other side of the line segment.

(point_descriptor id base_point [unit_or offset_vector])

The following table lists the valid point descriptor IDs:

Point descriptor IDs

ID Description
0 Infinite line

1 Ray

2 Line segment

The unit_or_offset_vector is returned when the view point is something other
than 0,0,1.

AutoLISP Functions

Examples

The data associated with Pick (type 1) entity selections is a single point
description. For example, the following record is returned for the selection of
an entity picked at 1,1 in plan view of the WCS:

Command: (ssnamex ss3 0)
((1 <Entity name: 1d62da0> 0 (0 (1.0 1.0 0.0))))

The data associated with an entity selected with the Window, WPolygon,
Crossing, or CPolygon method is the integer ID of the polygon that selected
the entity. It is up to the application to associate the polygon identifiers and
make the connection between the polygon and the entities it selected. For
example, the following returns an entity selected by Crossing (note that the
polygon ID is -1):

Command: (ssnamex ss4 0)
((3 <Entity name: 1d62d60> 0 -1) (-1 (0 (-1.80879 8.85536 0.0)) (0 (13.4004
8.85536 0.0)) (0 (13.4004 1.80024 0.0)) (0 (-1.80879 1.80024 0.0))))

The data associated with Fence selections is a list of points and descriptions
for the points where the fence and entity visually intersect. For example, the
following command returns information for a nearly vertical line intersected
three times by a Z-shaped fence:

Command: (ssnamex ss5 0)
((4 <Entity name: 1d62d88> 0 (0 (5.28135 6.25219 0.0)) (0 (5.61868 2.81961
0.0)) (0 (5.52688 3.75381 0.0))))

sssetfirst

Sets which objects are selected and gripped

(sssetfirst gripset [pickset])

The selection set of objects specified by the gripset argument are gripped, and
the selection set of objects specified by pickset are both gripped and selected.
If any objects are common to both selection sets, sssetfirst grips and
selects the selection set specified by pickset only (it does not grip the gripset
set).

You are responsible for creating a valid selection set. For example, you may
need to verify that a background paper space viewport (DXF group code 69)

sssetfirst | 175

176

is not included in the selection set. You may also need to ensure that selected
objects belong to the current layout, as in the following code:

(setqg ss (ssget (list (cons 410 (getvar "ctab")))))

Arguments

gripset A selection set to be gripped. If gripset is nil and pickset is
specified, sssetfirst grips and selects pickset. If gripset is
nil and no pickset is specified, sssetfirst turns off the
grip handles and selections it previously turned on.

pickset A selection set to be selected.

Return Values

The selection set or sets specified.

Examples

First, draw a square and build three selection sets. Begin by drawing side 1
and creating a selection set to include the line drawn:

Command: (entmake (list (cons 0 "line") '(10 0.0 0.0 0.0)'(11 0.0 10.0 0.0)))
((0 . "line") (10 0.0 0.0 0.0) (11 0.0 10.0 0.0))

Command: (setq gripset (ssget"_I"))
<Selection set: a5>

Variable gripset points to the selection set created.
Draw side 2 and add it to the gripset selection set:

Command: (entmake (list (cons 0 "line") '(10 0.0 10.0 0.0)'(11 10.0 10.0 0.0)))
((0 . "line") (10 0.0 10.0 0.0) (11 10.0 10.0 0.0))

Command: (ssadd (entlast) gripset)
<Selection set: a5>

Create another selection set to include only side 2:

Command: (setq 2onlyset (ssget "_I"))
<Selection set: a8>

Draw side 3 and add it to the gripset selection set:

Command: (entmake (list (cons 0 "line") '(10 10.0 10.0 0.0)'(11 10.0 0.0 0.0)))
((0 . "line") (10 10.0 10.0 0.0) (11 10.0 0.0 0.0))

Command: (ssadd (entlast) gripset)
<Selection set: a5>

AutoLISP Functions

Create another selection and include side 3 in the selection set:

Command: (setq pickset (ssget "_I"))
<Selection set: ab>

Variable pickset points to the new selection set.
Draw side 4 and add it to the gripset and pickset selection sets:

Command: (entmake (list (cons 0 "line") '(10 10.0 0.0 0.0)'(11 0.0 0.0 0.0)))
((0 . "line") (10 10.0 0.0 0.0) (11 0.0 0.0 0.0))

Command: (ssadd (entlast) gripset)
<Selection set: a5>

Command: (ssadd (entlast) pickset)
<Selection set: ab>

At this point, gripset contains sides 1-4, pickset contains sides 3 and 4, and
2onlyset contains only side 2.

Turn grip handles on for all objects in the gripset selection set:

Command: (sssetfirst gripset)
(<Selection set: a5>)

Turn grip handles off for all objects in gripset:
Command: (sssetfirst nil)

(nil)

Turn grip handles on and select all objects in pickset:

Command: (sssetfirst nil pickset)
(nil <Selection set: ab>)

Turn on grip handles for all objects in 2onlyset, and select all objects in
pickset:

Command: (sssetfirst 2onlyset pickset)
(<Selection set: a8> <Selection set: ab>)

Each sssetfirst call replaces the gripped and selected selection sets from the
previous sssetfirst call. For example, after the following command is
issued, grips are turned on in 2onlyset, and no selection set is selected:

Command: (sssetfirst 2onlyset
(<Selection set: a8>)

sssetfirst | 177

startapp

NOTE Do not call sssetfirst when AutoCAD is in the middle of executing a
command.

See Also

The ssget and ssgetfirst functions.

Starts a Windows application

178

(startapp appcmd [file])

Arguments

appcmd A string that specifies the application to execute. If
appcmd does not include a full path name, startapp
searches the directories in the PATH environment variable
for the application.

file A string that specifies the file name to be opened.

Return Values

An integer greater than O, if successful, otherwise nil.

Examples

The following code starts the Windows Notepad and opens the acad.lsp file.

Command: (startapp "notepad" "acad.Isp")
33

If an argument has embedded spaces, it must be surrounded by literal double
quotes. For example, to edit the file my stuff.txt with Notepad, use the follow-
ing syntax:

Command: (startapp "notepad.exe" "\"my stuff.txt\"")
33

AutoLISP Functions

start_dialog

Displays a dialog box and begins accepting user input

(start_dialog)

You must first initialize the dialog box by a previous new_dialog call. The
dialog box remains active until an action expression or callback function
calls done_dialog. Usually done_dialog is associated with the tile whose key
is "accept" (typically the OK button) and the tile whose key is "cancel"
(typically the Cancel button).

The start_dialog function has no arguments.

Return Values

The start_dialog function returns the optional status passed to
done_dialog. The default value is 1 if the user presses OK, o if the user presses
Cancel, or -1 if all dialog boxes are terminated with term_dialog. If
done_dialog is passed an integer status greater than 1, start_dialog returns
this value, whose meaning is determined by the application.

start_image

Starts the creation of an image in the dialog box tile

(start_image key)

Subsequent calls to £ill_image, slide_image, and vector_image affect the

created image until the application calls end_image.

Arguments

key A string that specifies the dialog box tile. The key
argument is case-sensitive.

Return Values

The key argument, if successful, nil otherwise.

NOTE Do not use the set_tile function between start_image and
end_image function calls.

start_dialog | 179

start_list

Starts the processing of a list in the list box or in the pop-up list dialog box tile

180

(start_list key [operation [index]])

Subsequent calls to add_1list affect the list started by start_list until the
application calls end_1ist.

Arguments

key

operation

index

Return Values

A string that specifies the dialog box tile. The key
argument is case-sensitive.

An integer indicating the type of list operation to perform.
You can specify one of the following:

1 Change selected list contents
2 Append new list entry
3 Delete old list and create new list (the default)

A number indicating the list item to change by the
subsequent add_1ist call. The first item in the list is index
0. If not specified, index defaults to O.

The index argument is ignored if start_list is not
performing a change operation.

The name of the list that was started.

NOTE Do not use the set_tilefunction between start_list and end_list

function calls.

AutoLISP Functions

strcase

Returns a string where all alphabetic characters have been converted to uppercase or
lowercase

(strcase string [which])

Arguments
string A string.
which If specified as T, all alphabetic characters in string are

converted to lowercase. Otherwise, characters are
converted to uppercase.

Return Values

A string.

Examples

Command: (strcase "Sample")
"SAMPLE"

Command: (strcase "Sample" T)
"sample"

The strecase function will correctly handle case mapping of the currently
configured character set.

strcat

Returns a string that is the concatenation of multiple strings

(strcat [string [string]...])

Arguments

string A string.

Return Values

A string. If no arguments are supplied, strcat returns a zero-length string.

strcase 181

Examples
Command: (strcat "a" "bout")
"about"

Command: (strcat "a" "b" "c")
l|abcl|

Command: (strcat "a" "" "c")
l|acl|

Command: (strcat)

strlen

Returns an integer that is the number of characters in a string

(strlen [string]...)

Arguments

string A string.

Return Values

An integer. If multiple string arguments are provided, strlen returns the sum
of the lengths of all arguments. If you omit the arguments or enter an empty
string, strlen returns 0.

Examples

Command (strlen "abcd")
4

Command (strlen "ab")
2

Command (strlen "one" "two" "four")
10

Command (strlen)
0

Command (strlen "")
0

182 | AutoLISP Functions

subst

Searches a list for an old item and returns a copy of the list with a new item substituted
in place of every occurrence of the old item

(subst newitem olditem lst)

Arguments

newitem An atom or list.
olditem An atom or list.
Ist A list.

Return Values

A list, with newitem replacing all occurrences of olditem. If olditem is not
found in Ist, subst returns Ist unchanged.

Examples

Command: (setq sample '(a b (c d) b))

(AB(CD)B)

Command: (subst 'qq 'b sample)
(AQQ (CD)QQ)

Command: (subst 'qq 'z sample)
(AB(CD)B)

Command: (subst 'qq '(c d) sample)
(ABQQB)

Command: (subst '(qq rr) '(c d) sample)
(A B (QQRR) B)

Command: (subst '(qq rr) 'z sample)
(AB(CD)B)

When used in conjunction with assoc, subst provides a convenient means

of replacing the value associated with one key in an association list, as dem-
onstrated by the following function calls.

subst | 183

substr

Set variable who to an association list:

Command: (setq who '((first john) (mid q) (last public)))
((FIRST JOHN) (MID Q) (LAST PUBLIC))

The following sets o1d to (FIRST JOHN) and new to (FIRST J):

Command: (setq old (assoc 'first who) new '(first j))
(FIRST |)

Finally, replace the value of the first item in the association list:

Command: (subst new old who)
((FIRST J) (MID Q) (LAST PUBLIC))

Returns a substring of a string

(substr string start [length])

The substr function starts at the start character position of string and
continues for length characters.

Arguments

string A string.

start A positive integer indicating the starting position in string.
The first character in the string is position 1.

length A positive integer specifying the number of characters to

search through in string. If length is not specified, the
substring continues to the end of string.

NOTE The first character of string is character number 1. This differs from
other functions that process elements of a list (like nth and ssname) that count
the first element as 0.

Return Values

A string.

184 | AutoLISP Functions

Examples

Command: (substr "abcde" 2)

"bede”

Command: (substr "abcde" 2 1)

l|bl|

Command: (substr "abcde" 3 2)

"Cd"

tablet

Retrieves and sets digitizer (tablet) calibrations

(tablet code [rowl row2 row3 direction])

Arguments

code

rowl, row2,
row3

direction

Return Values

An integer that can be one of the following:

0 Return the current digitizer calibration. In this case,
the remaining arguments must be omitted.

1 Set the calibration according to the arguments that
follow. In this case, you must provide the new calibration
settings (row1, row2, row3, and direction).

Three 3D points. These three arguments specify the three
rows of the tablet’s transformation matrix.

The third element in row3 (Z) should always equal 1:
tablet returns it as 1 even you specify a different value in
row3.

One 3D point. This is the vector (expressed in the World
Coordinate System, or WCS) that is normal to the plane
that represents the surface of the tablet.

If the specified direction isn’t normalized, tablet corrects
it, so the direction it returns when you set the calibration
may differ from the value you passed.

If tablet fails, it returns nil and sets the ERRNO system variable to a value that
indicates the reason for the failure (see appendix C, “AutoLISP Error Codes”

tablet | 185

tblnext

in the Visual LISP Developer’s Guide). This can happen if the digitizer is not a
tablet.
Examples

A very simple transformation that can be established with tablet is the iden-
tity transformation:

(tablet 1 '(1 0 0) '(0 1 0) '(0 0 1) '(0 0 1))

With this transformation in effect, AutoCAD will receive, effectively, raw
digitizer coordinates from the tablet. For example, if you pick the point with
digitizer coordinates (5000,15000), AutoCAD will see it as the point in your
drawing with those same coordinates.

The TABMODE system variable allows AutoLISP routines to toggle the tablet
on and off.

See Also
The “Calibrating Tablets” topic in the Visual LISP Developer’s Guide.

Finds the next item in a symbol table

(tblnext table-name [rewind])

When tblnext is used repeatedly, it normally returns the next entry in the

specified table each time. The tblsearch function can set the next entry to be
retrieved. If the rewind argument is present and is not nil, the symbol table
is rewound and the first entry in it is retrieved.

Arguments

table-name A string that identifies a symbol table. Valid table-name
values are "LAYER", "LTYPE", "VIEW", "STYLE", "BLOCK",
"Ucs", "APPID", "DIMSTYLE", and "vPORT". The argument
is not case sensitive.

rewind If this argument is present and is not nil, the symbol table

is rewound and the first entry in it is retrieved.

Return Values

If a symbol table entry is found, the entry is returned as a list of dotted pairs
of DXF-type codes and values. If there are no more entries in the table, nil is
returned. Deleted table entries are never returned.

186 | AutoLISP Functions

Examples
Retrieve the first layer in the symbol table:

Command: (tblnext "layer" T)
((0 . "LAYER") (2.."0") (70 .0) (62 .7) (6 . "CONTINUOUS"))

The return values represent the following:

(0 . "LAYER") Symbol type

(2 . "0") Symbol name

(70 . 0) Flags

(62 . 7) Color number, negative if off
(6 . "CONTINUOUS") Linetype name

Note that there is no -1 group. AutoCAD remembers the last entry returned
from each table and returns the next one each time tblnext is called for that
table. When you begin scanning a table, be sure to supply a non-nil second
argument to rewind the table and to return the first entry.

Entries retrieved from the block table include a -2 group with the entity
name of the first entity in the block definition (if any). For example, the fol-
lowing command obtains information about a block called BOX:

Command: (tblnext "block")
((0 . "BLOCK") (2. "BOX")(70.0) (109.0 2.0 0.0) (-2 . <Entity name: 1dca370>))

The return values represent the following:

(0 . "BLOCK") Symbol type
(2 . "BOX") Symbol name
(70 . 0) Flags

(10 9.0 2.0 0.0) Origin X,Y,Z
(-2 . <Entity name: 1dca370>) First entity

The entity name in the -2 group is accepted by entget and entnext, but not
by other entity access functions. For example, you cannot use ssadd to put it
in a selection set. By providing the -2 group entity name to entnext, you can
scan the entities comprising a block definition; entnext returns nil after the
last entity in the block definition.

If a block contains no entities, the -2 group returned by tblnext is the entity
name of its endblk entity.

NOTE The vports function returns current vPoRrT table information, therefore
it may be easier to use vports as opposed to tblnext to retrieve this informa-
tion.

tblnext | 187

tblobjname

Returns the entity name of a specified symbol table entry

(tblobjname table-name symbol)

Arguments

table-name A string that identifies the symbol table to be searched.
The argument is not case sensitive.

symbol A string identifying the symbol to be searched for.

Return Values

The entity name of the symbol table entry, if found.

The entity name returned by tblobjname can be used in entget and entmod
operations.

Examples

The following command searches for the entity name of the block entry
“ESC-01":

Command: (tblobjname "block" "ESC-01")
<Entity name: 1dca368>

tblsearch

Searches a symbol table for a symbol name

(tblsearch table-name symbol [setnext])

Arguments

table-name A string that identifies the symbol table to be searched.
This argument is not case sensitive.

symbol A string identifying the symbol name to be searched for.
This argument is not case sensitive.

setnext If this argument is supplied and is not nil, the tblnext

entry counter is adjusted so the following tblnext call
returns the entry after the one returned by this tblsearch

188 | AutoLISP Functions

call. Otherwise, tblsearch has no effect on the order of
entries retrieved by tblnext.

Return Values

If tblsearch finds an entry for the given symbol name, it returns that entry
in the format described for tblnext. If no entry is found, tblsearch returns

nil.

Examples
The following command searches for a text style named “standard”:
Command: (tblsearch "style" "standard")

((0 . "STYLE") (2 . "STANDARD") (70 . 0) (40 . 0.0) (41 . 1.0) (50 . 0.0) (71 . 0)
(42.0.3) (3. "txt") (4 . "))

term_dialog

Terminates all current dialog boxes as if the user had canceled each of them

terpri

(term_dialog)

If an application is terminated while any DCL files are open, AutoCAD auto-
matically calls term_dialog. This function is used mainly for aborting nested
dialog boxes.

Return Values

The term_dialog function always returns nil.

Prints a newline to the command line

(terpri)

The terpri function is not used for file I/O. To write a newline to a file, use
prinl, princ, O print.

Return Values

nil

term_dialog | 189

textbox

Measures a specified text object, and returns the diagonal coordinates of a box that
encloses the text

(textbox elist)

Arguments

elist An entity definition list defining a text object, in the
format returned by entget.

If fields that define text parameters other than the text
itself are omitted from elist, the current (or default)
settings are used.

The minimum list accepted by textbox is that of the text
itself.

Return Values

A list of two points, if successful, otherwise nil.

The points returned by textbox describe the bounding box of the text object
asif its insertion point is located at (0,0,0) and its rotation angle is 0. The first
list returned is generally the point (0.0 0.0 0.0) unless the text object is
oblique or vertical, or it contains letters with descenders (such as g and p).
The value of the first point list specifies the offset from the text insertion
point to the lower-left corner of the smallest rectangle enclosing the text. The
second point list specifies the upper-right corner of that box. Regardless of
the orientation of the text being measured, the point list returned always
describes the bottom-left and upper-right corners of this bounding box.

Examples

The following command supplies the text and accepts the current defaults
for the remaining parameters:

Command: (textbox '((1 . "Hello world.")))
((0.000124126 -0.00823364 0.0) (3.03623 0.310345 0.0))

190 | AutoLISP Functions

textpage

Switches from the graphics screen to the text screen

(textpage)
The textpage function is equivalent to textscr.

Return Values

nil
textscr

Switches from the graphics screen to the text screen (like the AutoCAD Flip Screen func-
tion key)

(textscr)

Return Values

The textscr function always returns nil.

See Also

The graphscr function.

trace

Aids in AutoLISP debugging

(trace [function...])

The trace function sets the trace flag for the specified functions. Each time
a specified function is evaluated, a trace display appears showing the entry of
the function (indented to the level of calling depth) and prints the result of
the function.

If Visual LISP is active, trace output is sent to the Visual LISP Trace window.
If Visual LISP is not active, trace output goes to the AutoCAD command win-
dow.

textpage | 191

192

NOTE Once yous start Visual LISP during an AutoCAD session, it remains active
until you exit AutoCAD. Therefore, all trace output prints in the Visual LISP Trace
window for the remainder of that AutoCAD session. Exiting or closing Visual LISP
while AutoCAD is running only closes the IDE windows and places Visual LISP in
a quiescent state; it does not result in a true shutdown. You must reopen Visual
LISP to view the output in the Trace window.

Use untrace to turn off the trace flag.

Arguments

function A symbol that names a function. If no argument is
supplied, trace has no effect.

Return Values

The last function name passed to trace. If no argument is supplied, trace
returns nil.

Examples

Define a function named foo and set the trace flag for the function:

Command: (defun foo (x) (if (> x 0) (foo (1- x))))
FOO

Command: (trace foo)
FOO

Invoke foo and observe the results:

Command: (foo 3)
Entering (FOO 3)
Entering (FOO 2)
Entering (FOO 1)
Entering (FOO 0)
Result: nil
Result: nil
Result: nil
Result: nil

Clear the trace flag by invoking untrace:

Command: (untrace foo)
FOO

AutoLISP Functions

See Also

The untrace function.

trans

Translates a point (or a displacement) from one coordinate system to another

(trans pt from to [disp])

Arguments

pt

from

to

disp

A list of three reals that can be interpreted as either a 3D
point or a 3D displacement (vector).

An integer code, entity name, or 3D extrusion vector
identifying the coordinate system in which pt is
expressed. The integer code can be one of the following:

0 World (WCS)
1 User (current UCS)

2 If used with code O or 1, this indicates the Display
Coordinate System (DCS) of the current viewport. When
used with code 3, it indicates the DCS of the current
model space viewport.

3 Paper space DCS (used only with code 2)

An integer code, entity name, or 3D extrusion vector
identifying the coordinate system of the returned point.
See the from argument for a list of valid integer codes.

If present and is not nil, this argument specifies that pt is
to be treated as a 3D displacement rather than as a point.

If you use an entity name for the from or to arguments, it must be passed in
the format returned by the entnext, entlast, entsel, nentsel, and ssname
functions. This format lets you translate a point to and from the Object Coor-
dinate System (OCS) of a particular object. (For some objects, the OCS is
equivalent to the WCS; for these objects, conversion between OCS and WCS
is a null operation.) A 3D extrusion vector (a list of three reals) is another
method of converting to and from an object’s OCS. However, this does not
work for those objects whose OCS is equivalent to the WCS.

trans | 193

194

Return Values

A 3D point (or displacement) in the requested to coordinate system.

Examples
In the following examples, the UCS is rotated 90 degrees counterclockwise
around the World Z axis:

Command: (trans '(1.0 2.0 3.0) 0 1)
(2.0-1.03.0)

Command: (trans '(1.0 2.0 3.0) 1 0)
(-2.01.0 3.0)

The coordinate systems are discussed in greater detail in the Visual LISP Devel-
oper’s Guide, under the topic, “Coordinate System Transformations.”

For example, to draw a line from the insertion point of a piece of text (with-
out using Osnap), you convert the text object’s insertion point from the text
object’s OCS to the UCS.

(trans text-insert-point text-ename 1)

You can then pass the result to the From point prompt.

Conversely, you must convert point (or displacement) values to their desti-

nation OCS before feeding them to entmod. For example, if you want to move
a circle (without using the MOVE command) by the UCS-relative offset

(1,2,3), you need to convert the displacement from the UCS to the circle’s
OcCs:

(trans '(1 2 3) 1 circle-ename)
Then you add the resulting displacement to the circle’s center point.

For example, if you have a point entered by the user and want to find out
which end of a line it looks closer to, you convert the user’s point from the
UCS to the DCS.

(trans user-point 1 2)
Then you convert each of the line’s endpoints from the OCS to the DCS.
(trans endpoint line-ename 2)

From there you can compute the distance between the user’s point and each
endpoint of the line (ignoring the Z coordinates) to determine which end
looks closer.

The trans function can also transform 2D points. It does this by setting the
Z coordinate to an appropriate value. The Z component used depends on the

AutoLISP Functions

type

from coordinate system that was specified and on whether the value is to be
converted as a point or as a displacement. If the value is to be converted as a
displacement, the Z value is always 0.0; if the value is to be converted as a
point, the filled-in Z value is determined as shown in the following table.

Converted 2D point Z values

From Filled-in Z value

WCS 0.0

ucs Current elevation

OCS 0.0

DCS Projected to the current construction plane

(UCS XY plane + current elevation)

PSDCS Projected to the current construction plane
(UCS XY plane + current elevation)

Returns the type of a specified item

(type item)
Arguments

item A symbol.

Return Values

The data type of item. Items that evaluate to nil (such as unassigned sym-
bols) return nil. The data type is returned as one of the atoms listed in the
following table:

Data types returned by the type function

Data type Description
ENAME Entity names
EXRXSUBR External ObjectARX applications

type | 195

Data types returned by the type function (continued)

Data type Description

FILE File descriptors

INT Integers

LIST Lists

PAGETB Function paging table
PICKSET Selection sets

REAL Floating-point numbers

SAFEARRAY Safearray

STR Strings

SUBR Internal AutoLISP functions or functions loaded from
compiled (FAS or VLX) files.
Functions in LISP source files loaded from the AutoCAD
Command prompt may also appear as SUBR.

SYM Symbols

VARIANT Variant

USUBR User-defined functions loaded from LISP source files
VLA-object ActiveX objects

Examples

For example, given the following assignments:

(setqg a 123 r 3.45 s "Hello!" x '(a b c))
(setqg £ (open "name" "r"))

then

(type 'a) returns SYM
(type a) returns INT
(type f) returns FILE
(type r) returns REAL
(type s) returns STR
(type x) returns LIST
(type +) returns SUBR
(type nil) returns nil

196 | AutoLISP Functions

The following code example uses the type function on the argument passed

to it:
(defun isint (a)
(if (= (type a) 'INT) is TYPE integer?
T yes, return T
nil no, return nil

)
)

unload_dialog

Unloads a DCL file

(unload_dialog dcl_id)

Unloads the DCL file associated with dcl_id (obtained from a previous
new_dialog call) from memory.

It is generally not necessary to unload a DCL definition from memory, unless
you are running low on memory or need to update the DCL dialog definition
from a new file.

Arguments

dcl_id A DCL file identifier obtained from a previous
load_dialog call.

Return Values

The unload_dialog function always returns nil.

See Also

The load_dialog and new_dialog functions.
untrace

Clears the trace flag for the specified functions

(untrace [function...])

Arguments

function A symbol that names a function. If function is not
specified, untrace has no effect.

unload_dialog | 197

Return Values

The last function name passed to untrace. If function was not specified,
untrace returns nil.

Examples

The following command clears the trace flag for function foo:

Command: (untrace foo)
FOO

See Also

The trace function.

vector_image

Draws a vector in the currently active dialog box image

198

(vector_image x1 yl x2 y2 color)

This function draws a vector in the currently active dialog box image (opened
by start_image) from the point (x1,y1) to (x2,y2). The origin (0,0) is the

upper-left corner of the image. You can obtain the coordinates of the lower-
right corner by calling the dimension functions (dimx_tile and dimy_tile).

Arguments

x1 X coordinate of the first point.

y1 Y coordinate of the first point.

x2 X coordinate of the second point.

y2 Y coordinate of the second point.

color An AutoCAD color number, or one of the logical color

numbers shown in the following table:

AutoLISP Functions

Symbolic names for color attribute

Color number ADI mnemonic Description

-2 BGLCOLOR Current background of the AutoCAD graphics
screen

-15 DBGLCOLOR Current dialog box background color

-16 DFGLCOLOR Current dialog box foreground color (text)

-18 LINELCOLOR Current dialog box line color

Return Values

An integer representing the color of the vector.

Examples

(setqg color -2) ;; color of AutoCAD background screen

(vector_image
0
0
(dimx_tile "slide_ tile")
(dimy_tile "slide_ tile")
color

)

(end_image)

ver

Returns a string that contains the current AutoLISP version number

(ver)

The ver function can be used to check the compatibility of programs.

Return Values

The string returned takes the following form:

"Visual LISP version (nn)"

where version is the current version number and nn is a two-letter language

description.

ver | 199

Examples of the two-letter language descriptions are as follows:

(de) German
(en) US/UK
(es) Spanish
(fr) French
(it) Italian

Examples

Command: (ver)
"Visual LISP 2000 (en)"

vl-acad-defun

Defines an AutoLISP function symbol as an external subroutine

(vl-acad-defun ’‘symbol)
symbol A symbol identifying a function.

If a function does not have the c: prefix, and you want to be able to invoke
this function from an external ObjectARX application, you can use
vl-acad-defun to make the function accessible.

Return Values
Unspecified.

vl-acad-undefun

Undefines an AutoLISP function symbol so it is no longer available to ObjectARX appli-
cations

(vl-acad-undefun ’symbol)
symbol A symbol identifying a function.

You can use vl-acad-undefun to undefine a c: function or a function that
was exposed via vl-acad-defun.

Return Values

T, if successful, nil, if unsuccessful (for example, the function was not
defined in AutoLISP).

200 | AutoLISP Functions

vl-arx-import

Imports ObjectARX/ADSRX functions into a separate-namespace VLX

(vl-arx-import [’function | "application"])

By default, separate-namespace VLX applications do not import any func-
tions from ObjectARX/ADSRX applications. Use vl-arx-import to explicitly
import functions from ObjectARX/ADSRX applications.

Arguments
function A symbol naming the function to import.
application A string naming the application whose functions are to be

imported.

If no argument (or nil) is specified, vl-arx-import imports all function
names from the current document namespace.

Return Values
Unspecified.
If executed from a document VLX, this function does nothing and returns

nil, as all ADS-DEFUN function names are automatically imported to docu-
ment VLX applications.

Examples

To see how vl-arx-import works, try the following:

1 Copy the following code into the VLISP editor and save the file:

(vl-doc-export 'testarx)
(defun testarx ()
(princ "This function tests invoking an ARX app ")
(vl-arx-import 'c:cal)
(c:cal)
)
2 Use Make Application to build a VLX with this code. Select Separate-

Namespace Application Options.
3 Load geomcal.arx, if it is not already loaded.
4 Load and run the application.

To verify the effect of vl-arx-import, comment out the vl-arx-import call
in the code, save the change, then rebuild and run the application. Without
the vl-arx-import call, the c:cal function will not be found.

vl-arx-import | 201

In the example above, you could have replaced the vl-arx-import call with
the following:

(vl-arx-import "geomcal.arx")

This would import all functions defined in geomcal.arx, including c:cal.

vl-bb-ref

Returns the value of a variable from the blackboard namespace

(vl-bb-ref ‘variable)

Arguments

'variable A symbol identifying the variable to be retrieved.

Return Values

The value of the variable named by symbol.
Examples
Set a variable in the blackboard:

Command: (vl-bb-set 'foobar "Root toot toot")
"Root toot toot"

Use v1-bb-ref to retrieve the value of foobar from the blackboard:

Command: (vl-bb-ref 'foobar)
"Root toot toot"

See Also

The vl-bb-set function. Also, see “Sharing Data between Namespaces” in the
Visual LISP Developer’s Guide for a description of the blackboard namespace.

202 | AutoLISP Functions

vl-bb-set

Sets a variable in the blackboard namespace

(vl-bb-set ’‘symbol value)

Arguments
‘symbol A symbol naming the variable to be set.
value Any value, except a function.

Return Values

The value you assigned to symbol.

Examples

Command: (vl-bb-set 'foobar "Root toot toot")
"Root toot toot"

Command: (vl-bb-ref 'foobar)
"Root toot toot"

See Also

The vl-bb-ref function. Also, see “Sharing Data between Namespaces” in the
Visual LISP Developer’s Guide for a description of the blackboard namespace.

vl-catch-all-apply

Passes a list of arguments to a specified function and traps any exceptions

(vl-catch-all-apply 'function list)

Arguments

‘function A function. The function argument can be either a symbol
identifying a defun, Or a 1ambda expression.

list A list containing arguments to be passed to the function.

vl-bb-set | 203

Return Values

The result of the function call, if successful. If an error occurs,
vl-catch-all-apply returns an error object.

Examples

If the function invoked by vl-catch-all-apply completes successfully, it is
the same as using apply, as the following examples show:

_$ (setq catchit (apply '/ '(50 5)))
10

_$ (setq catchit (vl-catch-all-apply '/ '(50 5)))
10

The benefit of using vl-catch-all-apply is that it allows you to intercept
errors and continue processing. Look at what happens when you try to divide
by zero using apply:

_$ (setq catchit (apply '/ '(50 0)))
; error: divide by zero

When you use apply, an exception occurs and an error message displays.
Here is the same operation using vl-catch-all-apply

_$ (setq catchit (vl-catch-all-apply '/ '(50 0)))
#<%catch-all-apply-error%>

The vl-catch-all-apply function traps the error and returns an error object.
Use vl-catch-all-error-message to see the error message contained in the
error object:

_$ (vl-catch-all-error-message catchit)
"divide by zero"

See Also

The vl-catch-all-error-message and vl-catch-all-error-p functions in this refer-
ence and “Error Handling” in the Visual LISP Developer’s Guide.

vl-catch-all-error-message

Returns a string from an error object

(vl-catch-all-error-message error-obj)

Arguments

error-obj An error object returned by vl-catch-all-apply.

204 | AutoLISP Functions

Return Values

A string containing an error message.

Examples
Divide by zero using vl-catch-all-apply:

_$ (setq catchit (vl-catch-all-apply '/ '(50 0)))
#<%catch-all-apply-error%>

The vl-catch-all-apply function traps the error and returns an error object.
Use vl-catch-all-error-message to see the error message contained in the
error object:

_$ (vl-catch-all-error-message catchit)
"divide by zero"

See Also

The vl-catch-all-apply and vl-catch-all-error-p functions in this reference and
“Error Handling” in the Visual LISP Developer’s Guide.

vl-catch-all-error-p

Determines whether an argument is an error object returned from vl-catch-all-apply

(vl-catch-all-error-p arg)

Arguments

arg Any argument.

Return Values

T, if the supplied argument is an error object returned from
vl-catch-all-apply, nil otherwise.

Examples
Divide by zero using vl-catch-all-apply:

_$ (setq catchit (vl-catch-all-apply '/ '(50 0)))
#<%catch-all-apply-error%>

Use vl-catch-all-error-p to determine if the value returned by
vl-catch-all-apply is an error object:

_$ (vl-catch-all-error-p catchit)
T

vl-catch-all-error-p | 205

vl-cmdf

See Also

The vl-catch-all-apply and vl-catch-all-error-message functions, and “Error
Handling” in the Visual LISP Developer’s Guide.

Executes an AutoCAD command

206

Arguments

(vl-cmdf [arguments] ...)

The vi-cmdf function is similar to the command function, but differs from
command in the way it evaluates the arguments passed to it. The v1-emdf func-
tion evaluates all the supplied arguments before executing the AutoCAD
command, and will not execute the AutoCAD command if it detects an error
during argument evaluation. In contrast, the command function passes each
argument in turn to AutoCAD, so the command may be partially executed
before an error is detected.

If your command call includes a call to another function, vl-cmdf executes
the call before it executes your command, while command executes the call
after it begins executing your command.

Some AutoCAD commands may work correctly when invoked through
vl-cmdf, while failing when invoked through command. The v1-cmdf function
mainly overcomes the limitation of not being able to use getxxx functions
inside command.

Arguments

arguments AutoCAD commands and their options.

The arguments to the vl-cmdf function can be strings,
reals, integers, or points, as expected by the prompt
sequence of the executed command. A null string (") is
equivalent to pressing ENTER on the keyboard. Invoking
vl-cmdf with no argument is equivalent to pressing ESC
and cancels most AutoCAD commands.

AutoLISP Functions

Return Values
T

Note that if you issue v1-emdf from Visual LISP, focus does not change to the
AutoCAD window. If the command requires user input, you'll see the return
value (T) in the Console window, but AutoCAD will be waiting for input. You
must manually activate the AutoCAD window and respond to the prompts.
Until you do so, any subsequent commands will fail.

Examples

The differences between command and v1-cmdf are easier to see if you enter
the following calls at the AutoCAD Command prompt, rather than the VLISP
Console prompt:

Command: (command "line" (getpoint "point?") '(0 0) "")
line Specify first point: point?

Specify next point or [Undo]:

Command: nil

Using command, the LINE command executes first, then the getpoint function
is called.

Command: (VL-CMDF "line" (getpoint "point?") '(0 0) "")
point?line Specify first point:

Specify next point or [Undo]:

Command: T

Using vl-cmdf, the getpoint function is called first (notice the “point?”
prompt from getpoint), then the LINE command executes.

The following examples show the same commands, but pass an invalid point
list argument to the LINE command. Notice how the results differ:

Command: (command "line" (getpoint "point?") '(0) ")
line Specify first point: point?

Specify next point or [Undo]:

Command: ERASE nil

Select objects: Specify opposite corner: *Cancel*

0 found

The command function passes each argument in turn to AutoCAD, without
evaluating the argument, so the invalid point list is undetected.

Command: (VL-CMDF "line" (getpoint "point?") '(0) "")
point?Application ERROR: Invalid entity/point list.
nil

vl-emdf | 207

vl-consp

Because vl-cmdf evaluates each argument before passing the command to
AutoCAD, the invalid point list is detected and the command is not exe-
cuted.

See Also

The command function.

Determines whether or not a list is nil

(vl-consp list-variable)

The v1-consp function determines whether a variable contains a valid list
definition.

Arguments

list-variable A list.

Return Values

T, if list-variable is a list and is not nil, otherwise nil.

Examples

_$ (vl-consp nil)
nil

_$ (vl-comnsp t)
nil

_$ (vl-consp (cons 0 "LINE"))
T

vi-directory-files

Lists all files in a given directory

(vl-directory-files [directory pattern directories])

Arguments

directory A string naming the directory to collect files for; if nil or
absent, vl-directory-files uses the current directory.

208 | AutoLISP Functions

pattern A string containing a DOS pattern for the file name; if ni1
or absent, vl-directory-files assumes “*.*”

directories An integer that indicates whether the returned list should
include directory names. Specify one of the following:

-1 List directories only.
0 List files and directories (the default).

1 List files only.

Return Values

A list of file and path names, or nil, if no files match the specified pattern.

Examples

$ (vl-directory-files "c:/acadwin" "acad*.exe")

("ACAD.EXE" "ACADAPP.EXE" "ACADL.EXE" "ACADPS.EXE")

_$ (vl-directory-files "e:/acadwin" nil -1)

("." ".." "SUPPORT" "SAMPLE" "ADS" "FONTS" "IGESFONT" "SOURCE"
"ASE")

_$ (vl-directory-files "E:/acadl3c4" nil -1)
("." m.." "WIN" "COM" "DOS")

vl-doc-export

Makes a function available to the current document

(vl-doc-export ‘function)

When issued from a VLX that runs in its own namespace, vl-doc-export
exposes the specified function to any document namespace that loads the
VLX.

The v1-doc-export function should only be used at the top-level in a file,
never inside other forms (for example, not within a defun).

Arguments

‘function A symbol naming the function to be exported.

Return Values
Unspecified.

vl-doc-export | 209

Examples

The following code shows the contents of a file named kertrats.Isp. This file is
compiled into a VLX that runs in its own namespace. The VLX file is named
kertrats.vix. The vl-doc-export call makes the kertrats function visible to
any document that loads kertrats.vix:

(vl-doc-export 'kertrats)
(defun kertrats ()
(princ "This function goes nowhere")

)

vl-doc-import

Imports a previously exported function into a VLX namespace

210

(vl-doc-import application [’function...])

This function can be used in a separate-namespace VLX to import a function
that was previously exported from another VLX loaded from the same docu-
ment.

The v1-doc-import function should only be used at the top-level in a file,
never inside other forms (for example, not within a defun).

Arguments

application A string naming the VLX application whose functions are
to be imported. Do not include the .vix extension in the
name.

function One or more symbols naming functions to be imported. If

no functions are specified, all functions exported by
application will be imported.
Return Values

Unspecified.

Examples
Import function 1dataget from the 1datatest application:

(vl-doc-import "ldatatest" 'ldataget)
nil

AutoLISP Functions

vl-doc-ref

Retrieves the value of a variable from the current document’s namespace.

This function can be used by a separate-namespace VLX application to
retrieve the value of a variable from the current document’s namespace.

(vl-doc-ref ’symbol)

Arguments
‘symbol A symbol naming a variable.

Return Values
The value of the variable identified by symbol.

Examples

Command: (vl-doc-ref 'foobar)
"Rinky dinky stinky"

See Also

The vl-doc-set function.

vl-doc-set

Sets the value of a variable in the current document’s namespace.

(vl-doc-set ’symbol value)

This function can be used by a VLX application to set the value of a variable
that resides in the current document’s namespace.

If executed within a document namespace, vl-doc-set is equivalent to set.

Arguments
‘symbol A symbol naming a variable.
value Any value.

Return Values

The value set.

vl-doc-ref | 211

vl-every

Examples

Command: (vl-doc-set 'foobar "Rinky dinky stinky")
"Rinky dinky stinky"

See Also

The vl-doc-ref function.

Checks whether the predicate is true for every element combination

(vl-every predicate-function list [list]...)

The vi1-every function passes the first element of each supplied list as an
argument to the test function, followed by the next element from each list,
and so on. Evaluation stops as soon as one of the lists runs out.

Arguments

predicate- The test function. This can be any function that accepts as

function many arguments as there are lists provided with vi-every,
and returns T on any user-specified condition. The
predicate-function value can take one of the following
forms:

m A symbol (function name)
B ' (LAMBDA (Al A2) ...)
B (FUNCTION (LAMBDA (Al A2) ...))

list A list to be tested.

Return Values

T, if predicate-function returns a non-nil value for every element combina-
tion, nil otherwise.

Examples

Check whether there are any empty files in the current directory:

_$ (vl-every

'(lambda (fnm) (> (vl-file-size fnm) 0))
(vl-directory-files nil nil 1))

T

212 | AutoLISP Functions

Check whether the list of numbers in NLST is ordered by '<=:

_$ (setq nlst (list 0 2 pi pi 4))
(0 2 3.14159 3.14159 4)

_$ (vl-every '<= nlst (cdr nlst))
T

Compare the results of the following expressions:

_$ (vl-every '= '(1 2) '(1 3))
nil

_$ (vl-every '= '(1 2) '(1 2 3))
T

The first expression returned nil because vl-every compared the second ele-
ment in each list and they were not numerically equal. The second expres-
sion returned T because vl-every stopped comparing elements after it had
processed all the elements in the shorter list (1 2), at which point the lists
were numerically equal. If the end of a listis reached, vl-every returns a non-
nil value.

The following example demonstrates the result when vl-every evaluates one
list that contains integer elements and another list that is nil:

_$ (setq alist (list 1 2 3 4))
(12 3 4)

_$ (setq junk nil)
nil

_$ (vl-every '= junk alist)
T

The return value is T because vl-every responds to the nil list as if it has
reached the end of the list (even though the predicate hasn’t yet been applied
to any elements). And since the end of a list has been reached, vl-every
returns a non-nil value.

vl-exit-with-error

Passes control from a VLX error handler to the *error* function of the calling namespace

(vl-exit-with-error msg)

This function is used by VLX applications that run in their own namespace.
When vl-exit-with-error executes, it calls the *error* function, the stack
is unwound, and control returns to a command prompt.

vl-exit-with-error | 213

Arguments

msg A string.

Return Values

None.

Examples

The following code illustrates the use of vl-exit-with-error to pass a string
to the *error+* function of the calling namespace:

(defun *error* (msg)
. ; processing in VLX namespace/execution context
(vl -exit-with-error (strcat "My application bombed! " msg)))

See Also

The vl-exit-with-value function and “Handling Errors in an MDI Environ-
ment” in the Visual LISP Developer’s Guide.

vl-exit-with-value

Returns a value to the function that invoked the VLX from another namespace

214

(vl-exit-with-value value)

A VLX *error* handler can use the vl-exit-with-value function to return
a value to the program that called the VLX.

Arguments

value Any value.

Return Values

value

Examples

The following example uses vl-exit-with-value to return the integer value
3 to the function that invoked the VLX:

(defun *error* (msg)
; processing in VLX-T namespace/execution context
(vl-exit-with-value 3))

AutoLISP Functions

See Also

The vl-exit-with-error function and the “Handling Errors in an MDI Environ-
ment” topic in the Visual LISP Developer’s Guide.

vi-file-copy

Copies or appends the contents of one file to another file

(vl-file-copy source-file destination-file [append])

Copy or append the contents of one file to another file. The vl-file-copy
function will not overwrite an existing file, only append to it.

Arguments

source-file A string naming the file to be copied. If you do not specify
a full path name, vl-file-copy looks in the AutoCAD
start-up directory.

destination-file A string naming the destination file. If you do not specify
a path name, vl-file-copy writes to the AutoCAD start-
up directory.

append If specified and not nil, source-file is appended to

destination-file (that is, copied to the end of the destination
file).

Return Values

An integer, if the copy was successful, otherwise nil.

Some typical reasons for returning nil are:

source-file is not readable

source-file is a directory

append? is absent or nil and destination-file exists

destination-file cannot be opened for output (that is, it is an illegal file
name or a write-protected file)

source-file is the same as destination-file

Examples

Copy autoexec.bat to newauto.bat:

_$ (vl-file-copy "c:/autoexec.bat" "c:/newauto.bat")
1417

vl-file-copy | 215

Copy test.bat to newauto.bat:

_$ (vl-file-copy "c:/test.bat" "c:/newauto.bat")
nil

The copy fails because newauto.bat already exists, and the append argument
was not specified.

Repeat the previous command, but specify append:

_$ (vl-file-copy "c:/test.bat" "c:/newauto.bat" T)
185

The copy is successful because T was specified for the append argument.

vi-file-delete

Deletes a file

216

(vl-file-delete filename)

Arguments

filename A string containing the name of the file to be deleted. If
you do not specify a full path name, vi-file-delete
searches the AutoCAD start-up directory.

Return Values

T, if successful, nil if delete failed.

Examples
Delete newauto.bat:

_$ (vl-file-delete "newauto.bat")
nil

Nothing was deleted because there is no newauto.bat file in the AutoCAD
start-up directory.

Delete the newauto.bat file in the c:\ directory:

_$ (vl-file-delete "c:/newauto.bat")
T

The delete was successful because the full path name identified an existing
file.

AutoLISP Functions

vi-file-directory-p

Determines if a file name refers to a directory

(vl-file-directory-p filename)

Arguments

filename A string containing a file name. If you do not specify a full
path name, vli-file-directory-p searches only the
AutoCAD start-up directory.

Return Values

T, if filename is the name of a directory, nil if it is not.

Examples

_$ (vl-file-directory-p "sample")
T

_$ (vl-file-directory-p "yinyang")
nil

_$ (vl-file-directory-p "c:/program files/autocad 2000i")
T

_$ (vl-file-directory-p "c:/program files/autocad 2000i/visuallisp/

yinyang.lsp")
nil

vi-file-rename

Renames a file

(vl-file-rename old-filename new-filename)

Arguments

old-filename A string containing the name of the file you want to
rename. If you do not specify a full path name,
vl-file-rename looks in the AutoCAD start-up directory.

new-filename A string containing the new name to be assigned to the

file.

NOTE If you do not specify a path name, vl-file-rename
writes the renamed file to the AutoCAD start-up directory.

vl-file-directory-p | 217

Return Values

T, if renaming completed successfully, nil if renaming failed.

Examples

_$ (vl-file-rename "c:/newauto.bat"” "c:/myauto.bat")
T

vi-file-size

Determines the size of a file, in bytes

(vl-file-size filename)

Arguments

filename A string naming the file to be sized. If you do not specify
a full path name, vl-file-size searches the AutoCAD
start-up directory for the file.

Return Values

If successful, vi-file-size returns an integer showing the size of filename. If

the file is not readable, vi-file-size returns nil. If filename is a directory or

an empty file, vi-file-size returns 0.

Examples

_$ (vl-file-size "c:/autoexec.bat")
1417

_$ (vl-file-size "c:/")
0

In the preceding example, vl-file-size returned O because c:;/ names a
directory.

vi-file-systime

Returns last modification time of the specified file

(vl-file-systime filename)

Arguments

filename A string containing the name of the file to be checked.

218 | AutoLISP Functions

Return Values

A list containing the modification date and time, or nil, if the file is not
found.

The list returned contains the following elements:

year
month
day-of-week
day-of-month
hours
minutes
seconds

Note that Monday is day 1 of day-of-week, Tuesday is day 2, etc.

Examples
_$ (vl-file-systime

"c:/program files/autocad 2000i/sample/visuallisp/yinyang.lsp")
(1998 4 3 8 10 6 52 0)

The returned value shows that the file was last modified in 1998, in the 4th
month of the year (April), the 3rd day of the week (Wednesday), on the 10th
day of the month, at 6:52.

vil-fillename-base

Returns the name of a file, after stripping out the directory path and extension

(vl-filename-base filename)

Arguments

filename A string containing a file name. The vl-filename-base
function does not check to see if the file exists.

Return Values

A string containing filename in uppercase, with any directory and extension
stripped from the name.

vl-filename-base | 219

Examples

_$ (vl-filename-base "c:\\acadwin\\acad.exe")
"ACAD"

_$ (vl-filename-base "c:\\acadwin")
"ACADWIN"

vi-filename-directory

Returns the directory path of a file, after stripping out the name and extension

(vl-filename-directory filename)

Arguments

filename A string containing a complete file name, including the
path. The vl-filename-directory function does not
check to see if the specified file exists. Slashes (/) and
backslashes (\) are accepted as directory delimiters.
Return Values

A string containing the directory portion of filename, in uppercase.

Examples

_$ (vl-filename-directory "c:\\acadwin\\acad.exe")
"C:\\ACADWIN"

_$ (vl-filename-directory "acad.exe")

vil-filename-extension

Returns the extension from a file name, after stripping out the rest of the name

(vl-filename-extension filename)

Arguments

filename A string containing a file name, including the extension.
The vl-filename-extension function does not check to
see if the specified file exists.

220 | AutoLISP Functions

Return Values

A string containing the extension of filename. The returned string starts with
a period (.) and is in uppercase. If filename does not contain an extension,
vl-filename-extension returns nil.

Examples

_$ (vl-filename-extension "c:\\acadwin\\acad.exe")

"W _EXE"

_$ (vl-filename-extension "c:\\acadwin\\acad")

nil

vi-filename-mktemp

Calculates a unique file name to be used for a temporary file

(vl-filename-mktemp [pattern directory extension])

Arguments

pattern

directory

extension

Return Values

A string containing a file name pattern; if nil or absent,
vl-filename-mktemp uses “$VL~~".

A string naming the directory for temporary files; if nil or
absent, vl-filename-mktemp chooses a directory in the
following order:

The directory specified in pattern, if any.

The directory specified in the TMP environment variable.
The directory specified in the TEMP environment variable.
The current directory.

A string naming the extension to be assigned to the file; if
nil or absent, vl-filename-mktemp uses the extension
part of pattern (which may be an empty string).

A string containing a file name, in the following format:

directory\base<XXX><.extension>

where:

base is up to 5 characters, taken from pattern

XXX is a 3 character unique combination

vl-filename-mktemp | 221

All file names generated by vl-filename-mktemp during a VLISP session are
deleted when you exit VLISP.

Examples

_$ (vl-filename-mktemp)
"C:\\TMP\\$VL~~004"

_$ (vl-filename-mktemp "myapp.del")
"C:\\TMP\\MYAPP0O05.DEL"

_$ (vl-filename-mktemp "c:\\acadwin\\myapp.del")
"C:\\ACADWIN\ \MYAPP0O06 .DEL"

_$ (vl-filename-mktemp "c:\\acadwin\\myapp.del")
"C:\\ACADWIN\ \MYAPP0O7.DEL"

_$ (vl-filename-mktemp "myapp" "c:\\acadwin")
"C:\\ACADWIN\ \MYAPPOOS"

_$ (vl-filename-mktemp "myapp" "c:\\acadwin" ".del")
"C:\\ACADWIN\ \MYAPPOOA.DEL"

vl-get-resource

Returns the text stored in a .txt file packaged in a VLX

222

(vl-get-resource text-file)

Arguments

text-file A string naming a .txt file packaged with the VLX. Do not
include the .txt extension when specifying the file name.

Return Values

A string containing the text in text-file.

Examples

Assume the getres.vix file contains a LISP program defining a function named
print-readme, and a text file named readme.txt. The print-readme function
is defined as follows:

(defun print-readme ()
(princ (vl-get-resource "readme"))
(princ)

)

AutoLISP Functions

vi-list*®

After loading getres.vix, invoke print-readme:

_$ (print-readme)

There is very important information here!
Be sure to thoroughly read the following!
Are you ready?

Here it comes...

Constructs and returns a list

(vl-list* object [object]...)

Arguments
object Any LISP object.

Return Values

The vl-1list* function is similar to 1ist, but it will place the last object in the
final edr of the result list. If the last argument to vl-1ist* is an atom, the

result is a dotted list. If the last argument is a list, its elements are appended
to all previous arguments added to the constructed list. The possible return

values from v1-1list* are:

m An atom, if a single atom object is specified.

m A dotted pair, if all object arguments are atoms.

m A dotted list, if the last argument is an atom and neither of the previous

conditions are true.

m Alist, if none of the previous statements are true.

Examples

_$ (vl-list* 1)
1

_$ (vl-list* 0 "text")
(0 . "TEXT")

_$ (vl-list* 1 2 3)
(12 . 3)

_$ (vl-list* 1 2 ' (3 4))
(123 4)

See Also

The list function.

vl-list*

223

vl-list->string

Combines the characters associated with a list of integers into a string

(vl-list->string char-codes-list)

Arguments

char-codes-list A list of non-negative integers. Each integer must be less
than 256.

Return Values

A string of characters, with each character based on one of the integers sup-
plied in char-codes-list.

Examples
_$ (vl-list->string nil)

_$ (vl-list->string '(49 50))
"12"

See Also

The vl-string->list function.

vl-list-exported-functions

Lists exported functions

224

(vl-list-exported-functions [appname])

Arguments

appname A string naming a loaded VLX application. Do not include
the .vIx extension.

Return Values

A list of strings naming exported functions, or nil, if there are no functions
exported from the specified VLX. If appname is omitted or is nil,
vl-list-exported-functions returns a list of all exported functions (for
example, c¢: functions) except those exported from VLX namespaces.

AutoLISP Functions

Examples

$ (vl-list-exported-functions "whichexpns")

("WHICHNAMESPACE")

See Also

The vl-list-loaded-vlx function.

vl-list-length

Calculates list length of a true list

(vl-list-length list-or-cons-object)

Arguments

list-or-cons- A true or dotted list.
object

Return Values

An integer containing the list length, if the argument is a true list, or nil, if
list-or-cons-object is a dotted list.

Compatibility note: The vl-list-length function returns nil for a dotted
list, while the corresponding Common Lisp function issues an error message
if the argument is a dotted list.

Examples

_$ (vl-list-length nil)

0

_$ (vl-list-length '(1 2))

2

_$ (vl-list-length '(1 2 . 3))
nil

See Also

The listp function.

vl-list-length | 225

vi-list-loaded-vix

Returns a list of all separate-namespace VLX files associated with the current document.

226

(vl-list-loaded-vlx)

Return Values

Alist of symbols identifying separate-namespace VLX applications associated
with the current AutoCAD document, or nil if there are no VLX applications
associated with the current document.

The vl-list-loaded-vlx function does not identify VLX applications that
are loaded in the current document’s namespace.

Examples
Test for loaded VLX files associated with the current AutoCAD document:

_$ (vl-list-loaded-vlx)
nil

No VLX files are associated with the current document.

Load two VLX files; both VLX applications have been compiled to run in
their own namespace:

_$ (load "c:/my documents/visual lisp/examples/fool.vlx")

nil

_$ (load "c:/my documents/visual lisp/examples/foo2.vlx")

nil

Test for loaded VLX files associated with the current AutoCAD document:

$ (vl-list-loaded-vlx)

(FOO1 F002)
The two VLX files just loaded are identified by vl-list-loaded-v1x.

Load a VLX that was compiled to run in a document’s namespace:

_$ (load "c:/my documents/visual lisp/examples/foolocal.vlx")

nil

Test for loaded VLX files:

_$ (vl-list-loaded-vlx)

(FOO1 F002))

The last VLX loaded (foolocal.vlx) is not returned by vl-list-loaded-vlx
because the application was loaded into the document’s namespace; the VLX
does not have its own namespace.

AutoLISP Functions

vl-load-all

Loads a file into all open AutoCAD documents, and into any document subsequently
opened during the current AutoCAD session.

(vl-load-all filename)

Arguments

filename A string naming the file to be loaded. If the file is in the
AutoCAD Support File Search Path, you can omit the path
name, but you must always specify the file extension;
vl-load-all does not assume a file type.

Return Values

Unspecified. If filename is not found, vl-load-all issues an error message.

Examples

_$ (vl-load-all "c:/my documents/visual lisp/examples/whichns.1lsp")
nil

_$ (vl-load-all "yinyang.lsp")
nil
vil-load-com

Loads Visual LISP extensions to AutoLISP

(vl-load-com)

This function loads the extended AutoLISP functions provided with Visual
LISP. The Visual LISP extensions implement ActiveX and AutoCAD reactor
support through AutoLISP, and also provide ActiveX utility and data conver-
sion functions, dictionary handling functions, and curve measurement func-
tions.

If the extensions are already loaded, vl-1oad-com does nothing.

Return Values

Unspecified.

vl-load-all | 227

See Also

The load function in this reference and the “Using Extended AutoLISP Func-
tions” topic in the Visual LISP Developer’s Guide.

vl-load-reactors

Loads reactor support functions

(vl-load-reactors)

This function is identical to vl-load-com and is maintained for backward

compatibility.

See Also

The vl-load-com function.

vl-member-if

Determines if the predicate is true for one of the list members

228

(vl-member-if predicate-function list)

The vl-member-if function passes each element in list to the function spec-
ified in predicate-function. If predicate-function returns a non-nil value,
vl-member-if returns the rest of the list in the same manner as the member

function.

Arguments

predicate-
function

list

AutoLISP Functions

The test function. This can be any function that accepts a
single argument and returns T for any user-specified
condition. The predicate-function value can take one of the
following forms:

m A symbol (function name)
B ' (LAMBDA (Al A2) ...)
B (FUNCTION (LAMBDA (Al A2) ...))

A list to be tested.

Return Values

A list, starting with the first element that passes the test and containing all
elements following this in the original argument. If none of the elements
passes the test condition, vl-member-if returns nil.

Examples

The following command draws a line:

_$ (COMMAND " _.LINE" '(0 10) '(30 50) nil)

nil

The following command uses vl-member-if to return association lists
describing an entity, if the entity is a line:

_$ (vl-member-if
'(lambda (x) (= (cdr x) "AcDbLine"))
(entget (entlast)))
((100 . "AcDbLine") (10 0.0 10.0 0.0) (11 30.0 50.0 0.0) (210 0.0
0.0 1.0))

See Also

The vl-member-if-not function.

vl-member-if-not

Determines if the predicate is nil for one of the list members

(vl-member-if-not predicate-function list)

The vl-member-if-not function passes each element in list to the function
specified in predicate-function. If the function returns nil, vl-member-if-not
returns the rest of the list in the same manner as the member function.

Arguments
predicate- The test function. This can be any function that accepts a
function single argument and returns T for any user-specified
condition. The predicate-function value can take one of the
following forms:
m A symbol (function name)
B ' (LAMBDA (Al A2) ...)
B (FUNCTION (LAMBDA (Al A2) ...))
list A list to be tested.

vl-member-if-not | 229

Return Values

A list, starting with the first element that fails the test and containing all ele-
ments following this in the original argument. If none of the elements fails
the test condition, vl-member-if-not returns nil.

Examples

_$ (vl-member-if-not 'atom '(1 "Str" (0 . "line") nil t))
((0 . "line") nil T)

See Also

The vl-member-if function.

vl-position

Returns the index of the specified list item

230

(vl-position symbol list)

Arguments
symbol Any AutoLISP symbol.
list A true list.

Return Values

An integer containing the index position of symbol in list, or nil if symbol
does not exist in the list.

Note that the first list element is index O, the second element is index 1, and
SO on.

Examples

_$ (setq stuff (liSt ngq" "p" "gm" "gr nen))
(nan npn mgn o nwgn nen)

_$ (vl-position "c" stuff)
2

AutoLISP Functions

vl-prin|-to-string

Returns the string representation of LISP data as if it were output by the prin1 function

(vl-prinl-to-string data)

Arguments
data Any AutoLISP data.

Return Values

A string containing the printed representation of data as if displayed by
prinl.

Examples

_$ (vl-prinl-to-string "abc")
" \nabc\n "

_$ (vl-prinl-to-string "c:\\acadwin")
"\"C:\\\\ACADWIN\""

_$ (vl-prinl-to-string 'my-var)
"MY-VAR"

See Also
The vl-princ-to-string function.
vl-princ-to-string

Returns the string representation of LISP data as if it were output by the princ function

(vl-princ-to-string data)

Arguments
data Any AutoLISP data.

Return Values

A string containing the printed representation of data as if displayed by

princ.

vl-prinl-to-string | 231

Examples

_$ (vl-princ-to-string "abc")
n abc n

_$ (vl-princ-to-string "c:\\acadwin")
"C:\\ACADWIN"

_$ (vl-princ-to-string 'my-var)
"MY-VAR"

See Also
The vl-prin1-to-string function.
vl-propagate

Copies the value of a variable into all open document namespaces (and sets its value in
any subsequent drawings opened during the current AutoCAD session)

(vl-propagate 'symbol)

Arguments

symbol A symbol naming an AutoLISP variable.

Return Values
Unspecified.

Examples
Command: (vl-propagate 'radius)
nil

vl-registry-delete

Deletes the specified key or value from the Windows registry

(vl-registry-delete reg-key [val-name])

Arguments
reg-key A string specifying a Windows registry key.
val-name A string containing the value of the reg-key entry.

232 | AutoLISP Functions

If val-name is supplied and is not nil, the specified value will be purged from
the registry. If val-nameis absent or nil, the function deletes the specified key
and all of its values.

Return Values

T if successful, otherwise nil.

Examples

_$ (vl-registry-write "HKEY CURRENT USER\\Test" "" "test data")
"test data"

_$ (vl-registry-read "HKEY CURRENT USER\\Test")
"test data"

_$ (vl-registry-delete "HKEY CURRENT USER\\Test")
T

NOTE This function cannot delete a key that has subkeys. To delete a subtree
you must use vl-registry-descendents to enumerate all subkeys and delete
all of them.

See Also

The vl-registry-descendents, vl-registry-read, and vl-registry-write functions.

vl-registry-descendents

Returns a list of subkeys or value names for the specified registry key

(vl-registry-descendents reg-key [val-names])

Arguments
reg-key A string specifying a Windows registry key.
val-names A string containing the values for the reg-key entry.

If val-names is supplied and is not nil, the specified value names will be listed
from the registry. If val-name is absent or nil, the function displays all sub-
keys of reg-key.

Return Values

A list of strings, if successful, otherwise nil.

vl-registry-descendents | 233

Examples

_$ (vl-registry-descendents "HKEY LOCAL MACHINE\\SOFTWARE")
("Description" "Program Groups" "ORACLE" "ODBC" "Netscape"
"Microsoft")

See Also

The vl-registry-delete, vl-registry-read and vl-registry-write functions.

vl-registry-read

Returns data stored in the Windows registry for the specified key/value pair

234

(vl-registry-read reg-key [val-name])

Arguments
reg-key A string specifying a Windows registry key.
val-name A string containing the value of a registry entry.

If val-name is supplied and is not nil, the specified value will be read from
the registry. If val-name is absent or nil, the function reads the specified key
and all of its values.

Return Values

A string containing registry data, if successful, otherwise nil.

Examples

_$ (vl-registry-read "HKEY CURRENT USER\\Test")

nil

_$ (vl-registry-write "HKEY CURRENT USER\\Test" "" "test data")
"test data"

_$ (vl-registry-read "HKEY CURRENT USER\\Test")
"test data"

See Also

The vl-registry-delete, vl-registry-descendents, and vl-registry-write
functions.

AutoLISP Functions

vl-registry-write

Creates a key in the Windows registry

(vl-registry-write reg-key [val-name val-data])

Arguments

reg-key A string specifying a Windows registry key.
NOTE You cannotuse vl-registry-write for HKEY_USERS
or KEY_LOCAL_MACHINE.

val-name A string containing the value of a registry entry.

val-data A string containing registry data.

If val-name is not supplied or is nil, a default value for the key is written. If
val-name is supplied and val-data is not specified, an empty string is stored.

Return Values

vl-registry-write returns val-data, if successful, nil otherwise.

Examples

_$ (vl-registry-write "HKEY CURRENT USER\\Test" "" "test data")
"test data"

_$ (vl-registry-read "HKEY CURRENT USER\\Test")
"test data"

See Also

The vl-registry-delete, vl-registry-descendents, and vl-registry-read functions.

vl-remove

Removes elements from a list

(vl-remove element-to-remove 1list)

Arguments

element-to- The value of the element to be removed; may be any LISP
remove data type.

list Any list.

vl-registry-write | 235

Return Values

The list with all elements except those equal to element-to-remove.

Examples

_$ (vl-remove pi (list pi t 0 "abc"))
(T 0 "abc")

vl-remove-if

Returns all elements of the supplied list which fail the test function

(vl-remove-if predicate-function list)

Arguments
predicate- The test function. This can be any function that accepts a
function single argument and returns T for any user-specified
condition. The predicate-function value can take one of the
following forms:
m A symbol (function name)
E ' (LAMBDA (Al A2) ...)
B (FUNCTION (LAMBDA (Al A2) ...))
list A list to be tested.

Return Values

A list containing all elements of list for which predicate-function returns nil.

Examples
_$ (vl-remove-if 'vl-symbolp (list pi t 0 "abc"))
(3.14159 0 "abc")

vl-remove-if-not

Returns all elements of the supplied list which pass the test function

(vl-remove-if-not predicate-function list)

236 | AutoLISP Functions

Arguments

predicate-
function

list

Return Values

The test function. This can be any function that accepts a
single argument and returns T for any user-specified
condition. The predicate-function value can take one of the
following forms:

m A symbol (function name)
B ' (LAMBDA (Al A2) ...)
B (FUNCTION (LAMBDA (Al A2) ...))

A list to be tested.

Alist containing all elements of list for which predicate-function returns a non-

nil value

Examples

$ (vl-remove-if-not 'vl-symbolp (list pi t O "abc"))

(T)

vl-some

Checks whether the predicate is not nil for one element combination

(vl-some predicate-function list [list]...)

Arguments

predicate-
function

list

The test function. This can be any function that accepts as
many arguments as there are lists provided with vl-some,
and returns T on a user-specified condition. The predicate-
function value can take one of the following forms:

m A symbol (function name)
B ' (LAMBDA (Al A2) ...)
B (FUNCTION (LAMBDA (Al A2) ...))

A list to be tested.

vl-some | 237

vl-sort

The v1-some function passes the first element of each supplied list as an argu-
ment to the test function, then the next element from each list, and so on.
Evaluation stops as soon as the predicate function returns anon-nil value for
an argument combination, or until all elements have been processed in one
of the lists.

Return Values
The predicate value, if predicate-function returned a value other than ni1,
otherwise nil.

Examples

The following example checks whether nlst (a number list) has equal ele-
ments in sequence:

_$ (setq nlst (list 0 2 pi pi 4))
(0 2 3.14159 3.14159 4)

_$ (vl-some '= nlst (cdr nlst))
T

Sorts the elements in a list according to a given compare function

(vl-sort list comparison-function)

Arguments

list Any list.

comparison- A comparison function. This can be any function that
function accepts two arguments and returns T (or any non-nil

value) if the first argument precedes the second in the sort
order. The comparison-function value can take one of the
following forms:

m A symbol (function name)
B ' (LAMBDA (Al A2) ...)
B (FUNCTION (LAMBDA (Al A2) ...))

Return Values

A list containing the elements of list in the order specified by comparison-
function. Duplicate elements may be eliminated from the list.

238 | AutoLISP Functions

vl-sort-i

Examples
Sort a list of numbers:

_$ (vl-sort '(3 21 3) '<)
(1.2 3) ;

Note that the result list contains only one 3.
Sort a list of 2D points by Y coordinate:

_$ (vl-sort '((1 3) (2 2) (3 1))
(function (lambda (el e2)
(< (cadr el) (cadr e2)))))
((3 1) (2 2) (13))

Sort a list of symbols:

_$ (vl-sort
‘(adcb a)
' (lambda (sl s2)
(< (vl-symbol-name sl) (vl-symbol-name s2))))
(A B C D) ; Note that only one A remains in the result list

Sorts the elements in a list according to a given compare function, and returns the ele-
ment index numbers

(vl-sort-i list comparison-function)

Arguments

list Any list.

comparison- A comparison function. This can be any function that
function accepts two arguments and returns T (or any non-nil

value) if the first argument precedes the second in the sort
order. The comparison-function value can take one of the
following forms:

m A symbol (function name)
B ' (LAMBDA (Al A2) ...)
B (FUNCTION (LAMBDA (Al A2) ...))

Return Values

A list containing the index values of the elements of list, sorted in the order
specified by comparison-function. Duplicate elements will be retained in the
result.

vl-sort-i | 239

Examples
Sort a list of characters in descending order:

_$ (vl-sort-i '("a" "d" "f" "c") '>)
(213 0)

The sorted list order is “f” “d” “c” “a”; “f” is the 3rd element (index 2) in the
original list, “d” is the 2nd element (index 1) in the list, and so on.

Sort a list of numbers in ascending order:

_$ (vl-sort-i '(3 21 3) '<)
(2130)

Note that both occurrences of 3 are accounted for in the result list.
Sort a list of 2D points by Y coordinate:

_$ (vl-sort-i '((1 3) (2 2) (3 1))
(function (lambda (el e2)
(< (cadr el) (cadr e2)))))
(2 10)

Sort a list of symbols:

_$ (vl-sort-i

‘(adcb a)

' (lambda (sl s2)

(< (vl-symbol-name sl) (vl-symbol-name s2))))
(4 0321)

Note that both a’s are accounted for in the result list.

vl-string->list

Converts a string into a list of character codes

240

(vl-string->list string)
Arguments
string A string.

Return Values

A list, each element of which is an integer representing the character code of
the corresponding character in string.

AutoLISP Functions

Examples

_$ (vl-string->list "")
nil

_$ (vl-string->list "12")
(49 50)

See Also

The vl-list->string function.

vl-string-elt

Returns the ASCII representation of the character at a specified position in a string

(vl-string-elt string position)

Arguments
string A string to be inspected.
position A displacement in the string; the first character is

displacement 0. Note that an error occurs if position is
outside of the range of the string.

Return Values

An integer denoting the ASCII representation of the character at the specified
position

Examples

_$ (vl-string-elt "May the Force be with you" 8)
70

vl-string-left-trim

Removes the specified characters from the beginning of a string

(vl-string-left-trim character-set string)

Arguments
character-set A string listing the characters to be removed.
string The string to be stripped of character-set.

vl-string-elt | 241

Return Values

A string containing a substring of string with all leading characters in charac-
ter-set removed

Examples

_$ (vl-string-left-trim " \t\n" "\n\t STR ")
"STR "

_$ (vl-string-left-trim "12456789" "12463CPO is not R2D2")
"3CPO is not R2D2"

_$ (vl-string-left-trim " " " There are too many spaces here")
"There are too many spaces here"

vl-string-mismatch

Returns the length of the longest common prefix for two strings, starting at specified
positions

(vl-string-mismatch strl str2 [posl pos2 ignore-case-p])

Arguments

strl The first string to be matched.

str2 The second string to be matched.

posT An integer identifying the position to search from in the
first string; O if omitted.

pos2 An integer identifying the position to search from in the
second string; O if omitted.

ignore-case-p If T is specified for this argument, case is ignored,

otherwise case is considered.

Return Values

An integer.

Examples

_$ (vl-string-mismatch "VL-FUN" "VL-VAR")
3

_$ (vl-string-mismatch "vl-fun" "avl-var")
0

242 | AutoLISP Functions

_$ (vl-string-mismatch "vl-fun" "avl-var" 0 1)
3

_$ (vl-string-mismatch "VL-FUN" "V1-vAR")
1

_$ (vl-string-mismatch "VL-FUN" "V1-vAR" 0 O T)
3

vl-string-position

Looks for a character with the specified ASCII code in a string

(vl-string-position char-code str [start-pos
[from-end-p]])

Arguments

char-code The integer representation of the character to be searched.

str The string to be searched.

start-pos The position to begin searching from in the string (first
character is 0); O if omitted.

from-end-p If T is specified for this argument, the search begins at the

end of the string and continues backward to pos.

Return Values

An integer representing the displacement at which char-code was found from
the beginning of the string; nil if the character was not found.

Examples

_$ (vl-string-position (ascii "z") "azbdc")
1

_$ (vl-string-position 122 "azbzc")
1

_$ (vl-string-position (ascii "x") "azbzc")

nil

The search string used in the following example contains two “z” characters.
Reading from left to right, with the first character being displacement O,
there is one z at displacement 1 and another z at displacement 3:

_$ (vl-string-position (ascii "z") "azbzlmnqgc")
1

vl-string-position | 243

Searching from left to right (the default), the “z” in position 1 is the first one
vl-string-position encounters. But when searching from right to left, as in
the following example, the “z” in position 3 is the first one encountered:

_$ (vl-string-position (ascii "z") "azbzlmngc" nil t)
3

vl-string-right-trim

Removes the specified characters from the end of a string

(vl-string-right-trim character-set string)

Arguments
character-set A string listing the characters to be removed.
string The string to be stripped of character-set.

Return Values

A string containing a substring of string with all trailing characters in charac-
ter-set removed.

Examples

_$ (vl-string-right-trim " \t\n" " STR \n\t ")
v STR"

_$ (vl-string-right-trim "1356789" "3CPO is not R2D267891")
"3CPO is not R2D2"

_$ (vl-string-right-trim " " "There are too many spaces here ")
"There are too many spaces here"

vl-string-search

Searches for the specified pattern in a string

(vl-string-search pattern string [start-pos])

Arguments
pattern A string containing the pattern to be searched for.
string The string to be searched for pattern.

244 | AutoLISP Functions

start-pos An integer identifying the starting position of the search;
0, if omitted.

Return Values

An integer representing the position in the string where the specified pattern

was found, or nil if the pattern is not found; the first character of the string

is position 0.

Examples

_$ (vl-string-search "foo" "pfooyey on you")
1

_$ (vl-string-search "who" "pfooyey on you")
nil

_$ (vl-string-search "foo" "fooey-more-fooey" 1)
11

vl-string-subst

Substitutes one string for another, within a string

(vl-string-subst new-str pattern string [start-pos])

Arguments

new-str The string to be substituted for pattern.

pattern A string containing the pattern to be replaced.

string The string to be searched for pattern.

start-pos An integer identifying the starting position of the search;

0, if omitted.

Note that the search is case-sensitive, and vl-string-subst only substitutes
the first occurrence it finds of the string.

Return Values

The value of string after any substitutions have been made

Examples
Replace the string “Ben” with “Obi-wan”:

_$ (vl-string-subst "Obi-wan" "Ben" "Ben Kenobi")
"Obi-wan Kenobi"

vl-string-subst | 245

Replace “Ben” with “Obi-wan”:

_$ (vl-string-subst "Obi-wan" "Ben" "ben Kenobi")
"ben Kenobi"

Nothing was substituted because vl-string-subst did not find a match for
“Ben”; the “ben” in the string that was searched begins with a lowercase “b”.
Replace “Ben” with “Obi-wan”:

_$ (vl-string-subst "Obi-wan" "Ben" "Ben Kenobi Ben")

"Obi-wan Kenobi Ben"

Note that there are two occurrences of “Ben” in the string that was searched,
but vl-string-subst only replaces the first occurrence.

Replace “Ben” with “Obi-wan,” but start the search at the fourth character in
the string:

_$ (vl-string-subst "Obi-wan" "Ben" "Ben \"Ben\" Kenobi" 3)

"Ben \"Obi-wan\" Kenobi"

There are two occurrences of “Ben” in the string that was searched, but

because vl-string-subst was instructed to begin searching at the fourth
character, it found and replaced the second occurrence, not the first.

vl-string-translate

Replaces characters in a string with a specified set of characters

246

(vl-string-translate source-set dest-set str)

Arguments

source-set A string of characters to be matched.

dest-set A string of characters to be substituted for those in source-
set.

str A string to be searched and translated.

Return Values

The value of str after any substitutions have been made

AutoLISP Functions

Examples

_$ (vl-string-translate "abcABC" "123123" "A is a, B is b, C is C")
"1 is 1, 2 is 2, 3 is 3"

_$ (vl-string-translate "abc" "123" "A is a, B is b, C is C")
"A is 1, B is 2, C is C"

vl-string-trim

Removes the specified characters from the beginning and end of a string

(vl-string-trim char-set str)

Arguments
char-set A string listing the characters to be removed.
str The string to be trimmed of char-set.

Return Values

The value of str, after any characters have been trimmed.

Examples
_$ (vl-string-trim " \t\n" " \t\n STR \n\t ")
TSTR™

_$ (vl-string-trim "this is junk" "this is junk Don't call this
junk! this is junk")
"Don't call this junk!"

_$ (vl-string-trim " " " Leave me alone ")
"Leave me alone"

vl-symbol-name

Returns a string containing the name of a symbol

(vl-symbol-name symbol)

Arguments

symbol Any LISP symbol.

vl-string-trim | 247

Return Values

A string containing the name of the supplied symbol argument, in upper-
case.

Examples

_$ (vl-symbol-name 'S::STARTUP)
"S::STARTUP"

_$ (progn (setq sym 'my-var) (vl-symbol-name sym))
"MY-VAR"

_$ (vl-symbol-name 1)
; *** ERROR: bad argument type: symbolp 1

vl-symbol-value

Returns the current value bound to a symbol

(vl-symbol-value symbol)

This function is equivalent to the eval function, but does not call the LISP
evaluator.

Arguments

symbol Any LISP symbol.

Return Values

The value of symbol, after evaluation.

Examples

_$ (vl-symbol-value 't)
T

_$ (vl-symbol-value 'PI)
3.14159

_$ (progn (setq sym 'PAUSE) (vl-symbol-value sym))
n\\n

248 | AutoLISP Functions

vl-symbolp

Identifies whether or not a specified object is a symbol

Arguments

(vl-symbolp object)
object Any LISP object.

Return Values

T if object is a symbol, otherwise nil.

Examples

_$ (vl-symbolp t)
T

_$ (vl-symbolp nil)
nil

_$ (vl-symbolp 1)
nil
_$ (vl-symbolp (list 1))

nil

vl-unload-vix

Unload a VLX application that is loaded in its own namespace

(vl-unload-vlx appname)

Arguments

appname A string naming a VLX application that is loaded in its
own namespace. Do not include the .vix extension.

The vl-unload-vlx function does not unload VLX applications that are
loaded in the current document’s namespace.

Return Values

T if successful, otherwise vl-unload-vlx results in an error.

vl-symbolp | 249

Examples

Assuming that vixns is an application that is loaded in its own namespace,
the following command unloads vixns:

Command: (vl-unload-vlx "vlxns")
T

Try unloading vlxns again:

Command: (vl-unload-vix "vixns")
; *** ERROR: LISP Application is not found VLXNS

The vl-unload-vlx command fails this time, because the application was not
loaded.

See Also

The load and vl-vlx-loaded-p functions.

vil-vbaload

Loads a Visual Basic project

250

Arguments

(vl-vbaload filename)

filename A string naming the Visual Basic project file to be loaded.

Return Values

Unspecified, if successful.

Examples

_$ (vl-vbaload "c:/program files/autocad 2000i/sample/vba/
drawline.dvb")
"c:\\program files\\autocad 2000i\\sample\\vba\\drawline.dvb"

See Also

The vl-vbarun function.

AutoLISP Functions

vl-vbarun

Runs a Visual Basic macro

Arguments

(vl-vbarun macroname)

macroname A string naming a loaded Visual Basic macro.

Return Values

macroname

Examples

Load a VBA project file:
_$ (vl-vbaload "c:/program files/autocad 2000i/sample/vba/

drawline.dvb")
"c:\\program files\\autocad 2000i\\sample\\vba\\drawline.dvb"

Run a macro from the loaded project:

_$ (vl-vbarun "drawline")
"drawline"

See Also
The vl-vbaload function.
vl-vix-loaded-p

Determines whether a separate-namespace VLX is currently loaded

(vl-vlx-loaded-p appname)

Arguments

appname A string naming a VLX application.

Return Values

T if the application is loaded, nil if it is not loaded.

vl-vbarun | 251

Examples

Check to see if the vlixns application is loaded in its own namespace:
Command: (vl-vix-loaded-p "vixns")

nil

The application is not loaded in its own namespace.

Now load v1xns:

Command: (load "vixns.vIx")

nil

Check to see if the vlxns application loaded successfully:

Command: (vl-vix-loaded-p "vixns")
T

This example assumes vlxns was defined to run in its own namespace. If the
application was not defined to run in its own namespace, it would load into
the current document’s namespace and vl-vlx-loaded-p would return nil.

See Also

The load and vl-unload-vlx functions.

vlax-3D-point

Creates ActiveX-compatible (variant) 3D point structure

(vlax-3D-point list) or (vlax-3D-point x y [z])

Arguments

list A list of 2 or 3 numbers, representing points.

X,y Numbers representing X and Y coordinates of a point.
z A number representing the Z coordinate of a point.

Return Values

A variant containing a three-element array of doubles.

252 | AutoLISP Functions

Examples

_$ (vlax-3D-point 5 20)
#<variant 8197 ...>

_$ (vlax-3D-point '(33.6 44.0 90.0))
<variant 8197 ...>

See Also

The vlax-make-safearray, vlax-make-variant, vlax-safearray-fill, and vlax-
safearray-put-element functions.

vlax-add-cmd

Adds commands to the AutoCAD built-in command set

(vlax-add-cmd global-name func-sym [local-name cmd-
flags])

With vlax-add-cmd you can define a function as an AutoCAD command,
without using the c: prefix in the function name. You can also define a trans-
parent AutoLISP command, which is not possible with a c: function.

WARNING! You cannot use the command function call in a transparently-
defined vlax-add-cmd function. Doing so can cause AutoCAD to close
unexpectedly.

The vlax-add-cmd function makes an AutoLISP function visible as an
ObjectARX-style command at the AutoCAD Command prompt during the
current AutoCAD session. The function provides access to the ObjectARX
acedRegCmds macro, which provides a pointer to the ObjectARX system
AcEdCommandStack object.

The vlax-add-cmd function automatically assigns commands to command
groups. When issued from a document namespace, vlax-add-cmd adds the
command to a group named doc-ID; doc-ID is a hexadecimal value identifying
the document. If issued from a separate-namespace VLX, vlax-add-cmd adds
the command to a group named VLC-Ddoc-ID:VLX-name, where VLX-name
is the name of the application that issued vliax-add-cmd.

vlax-add-cmd | 253

254

It is recommended that you use the vlax-add-emd function from a separate-
namespace VLX. You should then explicitly load the VLX using the APPLOAD
command, rather than by placing it in one of the startup LISP files.

NOTE You cannot use vlax-add-cmd to expose functions that create reactor
objects or serve as reactor callbacks.

Arguments

global-name A string.

func-sym A symbol naming an AutoLISP function with zero
arguments.

local-name A string (defaults to global-name).

cmd-flags An integer (defaults to ACRX_CMD_MODAL +

ACRX_CMD_REDRAW)
The primary flags are:

ACRX_CMD_MODAL (0) Command cannot be invoked
while another command is active.

ACRX_CMD_TRANSPARENT (1) Command can be
invoked while another command is active.

The secondary flags are:

ACRX_CMD_USEPICKSET (2) When the pickfirst set is
retrieved it is cleared within AutoCAD. Command will be
able to retrieve the pickfirst set. Command cannot retrieve
or set grips.

ACRX_CMD_REDRAW (4) When the pickfirst set or grip
set is retrieved, neither will be cleared within AutoCAD.
Command can retrieve the pickfirst set and the grip set.

If both ACRX_CMD_USEPICKSET and ACRX_CMD_REDRAW are set, the
effect is the same as if just ACRX_CMD_REDRAW is set. For more informa-
tion on the flags, refer to the Command Stack topic in the ObjectARX Refer-
ence manual.

Return Values

The global-name argument, if successful. The function returns nil, if
acedRegCmds->addCommand(...) returns an error condition.

AutoLISP Functions

Examples

The hello-autocad function in the following example has no c: prefix, but
vlax-add-cmd makes it visible as an ObjectARX-style command at the
AutoCAD Command prompt:

_$ (defun hello-autocad () (princ "hello Visual LISP"))
HELLO-AUTOCAD

_$ (vlax-add-cmd "hello-autocad" 'hello-autocad)
"hello-autocad"

See Also

The vlax-remove-cmd function.

vlax-create-object

Creates a new instance of an application object

(vlax-create-object prog-id)

Use vlax-create-object when you want a new instance of an application to
be started, and an object of the type specified by <Component> (see the argu-
ment description) to be created. To use the current instance, use
vlax-get-object. However, if an application object has registered itself as a
single-instance object, only one instance of the object is created, no matter
how many times you call vlax-create-object.

Arguments

prog-id A string containing the programmatic identifier of the
desired ActiveX object. The format of prog-id is:

<Vendor>.<Component>.<Version>
For example:
AutoCAD.Drawing.15

Return Values

The application object (VLA-object).

Examples
Create an instance of an Excel application:

_$ (vlax-create-object "Excel.Application")
#<VLA-OBJECT _Application 0017b894>

vlax-create-object | 255

vlax-curve-getArea

Returns the area inside the curve

256

(vlax-curve-getArea curve-obj)

Arguments

curve-obj The VLA-object to be measured.

Return Values

A real number representing the area of the curve, if successful, otherwise nil.

Examples

Assume the curve being measured is the ellipse in the following drawing:

Sample curve (ellipse) for vlax-curve-getarea

The ellipseobj variable points to the ellipse VLA-object.
The following command obtains the area of the curve:

_$ (vlax-curve-getArea ellipseObj)
4.712393

AutoLISP Functions

vlax-curve-getClosestPointTo

Returns the point (in WCS) on a curve that is nearest to the specified point

(vlax-curve-getClosestPointTo curve-obj givenPnt

[extend])
Arguments
curve-obj The VLA-object to be measured.
givenPnt A point (in WCS) for which to find the nearest point on
the curve.
extend If specified and not nil, vlax-curve-getClosestPointTo

extends the curve when searching for the nearest point.

Return Values

A 3D point list representing a point on the curve, if successful, otherwise nil.

Examples

Assume that the curve being measured is the arc in the following drawing:

Return the closest point on the arc to the coordinates 6.0, 0.5:

_$ (vlax-curve-getClosestPointTo arcObj '(6.0 0.5 0.0))
(6.0 1.5 0.0)

Return the closest point on the arc to the coordinates 6.0, 0.5, after extending
the arc:

_$ (vlax-curve-getClosestPointTo arcObj '(6.0 0.5 0.0) T)
(5.7092 0.681753 0.0)

vlax-curve-getClosestPointTo | 257

vlax-curve-getClosestPointToProjection

Returns the closest point (in WCS) on a curve after projecting the curve onto a plane

(vlax-curve-getClosestPointToProjection curve-obj
givenPnt normal [extend])

Arguments

curve-obj The VLA-object to be measured.

givenPnt A point (in WCS) for which to find the nearest point on
the curve.

normal A normal vector (in WCS) for the plane to project onto.

extend If specified and not nil,

vlax-curve-getClosestPointToProjection extends the
curve when searching for the nearest point.

vlax-curve-getClosestPointToProjection projects the curve onto the
plane defined by the givenPnt and normal, then calculates the nearest point
on that projected curve to givenPnt. The resulting point is then projected back
onto the original curve, and vlax-curve-getClosestPointToProjection
returns that projected point.

Return Values

A 3D point list representing a point on the curve, if successful, otherwise nil.

vlax-curve-getDistAtParam

Returns the length of the curve’s segment from the curve’s beginning to the specified
parameter

(vlax-curve-getDistAtParam curve-obj param)

Arguments
curve-obj The VLA-object to be measured.
param A number specifying a parameter on the curve.

258 | AutoLISP Functions

Return Values

A real number that is the length up to the specified parameter, if successful,

otherwise nil.

Examples

Assume that splineobj points to the spline in the following drawing:

Sample curve (spline) for vlax-curve-getDistAtParam

Obtain the start parameter of the curve:

_$ (setq startSpline (vlax-curve-getStartParam splineObj))
0.0

The curve starts at parameter O.
Obtain the end parameter of the curve:

_$ (setq endSpline (vlax-curve-getEndParam splineObj))
17.1546

The curve’s end parameter is 17.1546.
Determine the distance to parameter midway along the curve:
_$ (vlax-curve-getDistAtParam splineObj
(/ (- endspline startspline) 2))
8.99417
The distance from the start to the middle of the curve is 8.99417.

vlax-curve-getDistAtParam

259

vlax-curve-getDistAtPoint

Returns the length of the curve’s segment between the curve’s start point and the spec-
ified point

(vlax-curve-getDistAtPoint curve-obj point)

Arguments
curve-obj The VLA-object to be measured.
point A 3D point list (in WCS) on curve-obj.

Return Values

A real number if successful, otherwise nil.

Examples

For the following example, assume that splineobj points to the spline
shown in the example for vlax-curve-getDistAtParam.

Set OSNAP to tangent and select the point where the line is tangent to the
curve:

_$ (setq selPt (getpoint))
(4.91438 6.04738 0.0)

Determine the distance from the start of the curve to the selected point:

$ (vlax-curve-getDistAtPoint splineObj selpt)

5.17769

vlax-curve-getEndParam

Returns the parameter of the endpoint of the curve

(vlax-curve-getEndParam curve-obj)

Arguments

curve-obj The VLA-object to be measured.

Return Values

A real number representing an end parameter, if successful, otherwise nil.

260 | AutoLISP Functions

Examples

Assuming that ellipseobj points to the ellipse shown in the example for
vlax-curve-getArea, the following function call returns the end parameter of
the curve:

_$ (vlax-curve-getendparam ellipseObj)
6.28319

The end parameter is 6.28319 (twice pi).

See Also

The vlax-curve-getStartParam function.
vlax-curve-getEndPoint

Returns the endpoint (in WCS) of the curve

(vlax-curve-getEndPoint curve-obj)

Arguments
curve-obj The VLA-object to be measured.

Return Values
A 3D point list representing an endpoint, if successful, otherwise nil.

Examples
Get the endpoint of the ellipse used to demonstrate vlax-curve-getArea:

_$ (vlax-curve-getEndPoint ellipseObj)
(2.0 2.0 0.0)

vlax-curve-getFirstDeriv

Returns the first derivative (in WCS) of a curve at the specified location

(vlax-curve-getFirstDeriv curve-obj param)

Arguments
curve-obj The VLA-object to be measured.
param A number specifying a parameter on the curve.

vlax-curve-getEndPoint | 261

Return Values

A 3D vector list, if successful, otherwise nil.

Examples

For the following example, assume that splineobj points to the spline
shown in the example of the vlax-curve-getDistAtParam function.

Obtain the start parameter of the curve:

_$ (setq startSpline (vlax-curve-getStartParam splineObj))
0.0

Obtain the end parameter of the curve:

_$ (setq endSpline (vlax-curve-getEndParam splineObj))
17.1546

Determine the first derivative at the parameter midway along the curve:
_$ (vlax-curve-getFirstDeriv splineObj

(/ (- endspline startspline) 2))
(0.422631 -1.0951 0.0)

vlax-curve-getParamAtDist

Returns the parameter of a curve at the specified distance from the beginning of the

curve

262

(vlax-curve-getParamAtDist curve-obj dist)

Arguments
curve-obj The VLA-object to be measured.
dist A number specifying the distance from the beginning of

the curve.

Return Values

A real number representing a parameter, if successful, otherwise nil.

Examples

Assuming that splineobj points to the spline shown in the example for vlax-
curve-getDistAtParam, determine the parameter at a distance of 1.0 from the
beginning of the spline:

_$ (vlax-curve-getParamAtDist splineObj 1.0)
0.685049

AutoLISP Functions

vlax-curve-getParamAtPoint

Returns the parameter of the curve at the point

(vlax-curve-getParamAtPoint curve-obj point)

Arguments
curve-obj The VLA-object to be measured.
point A 3D point list (in WCS) on curve-obj.

Return Values

A real number representing a parameter, if successful, otherwise nil.

Examples

Assuming that ellipseobj points to the ellipse shown in the example for
vlax-curve-getArea, set OSNAP to tangent and select the point where the line
is tangent to the ellipse:

_$ (setq selPt (getpoint))
(7.55765 5.55066 0.0)

Get the parameter value at the selected point:

_$ (vlax-curve-getParamAtPoint ellipseObj selPt)
4.58296

vlax-curve-getPointAtDist

Returns the point (in WCS) along a curve at the distance specified by the user

(vlax-curve-getPointAtDist curve-obj dist)

Arguments
curve-obj The VLA-object to be measured.
dist The distance along the curve from the beginning of the

curve to the location of the specified point.

Return Values

A 3D point list representing a point on the curve, if successful, otherwise nil.

vlax-curve-getParamAtPoint | 263

Examples

Assuming that splineobj points to the spline shown in the example for vlax-
curve-getDistAtParam, determine the point at a distance of 1.0 from the
beginning of the spline:

_$ (vlax-curve-getPointAtDist splineObj 1.0)
(2.24236 2.99005 0.0)

vlax-curve-getPointAtParam

Returns the point at the specified parameter value along a curve

264

(vlax-curve-getPointAtParam curve-obj param)

Arguments
curve-obj The VLA-object to be measured.
param A number specifying a parameter on the curve.

Return Values

A 3D point list representing a point on the curve, if successful, otherwise nil.

Examples

For the following example, assume that splineobj points to the spline
shown in the example for vlax-curve-getDistAtParam.

Obtain the start parameter of the curve:

_$ (setq startSpline (vlax-curve-getStartParam splineObj))
0.0

Obtain the end parameter of the curve:

_$ (setq endSpline (vlax-curve-getEndParam splineObj))
17.1546

Determine the point at the parameter midway along the curve:
_$ (vlax-curve-getPointAtParam splineObj

(/ (- endspline startspline) 2))
(6.71386 2.82748 0.0)

AutoLISP Functions

vlax-curve-getSecondDeriv

Returns the second derivative (in WCS) of a curve at the specified location

(vlax-curve-getSecondDeriv curve-obj param)

Arguments
curve-obj The VLA-object to be measured.
param A number specifying a parameter on the curve.

Return Values

A 3D vector list, if successful, otherwise nil.

Examples

For the following example, assume that splineobj points to the spline
shown in the example of the vlax-curve-getDistAtParam function.

Obtain the start parameter of the curve:

_$ (setq startSpline (vlax-curve-getStartParam splineObj))
0.0

Obtain the end parameter of the curve:

_$ (setq endSpline (vlax-curve-getEndParam splineObj))
17.1546

Determine the second derivative at the parameter midway along the curve:

_$ (vlax-curve-getSecondDeriv splineObj
(/ (- endspline startspline) 2))
(0.0165967 0.150848 0.0)

vlax-curve-getStartParam

Returns the start parameter on the curve

(vlax-curve-getStartParam curve-obj)

Arguments

curve-obj The VLA-object to be measured.

vlax-curve-getSecondDeriv | 265

Return Values

A real number representing the start parameter, if successful, otherwise nil.

Examples

Assuming that ellipseobj points to the ellipse shown in the example for
vlax-curve-getArea, determine the start parameter of the curve:

_$ (vlax-curve-getstartparam ellipseObj)
0.0

See Also

The vlax-curve-getEndParam function.

vlax-curve-getStartPoint

Returns the start point (in WCS) of the curve

266

(vlax-curve-getStartPoint curve-obj)

Arguments

curve-obj The VLA-object to be measured.

Return Values

A 3D point list representing the start point, if successful, otherwise nil.

Examples

Get the start point of the ellipse used to demonstrate vlax-curve-getArea:

vlax-curve-getStartPoint ellipseObj)

$ (
2.0 2.0 0.0)

«
For an ellipse, the start points and endpoints are the same.

Obtain the start point of the spline used to demonstrate vlax-curve-getDis-
tAtParam:

_$ (vlax-curve-getStartPoint splineObj)
(1.73962 2.12561 0.0)

AutoLISP Functions

vlax-curve-isClosed

Determines if the specified curve is closed (that is, the start point is the same as the end-
point)

(vlax-curve-isClosed curve-obj)

Arguments
curve-obj The VLA-object to be tested.

Return Values

T if the curve is closed, otherwise nil.

Examples
Determine if the ellipse used to demonstrate vlax-curve-getArea is closed:

_$ (vlax-curve-isClosed ellipseObj)
T

Determine if the spline used to demonstrate vlax-curve-getDistAtParam is
closed:

_$ (vlax-curve-isClosed splineObj)
nil

vlax-curve-isPeriodic

Determines if the specified curve has an infinite range in both directions and there is a
period value dT, such that a point on the curve at (u + dT) = point on curve (u), for any
parameter u.

(vlax-curve-isPeriodic curve-obj)

Arguments
curve-obj The VLA-object to be tested.

Return Values

T if the curve is periodic, otherwise nil.

vlax-curve-isClosed | 267

Examples
Determine if the ellipse used to demonstrate vlax-curve-getArea is periodic:

_$ (vlax-curve-isPeriodic ellipseObj)
T

Determine if the spline used to demonstrate vlax-curve-getDistAtParam is
periodic:
_$ (vlax-curve-isPeriodic splineObj)

nil

vlax-curve-isPlanar

Determines if there is a plane that contains the curve

(vlax-curve-isPlanar curve-obj)

Arguments
curve-obj The VLA-object to be tested.

Return Values

T if there is a plane that contains the curve, otherwise nil.

Examples

Determine if there is a plane containing the ellipse used to demonstrate vlax-
curve-getArea:

_$ (vlax-curve-isPlanar ellipseObj)
T

Determine if there is a plane containing the spline used to demonstrate vlax-
curve-getDistAtParam:

_$ (vlax-curve-isPeriodic splineObj)
nil

vlax-dump-object

Lists an object’s properties, and optionally, the methods that apply to the object

(vlax-dump-object obj [T])

268 | AutoLISP Functions

Arguments

obj A VLA-object.
T If specified, vlax-dump-object also lists all methods that
apply to obj.

Return Values

T, if successful. If an invalid object name is supplied, vliax-dump-object dis-
plays an error message.

Examples

_$ (setq aa (vlax-get-acad-object))
#<VLA-OBJECT IAcadApplication 00b3b91lc>

_$ (vlax-dump-object aa)
; IAcadApplication: AutoCAD Application Interface
; Property values:

; ActiveDocument (RO) = #<VLA-OBJECT IAcadDocument 0l1b52fac>
; Application (RO) = #<VLA-OBJECT IAcadApplication 00b3b91lc>
; Caption (RO) = "AutoCAD - [Drawing.dwg]"

T

List an object’s properties and the methods that apply to the object:

_$ (vlax-dump-object aa T)
; IAcadApplication: AutoCAD Application Interface
; Property values:

; ActiveDocument (RO) = #<VLA-OBJECT IAcadDocument 0l1b52fac>
; Application (RO) = #<VLA-OBJECT IAcadApplication 00b3b91lc>

; Caption (RO) = "AutoCAD - [Drawing.dwg]"

; Methods supported:

; EndUndoMark ()

; Eval (1)

; GetInterfaceObject (1)
; ListAds ()

; ListArx ()

vlax-dump-object | 269

vlax-ename->vla-object

Transforms entity to VLA-object

(vlax-ename->vla-object entname)

Arguments

entname An entity name (ename data type).

Return Values
A VLA-object.

Examples

_$ (setq e (car (entsel)))
<Entity name: 27e0540>

_$ (vlax-ename->vla-object e)
#<VLA-OBJECT IAcadLWPolyline 03£f713a0>

See Also
The vlax-vla-object->ename function.
vlax-erased-p

Determines whether an object was erased

(vlax-erased-p obj)

Arguments
obj A VLA-object.

Return Values

T if the object was erased, otherwise nil.

270 | AutoLISP Functions

vlax-for

Iterates through a collection of objects, evaluating each expression

(vlax-for symbol collection [expressionl [expression2

NRED)
Arguments
symbol A symbol to be assigned to each VLA-object in a
collection.
collection A VLA-object representing a collection object.
expression], The expressions to be evaluated.
expressionZ2...

Return Values
The value of the last expression evaluated for the last object in the collection.

Examples

The following code issues vlax-dump-object on every drawing object in the
model space:

(vl-load-com) ; load ActiveX support
(vlax-for for-item
(vla-get-modelspace
(vla-get-activedocument (vlax-get-acad-object))

)

(vlax-dump-object for-item) ; list object properties

)

vlax-get-acad-object

Retrieves the top level AutoCAD application object for the current AutoCAD session

(vlax-get-acad-object)

Return Values
A VLA-object.

vlax-for | 271

Examples

_$ (setq aa (vlax-get-acad-object))
#<VLA-OBJECT IAcadApplication 00b3b91lc>

vlax-get-object

Returns a running instance of an application object

(vlax-get-object prog-id)

Arguments

prog-id A string that identifies the desired application object. The
format of prog-id is:

appname.objecttype

where appname is the name of the application and
objecttype is the application object. The objecttype may be
followed by a version number.

NOTE You can usually find the prog-id for an application in
that application’s online help. For example, Microsoft® Office
applications document this information in the Visual Basic®
Reference section of their online help.

Return Values

The application object, or nil, if there is no instance of the specified object

currently running.

Examples

Obtain the Application object for the Excel program:

_$ (vlax-get-object "Excel.Application")
#<VLA-OBJECT _Application 0017bb5c>

272 | AutoLISP Functions

vlax-get-or-create-object

Returns a running instance of an application object, or creates a new instance, if the
application is not currently running

(vlax-get-or-create-object prog-id)

Arguments

prog-id A string containing the programmatic identifier of the
desired ActiveX object desired. The format of prog-id is:

<Vendor>.<Component>.<Version>
For example:
AutoCAD.Drawing.15

Return Values
The object.

Examples

_$ (vlax-get-or-create-object "Excel.Application")
#<VLA-OBJECT _Application 0017bb5c>

vlax-get-property

Retrieves a VLA-object’s property

(vlax-get-property object property)

This function was formerly known as vlax-get.

Arguments
object A VLA-object.
property A symbol or string naming the property to be retrieved.

vlax-get-or-create-object | 273

Return Values

The value of the object’s property.

Examples
Begin by retrieving a pointer to the root AutoCAD obiject:

$ (setq acadoObject (vlax-get-acad-object))

#<VLA-OBJECT IAcadApplication 00a4b2b4>

Get the AutoCAD ActiveDocument property:

_$ (setq acadDocument (vlax-get-property acadObject
'ActiveDocument))

#<VLA-OBJECT IAcadDocument 00302al18>

The function returns the current document obiject.

Get the ModelSpace property of the ActiveDocument object:

_$ (setq mSpace (vlax-get-property acadDocument 'Modelspace))
#<VLA-OBJECT IAcadModelSpace 00cl4b44>

The model space object of the current document is returned.
Convert a drawing entity to a VLA-object:

_$ (setq vlaobj (vlax-ename->vla-object e))
#<VLA-OBJECT IAcadLWPolyline 0467114c>

Get the color property of the object:

_$ (vlax-get-property vlaobj 'Color)
256

See Also

The vlax-property-available-p and vlax-put-property functions.

vlax-import-type-library

Imports information from a type library

(vlax-import-type-library :tlb-filename filename
[:methods-prefix mprefix :properties-prefix pprefix
:constants-prefix cprefix])

274 | AutoLISP Functions

Arguments

filename

mprefix

pprefix

cprefix

A string naming the type library. A file can be one of the
following types:

A type library (.tIb) or object library (.0lb) file

An executable (.exe) file

A library (.dll) file containing a type library resource

A compound document holding a type library

Any other file format that can be understood by the
LoadTypeLib API

If you omit the path from tIb-filename, AutoCAD looks for
the file in the Support File Search Path.

Prefix to be used for method wrapper functions. For
example, if the type library contains a Calculate method
and the mprefix parameter is set to “cc-", Visual LISP
generates a wrapper function named cc-calculate. This
parameter defaults to “”.

Prefix to be used for property wrapper functions. For
example, if the type library contains a Width property
with both read and write permissions, and pprefix is set to
“cc-”, then Visual LISP generates wrapper functions
named cc-get-Width and cc-put-width. This parameter
defaults to “”.

Prefix to be used for constants contained in the type
library. For example, if the type library contains a
ccMaxCountOfRecords property with both read and write
permissions, and cprefix is set to “cc-", Visual LISP
generates a constant named cc-ccMaxCountOfRecords.
This parameter defaults to “”.

Note the required use of keywords when passing arguments to
vlax-import-type-library.

Return Values

T, if successful.

vlax-import-type-library | 275

Examples

Import a Microsoft Word™ type library, assigning the prefix “msw-" to meth-
ods and properties, and “mswc-" to constants:

_$ (vlax-import-type-library

:tlb-filename "c:/program files/microsoft office/msword8.olb"
:methods-prefix "msw-"
:properties-prefix "msw-"
:constants-prefix "mswc-")
T

Remarks

Function wrappers created by vlax-import-type-library are available only
in the context of the document vliax-import-type-library was issued from.

In the current release of Visual LISP, vlax-import-type-library is executed
at runtime, rather than at compile-time. In future releases of Visual LISP, this
may change. The following practices are recommended when using
vlax-import-type-library:

m If you want your code to run on different machines, avoid specifying an
absolute path in the tib-file-name parameter.

m If possible, avoid using vlax-import-type-library from inside any
AutoLISP expression (that is, always call it from a top-level position).

m In your AutoLISP source file, code the vlax-import-type-library call
before any code that uses method or property wrappers or constants
defined in the type library.

See Also

The vlax-typeinfo-available-p function.

vlax-invoke-method

Calls the specified ActiveX method

276

(vlax-invoke-method obj method arg [arg...])

This function was known as vlax-invoke prior to AutoCAD 2000.

Arguments
obj A VLA-object.
method A symbol or string naming the method to be called.

AutoLISP Functions

arg Argument to be passed to the method called. No
argument type checking is performed.

Return Values

Depends on the method invoked.

Examples

The following example uses the AddCircle method to draw a circle in the cur-
rent AutoCAD drawing.

The first argument to AddCircle specifies the location of the center of the cir-
cle. The method requires the center to be specified as a variant containing a
three-element array of doubles. You can use vlax-3d-point to convert an
AutoLISP point list to the required variant data type:

_$ (setq circCenter (vlax-3d-point '(3.0 3.0 0.0)))
#<variant 8197 ...>

Now use vlax-invoke-method to draw a circle with the AddCircle method:
_$ (setq mycircle (vlax-invoke-method mspace 'AddCircle circCenter

3.0))
#<VLA-OBJECT IAcadCircle 00bfdé6e4>

See Also

The vlax-get-property, vlax-method-applicable-p, vlax-property-available-p,
and vlax-put-property functions.

vlax-ldata-delete

Erases LISP data from a drawing dictionary

(vlax-ldata-delete dict key [private])

Arguments

dict A VLA-object, AutoCAD drawing entity object, or a string
naming a global dictionary.

key A string specifying the dictionary key.

private If a non-nil value is specified for private and

vlax-ldata-delete is called from a separate-namespace
VLX, vlax-ldata-delete deletes private LISP data from
dict. (See vlax-ldata-get for examples using this argument.)

vlax-ldata-delete | 277

Return Values

T, if successful, otherwise nil (for example, the data did not exist).

Examples
Add LISP data to a dictionary:

_$ (vlax-ldata-put "dict" "key" '(1))
(1)

Use vlax-1ldata-delete to delete the LISP data:

_$ (vlax-ldata-delete "dict" "key")
T

If vlax-ldata-delete is called again to remove the same data, it returns nil
because the data does not exist in the dictionary:

_$ (vlax-ldata-delete "dict" "key")
nil

See Also

The vlax-ldata-get, vlax-ldata-list, and vlax-ldata-put functions.

vlax-ldata-get

Retrieves LISP data from a drawing dictionary or an object

(vlax-ldata-get dict key [default-data] [private])

Arguments

dict A VLA-object, AutoCAD drawing entity object, or a string
naming a global dictionary.

key A string specifying the dictionary key.

default-data LISP data to be returned if no matching key exists in the
dictionary.

private If a non-nil value is specified for private and

vlax-ldata-get is called from a separate-namespace VLX,
vlax-ldata-get retrieves private LISP data from dict.

If you specify private, you must also specify default-data;
you can use nil for default-data.

278 | AutoLISP Functions

Note that a separate-namespace VLX can store both private and non-private
data using the same dict and key. The private data can only be accessed by the
same VLX, but any application can retrieve the non-private data.

Return Values

The value of the key item.

Examples

Enter the following commands at the Visual LISP Console window:

_$ (vlax-ldata-put "mydict" "mykey" "Mumbo Dumbo")
"Mumbo Dumbo"

_$ (vlax-ldata-get "mydict" "mykey")
"Mumbo Dumbo"

To test the use of private data from a VLX

1 Enter the following commands at the Visual LISP Console window:

_$ (vlax-ldata-put "mydict" "mykey" "Mumbo Dumbo")
"Mumbo Dumbo"

_$ (vlax-ldata-get "mydict" "mykey")
"Mumbo Dumbo"

2 Enter the following code in a file and use Make Application to build a VLX
from the file. Use the Expert mode of the Make Application Wizard, and
select the Separate Namespace option in the Compile Options tab.
(vl-doc-export 'ldataput)

(vl-doc-export 'ldataget)

(vl-doc-export 'ldataget-nilt)

(defun ldataput ()
(princ "This is a test of putting private ldata ")
(vlax-ldata-put "mydict" "mykey" "Mine! Mine! " T)

)
(defun ldataget ()

(vlax-ldata-get "mydict" "mykey")
)
(defun ldataget-nilt ()
(vlax-ldata-get "mydict" "mykey" nil T)

)
3 Load the VLX file.
4 Run ldataput to save private data:

_$ (ldataput)
This is a test of putting private ldata

Refer back to the code defining 1dataput: this function stores a string con-
taining “Mine! Mine!”

vlax-ldata-get | 279

5 Run ldataget to retrieve LISP data:

_$ (ldataget)
"Mumbo Dumbo"

Notice that the data returned by 1dataget is not the data stored by 1dataput.
This is because 1dataget does not specify the private argument in its call to
vlax-ldata-get. SO the data retrieved byldataget is the data set by issuing
vlax-ldata-put from the Visual LISP Console in step 1.

_$ (ldataget-nilt)
"Mine! Mine! "

Run ldataget-nilt to retrieve LISP data:

_$ (ldataget-nilt)
"Mine! Mine! "

This time the private data saved by l1dataput is returned, because
ldataget-nilt specifies the private argument in its call to vlax-1data-get.

From the Visual LISP Console prompt, issue the same call that 1dataget-nilt
uses to retrieve private data:

_$ (vlax-ldata-get "mydict" "mykey" nil T)
"Mumbo Dumbo"

The private argument is ignored when vlax-ldata-get is issued outside of a
separate-namespace VLX. If non-private data exists for the specified dict and
key (as in this instance), that data will be retrieved.

See Also

The vlax-ldata-put, vlax-ldata-delete, and vlax-ldata-list functions.

vlax-ldata-list

Lists LISP data in a drawing dictionary

280

(vlax-ldata-1list dict [private])

Arguments

dict A VLA-object, AutoCAD drawing entity object, or a string
naming a global dictionary.

private If viax-1ldata-list is called from a separate-namespace

VLX and a non-nil value is specified for private,
vlax-ldata-list retrieves only private data stored by the
same VLX. (See vlax-ldata-get for examples using this
argument.)

AutoLISP Functions

Return Values

An associative list consisting of pairs (key . value).

Examples
Use vlax-ldata-put to store LISP data in a dictionary:

_$ (vlax-ldata-put "dict" "cay" "Mumbo Jumbo ")
"Mumbo Jumbo "

_$ (vlax-ldata-put "dict" "say" "Floobar ")
"Floobar "

Use vlax-ldata-1list to display the LISP data stored in “dict”:

_$ (vlax-ldata-list "dict")
(("say" . "Floobar ") ("cay" . "Mumbo Jumbo "))

See Also

The vlax-ldata-get, vlax-ldata-delete, and vlax-ldata-put functions.

vlax-ldata-put

Stores LISP data in a drawing dictionary or an object

(vlax-ldata-put dict key data [private])

Arguments

dict A VLA-object, AutoCAD drawing entity object, or a string
naming a global dictionary.

key A string specifying the dictionary key.

data LISP data to be stored in the dictionary.

private If vlax-1data-put is called from a separate-namespace

VLX and a non-nil value is specified for private,
vlax-ldata-put marks the data as retrievable only by the
same VLX.

Return Values

The value of data.

Examples

_$ (vlax-ldata-put "dict" "key" '(1))
(1)

vlax-ldata-put | 281

_$ (vlax-ldata-put "dict" "cay" "Gumbo jumbo")
"Gumbo jumbo"

See Also

The vlax-ldata-get, vlax-ldata-delete, and vlax-ldata-list functions.

vlax-ldata-test

Determines if data can be saved over a session boundary

(vlax-ldata-test data)

Arguments
data Any LISP data to be tested.

Return Values

T, if the data can be saved and restored over the session boundary, nil other-
wise.

Examples

Determine if a string can be saved as ldata over a session boundary:

_$ (vlax-ldata-test "Gumbo jumbo")
T

Determine if a function can be saved as ldata over a session boundary:

_$ (vlax-ldata-test yinyang)
nil

See Also

The vlax-ldata-get, vlax-ldata-delete, and vlax-ldata-list, and vlax-ldata-put
functions.

vlax-make-safearray

Creates a safearray

(vliax-make-safearray type ’(l-bound . u-bound)
[’ (1-bound . u-bound)...)]

282 | AutoLISP Functions

A maximum of 16 dimensions can be defined for an array. The elements in
the array are initialized as follows:

Numbers
Strings
Booleans
Object
Variant
Arguments
type

‘(I-bound .
u-bound)

Return Values

0

Zero-length string.
:vliax-false

nil

Uninitialized (vlax-vbEmpty)

The type of safearray. Specify one of the following
constants:

vlax-vbinteger (2) Integer
vlax-vbLong (3) Long integer

vlax-vbSingle (4) Single-precision floating-point
number

vlax-vbDouble (5) Double-precision floating-point
number

vlax-vbString (8) String
vlax-vbObject (9) Object
vlax-vbBoolean (11) Boolean
vlax-vbVariant (12) Variant

The integer shown in parentheses indicates the value to
which the constant evaluates. It is recommended that you
specify the constant in your argument, not the integer
value, in case the value changes in later releases of
AutoCAD.

Lower and upper index boundaries of a dimension.

The safearray created.

vlax-make-safearray | 283

Examples

Create a single-dimension safearray consisting of doubles, beginning with
index O:

_$ (setq point (vlax-make-safearray vlax-vbDouble '(0 . 3)))
#<safearray...>

Use the vlax-safearray->list function to display the contents of the safe-
array as a list:

_$ (vlax-safearray->list point)
(0.0 0.0 0.0 0.0)

The result shows each element of the array was initialized to zero.

Create a two-dimension array of strings, with each dimension starting at
index 1:

_$ (setq matrix (vlax-make-safearray vlax-vbString '(1 . 2) '(1 .

2))

#<safearray...>

See Also

The vlax-make-variant, vlax-safearray-fill, vlax-safearray-get-dim, vlax-safe-
array-get-element, vlax-safearray-get-l-bound, vlax-safearray-get-u-bound,
vlax-safearray-put-element, vlax-safearray-type, vlax-safearray->list, and
vlax-variant-value functions. For more information on using these functions,
see “Working with Safearrays” in the Visual LISP Developer’s Guide.

vlax-make-variant

Creates a variant data type

284

(vlax-make-variant [value] [type])

Arguments

value The value to be assigned to the variant. If omitted, the
variant is created with the vlax-vbEmpty type
(uninitialized).

type The type of variant. This can be represented by one of the

following constants:
vlax-vbEmpty (0) Uninitialized (default value)

vlax-vbNull (1) Contains no valid data

AutoLISP Functions

vlax-vbinteger (2) Integer
vlax-vbLong (3) Long integer

vlax-vbSingle (4) Single-precision floating-point
number

vlax-vbDouble (5) Double-precision floating-point
number

vlax-vbString (8) String
vlax-vbObject (9) Object
vlax-vbBoolean (11) Boolean
vlax-vbArray (8192) Array

The integer shown in parentheses indicates the value to
which the constant evaluates. It is recommended that you
specify the constant in your argument, not the integer
value, because the value may change in later releases of
AutoCAD.

If you do not specify a type, vlax-make-variant assigns a
default data type based on the data type of the value it
receives. The following list identifies the default variant
data type assigned to each LISP data type:

nil vlax-vbEmpty

wvlax-null viax-vbNull

integer vlax-vbLong

real vlax-vbDouble

string vlax-vbString

VLA-object vlax-vbObject

:vlax-true, :vlax-false vlax-vbBoolean
variant Same as the type of initial value
vlax-make-safearray vlax-vbarray

Return Values

The variant created.

vlax-make-variant | 285

286

Examples
Create a variant using the defaults for vlax-make-variant:

_$ (setq varnil (vlax-make-variant))
#<variant 0 >

The function creates an uninitialized (vlax-vbEmpty) variant by default. You
can accomplish the same thing explicitly with the following call:

_$ (setq varnil (vlax-make-variant nil))
#<variant 0 >

Create an integer variant and set its value to 5:

_$ (setq varint (vlax-make-variant 5 vlax-vbInteger))

#<variant 2 5>

Repeat the previous command, but omit the type argument and see what
happens:

_$ (setq varint (vlax-make-variant 5))

#<variant 3 5>

By default, vlax-make-variant assigned the specified integer value to a Long
integer data type, not Integer, as you might expect. This highlights the
importance of explicitly stating the type of variant you want when working
with numbers.

Omitting the type argument for a string produces predictable results:

_$ (setq varstr (vlax-make-variant "ghost"))
#<variant 8 ghost>

To create a variant containing arrays, you must specify type vliax-vbarray,
along with the type of data in the array. For example, to create a variant con-
taining an array of doubles, first set a variable’s value to an array of doubles:

_$ (setq 4dubs (vlax-make-safearray vlax-vbDouble '(0 . 3)))
#<safearray...>

Then take the array of doubles and assign it to a variant:

_$ (vlax-make-variant 4dubs)
#<variant 8197 ...>

See Also

The vlax-make-safearray, vlax-variant-change-type, vlax-variant-type, and
vlax-variant-value functions. For more information on using variants, see
“Working with Variants” in the Visual LISP Developer’s Guide.

AutoLISP Functions

vlax-map-collection

Applies a function to all objects in a collection

(vlax-map-collection obj function)

Arguments
obj A VLA-object representing a collection.
function A symbol or lambda expression to be applied to obj.

Return Values

The obj first argument.

Examples

(vlax-map-collection (vla-get-ModelSpace acadDocument) 'vlax-dump-
object)

; IAcadLWPolyline: AutoCAD Lightweight Polyline Interface

; Property values:

; Application (RO) = #<VLA-OBJECT IAcadApplication 00adae24>

; Area (RO) = 2.46556

; Closed = 0

; Color = 256

; ConstantWidth = 0.0

; Coordinate = ...Indexed contents not shown...

; Coordinates = (8.49917 7.00155 11.2996 3.73137 14.8 5.74379 ...)
; Database (RO) = #<VLA-OBJECT IAcadDatabase 0le3da44>

; Elevation = 0.0

; Handle (RO) = "53"

; HasExtensionDictionary (RO) = 0

; Hyperlinks (RO) = #<VLA-OBJECT IAcadHyperlinks 0le3d7d4>

; Layer = "0O"

; Linetype = "BYLAYER"

; LinetypeGeneration = 0

; LinetypeScale = 1.0

; Lineweight = -1

; Normal = (0.0 0.0 1.0)

; ObjectID (RO) = 28895576

; ObjectName (RO) = "AcDbPolyline"
; PlotStyleName = "ByLayer"

H Thickness = 0.0

; Visible = -1

T

vlax-map-collection | 287

vlax-method-applicable-p

Determines if an object supports a particular method

(vlax-method-applicable-p obj method)

Arguments
obj A VLA-object.
method A symbol or string containing the name of the method to

be checked.

Return Values

T, if the object supports the method, nil otherwise.

Examples

The following commands are issued against a LightweightPolyline object:

_$ (vlax-method-applicable-p WhatsMyLine 'copy)
T

_$ (vlax-method-applicable-p WhatsMyLine 'AddBox)
nil
See Also

The vlax-property-available-p function.

vlax-object-released-p

Determines if an object has been released

288

(vlax-object-released-p obj)

NOTE Erasing a VLA-object (using command ERASE or vla-erase) does not
release the object. A VLA-object is not released until you either invoke
vlax-release-object on the object, normal AutoLISP garbage collection
occurs, or the drawing database is destroyed at the end of the drawing session.

AutoLISP Functions

Arguments
obj A VLA-object.

Return Values

T, if the object is released (no AutoCAD drawing object is attached to obj),
nil, if the object has not been released.

Examples

Attach an Excel application to the current AutoCAD drawing:

_$ (setq excelobj (vlax-get-object "Excel.Application"))
#<VLA-OBJECT _Application 00168a54>

Release the Excel object:

_$ (vlax-release-object excelobj)
1

Issue vlax-object-released-p to verify the object was released:
_$ (vlax-object-released-p excelobj)

T

vlax-product-key

Returns the AutoCAD Window registry path

(vlax-product-key)

The AutoCAD registry path can be used to register an application for demand
loading.

Return Values

A string containing the AutoCAD registry path.

Examples

_$ (vlax-product-key)
"Software\\Autodesk\\AutoCAD\\R15.0\\ACAD-1:409"

vlax-product-key | 289

vlax-property-available-p

Determines if an object has a specified property

290

(vlax-property-available-p obj prop [check-modify])

Arguments

obj A VLA-object.

property A symbol or string naming the property to be checked.

check-modify If T is specified for this argument, vliax-property-
available-p also checks that the property can be
modified.

Return Values

T, if the object has the specified property, otherwise nil. If T is specified for
the check-modify argument, vlax-property-available-p returns nil if either
the property is not available or the property cannot be modified.
Examples

The following examples apply to a LightweightPolyline object:

_$ (vlax-property-available-p WhatsMyLine 'Color)
T

_$ (vlax-property-available-p WhatsMyLine 'center)
nil

The following examples apply to a Circle object:

_$ (vlax-property-available-p myCircle 'area)
T

Note how supplying the optional third argument changes the result:

_$ (vlax-property-available-p myCircle 'area T)
nil

The function returns nil because, although the circle has an “area” property,
that property cannot be modified.
See Also

The vlax-method-applicable-p and vlax-put-property functions.

AutoLISP Functions

vlax-put-property

Set the property of an ActiveX object

(vlax-put-property obj property arg)

This function was formerly known as vlax-put.

Arguments

obj A VLA-object.

property A symbol or string naming the property to be set.
arg The value to be set.

Return Values

Nil, if successful.

Examples
Color an object red:

_$ (vlax-put-property vlaobj 'Color 1)
nil

See Also
The vlax-get-property and vlax-property-available-p functions.
vlax-read-enabled-p

Determines if an object can be read

(vlax-read-enabled-p obj)

Arguments
obj A VLA-object.

Return Values

T, if the object is readable, otherwise nil.

vlax-put-property | 291

vlax-release-object

Releases a drawing object

(vlax-release-object obj)

Arguments
obj A VLA-object.

After release, the drawing object is no longer accessible through obj.

Return Values

Unspecified.

vlax-remove-cmd

Removes a single command or a command group

292

(vliax-remove-cmd global-name)

Removes a single command or the whole command group for the current
AutoCAD session.

Arguments

global-name Either a string naming the command, or T. If global-name
is T, the whole command group VLC-AppName (for
example, vLCc-VLIDE) is deleted.

Return Values
T, if successful, nil otherwise (for example, the command is not defined).

Examples

Remove a command defined with vliax-add-cmd:

_$ (vlax-remove-cmd "hello-autocad")
T

Repeat the vlax-remove-cmd:

_$ (vlax-remove-cmd "hello-autocad")
nil

AutoLISP Functions

This time vlax-remove-cmd returns nil, because the specified command does
not exist anymore.

See Also

The vlax-add-cmd function.

vlax-safearray-fill

Stores data in the elements of a safearray

(vlax-safearray-fill var 'element-values)

Arguments

var

‘element-values

Return Values

var

Examples

A variable whose data type is a safearray.

A list of values to be stored in the array. You can specify as
many values as there are elements in the array. If you
specify fewer values than there are elements, the
remaining elements retain their current value.

For multi-dimension arrays, element-values must be a list
of lists, with each list corresponding to a dimension of the
array.

Create a single-dimension array of doubles:

$ (setq sa (vlax-make-safearray vlax-vbdouble '(0 . 2)))
#<safearray...>

Use vlax-safearray-£fill to populate the array:

$ (vlax-safearray-fill sa '(1 2 3))

#<safearray...>

List the contents of the array:

_$ «(
(1.0 2.0 3.0)

vlax-safearray->list sa)
2

Use vlax-safearray-£fill to set the first element in the array:

$ (vlax-safearray-fill sa '(-66))

#<safearray...>

vlax-safearray-fill | 293

List the contents of the array:

_$ (vlax-safearray->list sa)
(-66.0 2.0 3.0)

Notice that only the first element in the array has been changed; the remain-
ing elements are unaffected and retain the value you previously set them to.
If you need to change the second or third elements and leave the first ele-
ment unaffected, use viax-put-element.

Instruct vlax-safearray-£ill to set four elements in an array that contains
only three elements:

_$ (vlax-safearray-fill sa '(1 2 3 4))
Error: Assertion failed: safearray-fill failed. Too many elements.

The vlax-safearray-£ill function returns an error if you specify more ele-
ments than the array contains.

To assign values to a multi-dimensional array, specify a list of lists to
vlax-safearray-fill, with each list corresponding to a dimension. The fol-
lowing command creates a two-dimension array of strings containing three
elements in each dimension:

_$ (setq mat2 (vlax-make-safearray vlax-vbString '(0 . 1) '(1 . 3)))
#<safearray...>

Use vlax-safearray-£fill to populate the array:

_$ (vlax-safearray-fill mat2 '(("a" "b" "c") ("d" "e" "f")))
#<safearray...>

Call the viax-safearray->list function to confirm the contents of mat2:

_$ (vlax-safearray->list mat2)
((llall llbll llcll) (lldll llell llfll))

See Also

The vlax-make-safearray, vlax-safearray-get-dim, vlax-safearray-get-element,
vlax-safearray-get-l-bound, vlax-safearray-get-u-bound, vlax-safearray-put-
element, vlax-safearray-type, vlax-safearray->list, and vlax-variant-value
functions.

vlax-safearray-get-dim

Returns the number of dimensions in a safearray object

(vlax-safearray-get-dim var)

294 | AutoLISP Functions

Arguments

var A variable whose data type is a safearray.

Return Values

An integer identifying the number of dimensions in var. An error occurs if var
is not a safearray.

Examples

Set sa-int to a single-dimension safearray with one dimension:

_$ (setq sa-int (vlax-make-safearray vlax-vbinteger '(1 . 4)))
#<safearray...>

Use vliax-safearray-get-dim to return the number of dimensions in sa-int:

_$ (vlax-safearray-get-dim sa-int)
1

See Also

The vlax-make-safearray, vlax-safearray-get-l-bound, and vlax-safearray-get-
u-bound functions.

vlax-safearray-get-element

Returns an element from an array

(vlax-safearray-get-element var element...)

Arguments
var A variable whose data type is a safearray.
element... Integers specifying the indexes of the element to be

retrieved. For an array with one dimension, specify a
single integer. For multi-dimension arrays, specify as
many indexes as there are dimensions.

Return Values

The value of the element.

vlax-safearray-get-element | 295

Examples
Create an array with two dimensions, each dimension starting at index 1:

$ (setq matrix (vlax-make-safearray vlax-vbString '(1 . 2) '(1 .

2))

#<safearray...>
Use vlax-safearray-put-element to populate the array:

_$ (vlax-safearray-put-element matrix 1 1 "a")
o

_$ (vlax-safearray-put-element matrix 1 2 "b")
llbll

_$ (vlax-safearray-put-element matrix 2 1 "c")
e

_$ (vlax-safearray-put-element matrix 2 2 "d")
lldll

Use vlax-safearray-get-element to retrieve the second element in the first
dimension of the array:

_$ (vlax-safearray-get-element matrix 1 2)
llbll

See Also

The vlax-make-safearray, vlax-safearray-get-dim, vlax-safearray-get-l-bound,
vlax-safearray-get-u-bound, and vlax-safearray-put-element functions.

vlax-safearray-get-l-bound

Returns the lower boundary (starting index) of a dimension of an array

296

(vlax-safearray-get-1l-bound var dim)

Arguments
var A variable whose data type is a safearray.
dim A dimension of the array. The first dimension is

dimension 1.

Return Values

An integer representing the lower boundary (starting index) of the dimen-
sion. If var is not an array, or dim is invalid (for example, O, or a number
greater than the number of dimensions in the array), an error results.

AutoLISP Functions

Examples
The following examples evaluate a safearray defined as follows:

(vlax-make-safearray vlax-vbString '(1 . 2) '(0 . 1)))

Get the starting index value of the array’s first dimension:

_$ (vlax-safearray-get-l-bound tmatrix 1)
1

The first dimension starts with index 1.
Get the starting index value of the second dimension of the array:

_$ (vlax-safearray-get-l-bound tmatrix 2)
0

The second dimension starts with index 0.

See Also

The vlax-make-safearray, vlax-safearray-get-dim, and vlax-safearray-get-u-
bound functions.

vlax-safearray-get-u-bound

Returns the upper boundary (end index) of a dimension of an array

(vlax-safearray-get-u-bound var dim)

Arguments
var A variable whose data type is a safearray.
dim A dimension of the array. The first dimension is

dimension 1.

Return Values

An integer representing the upper boundary (end index) of the dimension. If
var is not an array, or dim is invalid (for example, O, or a number greater than
the number of dimensions in the array), an error results.

Examples
The following examples evaluate a safearray defined as follows:

(vlax-make-safearray vlax-vbString '(1 . 2) '(0 . 1)))

vlax-safearray-get-u-bound | 297

Get the end index value of the array’s first dimension:

_$ (vlax-safearray-get-u-bound tmatrix 1)
2

The first dimension ends with index 2.
Get the end index value of the second dimension of the array:

_$ (vlax-safearray-get-u-bound tmatrix 2)
1

The second dimension starts with index 1.

See Also

The vlax-make-safearray, vlax-safearray-get-dim, and vlax-safearray-get-1-
bound functions.

vlax-safearray-put-element

Adds an element to an array

(vlax-safearray-put-element var index... value)

Arguments

var A variable whose data type is a safearray.

index... A set of index values pointing to the element you are
assigning a value to. For a single-dimension array, specify
one index value; for a two-dimension array, specify two
index values, and so on.

value The value to assign the safearray element.

Return Values

The value assigned to the element.

Examples
Create a single-dimension array consisting of doubles:

_$ (setq point (vlax-make-safearray vlax-vbDouble '(0 . 2)))
#<safearray...>

Use vlax-safearray-put-element to populate the array:

_$ (vlax-safearray-put-element point 0 100)
100

298 | AutoLISP Functions

_$ (vlax-safearray-put-element point 1 100)
100

_$ (vlax-safearray-put-element point 2 0)
0

Create a two-dimension array consisting of strings:

_$ (setq matrix (vlax-make-safearray vlax-vbString '(1 . 2) '(1

2))

#<safearray...>
Use vlax-safearray-put-element to populate the array:

_$ (vlax-safearray-put-element matrix 1 1 "a")
o

_$ (vlax-safearray-put-element matrix 1 2 "b")
llbll

_$ (vlax-safearray-put-element matrix 2 1 "c")
e

_$ (vlax-safearray-put-element matrix 2 2 "d")

n dll

Note that you can also populate arrays using the viax-safearray-£ill func-
tion. The following function call accomplishes the same task as three
vlax-safearray-put-element calls:

(vlax-safearray-fill matrix '(("a" "b") ("c" "d")))
See Also
The vlax-safearray-get-element, vlax-safearray-fill, and vlax-safearray-type
functions.
vlax-safearray-type

Returns the data type of a safearray

(vliax-safearray-type var)

Arguments

var A variable containing a safearray.

Return Values

If var contains a safearray, one of the following integers is returned:

2 Integer (vlax-vbInteger)

vlax-safearray-type | 299

Long integer (vlax-vbLong)
Single-precision floating-point number (vlax-vbsingle)
Double-precision floating-point number (vlax-vbDouble)

String (vlax-vbString)

O 0 »n »~ W

Object (vlax-vbObject)
11 Boolean (vlax-vbBoolean)
12 Variant (vlax-vbvariant)

If var does not contain a safearray, an error results.

Examples

Create a single-dimension array of doubles and a two-dimension array of
strings:

_$ (setq point (vlax-make-safearray vlax-vbDouble '(0 . 2)))
#<safearray...>

_$ (setq matrix (vlax-make-safearray vlax-vbString '(1 . 2) '(1 .
2))

#<safearray...>

Use vlax-safearray-type to verify the data type of the safearrays:

_$ (vlax-safearray-type point)
5

_$ (vlax-safearray-type matrix)
8

See Also
The vlax-make-safearray function.
vlax-safearray->list

Returns the elements of a safearray in list form

(vlax-safearray->list var)

Arguments

var A variable containing a safearray.

Return Values
A list.

300 | AutoLISP Functions

Examples
Create a single-dimension array of doubles:

_$ (setq point (vlax-make-safearray vlax-vbDouble '(0 . 2)))
#<safearray...>

Use vlax-safearray-put-element to populate the array:

_$ (vlax-safearray-put-element point 0 100)
100

_$ (vlax-safearray-put-element point 1 100)
100

_$ (vlax-safearray-put-element point 2 0)
0

Convert the array to a list:

_$ (setq pointlist (vlax-safearray->list point))
(100.0 100.0 0.0)

The following example demonstrates how a two-dimension array of strings
is displayed by vlax-safearray->list:

$ (vlax-safearray->list matrix)
("

((ma" "b") ("c" "d"))
See Also
The vlax-make-safearray, vlax-safearray-fill, and vlax-safearray-put-element
functions.
vlax-tmatrix

Returns a suitable representation for a 4 x 4 transformation matrix to be used in VLA
methods

(vlax-tmatrix list)

Arguments

list A list of four lists, each containing four numbers,
representing transformation matrix elements.

Return Values

A variant of type safearray, representing the 4 x 4 transformation matrix.

vlax-tmatrix | 301

302

Examples

Define a transformation matrix and assign its value to variable tmatrix:

_$ (setq tmatrix (vlax-tmatrix '((1110) (1230) (2345) (29
8 3))))

#<variant 8197 ...>

Use vlax-safearray->list to view the value of tmatrix in list form:

_$ (vlax-safearray->list (vlax-variant-value tmatrix))
((1.0 1.0 1.0 0.0) (1.0 2.0 3.0 0.0) (2.0 3.0 4.0 5.0) (2.0 9.0 8.0
3.0))

The following code example creates a line and rotates it 90 degrees using a
transformation matrix:

(defun Example TransformBy () ; / lineObj startPt endPt matList
transMat) -

(vl-load-com) ; Load ActiveX support

(setq acadObject (vlax-get-acad-object))

(setq acadDocument (vla-get-ActiveDocument acadObject))

(setqg mSpace (vla-get-ModelSpace acadDocument))

;; Create a line

(setqg startPt (getpoint "Pick the start point"))

(setqg endPt (vlax-3d-point (getpoint startPt "Pick the end
point")))

(setqg lineObj (vla-addline mSpace (vlax-3d-point startPt) endPt))
;75 Initialize the transMat variable with a transformation matrix
;7; that will rotate an object by 90 degrees about the point(0,0,0).
;73 Begin by Creating a list of four lists, each containing four
;7 numbers, representing transformation matrix elements.

(setq matList (list '(0 -1 0 0) '(1 0 0 0) '(0O O 1 0) "(0O 0O 1)))
;3; Use vlax-tmatrix to convert the list to a variant.

(setqg transmat (vlax-tmatrix matlist))

;77 Transform the line using the defined transformation matrix

(vla-transformby lineObj transMat)
(vla-zoomall acadObject)

(princ "The line is transformed ")
(princ)

AutoLISP Functions

vlax-typeinfo-available-p

Determines whether TypelLib information is present for the specified type of object

Visual LISP requires TypeLib information to determine whether a method or
property is available for an object. Some objects may not have TypeLib infor-
mation (for example, AcadDocument).

(vlax-typeinfo-available-p obj)

Arguments
obj A VLA-object.

Return Values
T, if TypeLib information is available, otherwise nil.

See Also
The vlax-import-type-library function.
vlax-variant-change-type

Returns the value of a variant after changing it from one data type to another

(vlax-variant-change-type var type)

The vlax-variant-change-type function returns the value of the specified
variable after converting that value to the specified variant type.

Arguments
var A variable whose value is a variant.
type The type of variant to return, using the value of var (the

value of var is unchanged). The type value can be
represented by one of the following constants:

vlax-vbEmpty (0) Uninitialized

vlax-vbNull (1) Contains no valid data

vlax-typeinfo-available-p | 303

vlax-vbinteger (2) Integer
vlax-vbLong (3) Long integer

vlax-vbSingle (4) Single-precision floating-point
number

vlax-vbDouble (5) Double-precision floating-point
number

vlax-vbString (8) String
vlax-vbObject (9) Object
vlax-vbBoolean (11) Boolean
vlax-vbArray (8192) Array

The integer shown in parentheses indicates the value to
which the constant evaluates. It is recommended that you
specify the constant in your argument, not the integer
value, in case the value changes in later releases of
AutoCAD.

Return Values

The value of var, after converting it to the specified variant type, or nil, if var
could not be converted to the specified type.

Examples

Set a variable named varint to a variant value:

_$ (setq varint (vlax-make-variant 5))
#<variant 3 5>

Set a variable named varintstr to the value contained in varint, but convert
that value to a string:

_$ (setq varintStr (vlax-variant-change-type varint vlax-vbstring))
#<variant 8 5>

Check the value of varintstr:

_$ (vlax-variant-value varintStr)
g

This confirms that varintstr contains a string.

See Also

The vlax-variant-type and vlax-variant-value functions.

304 | AutoLISP Functions

vlax-variant-type

Determines the data type of a variant

(vlax-variant-type var)

Arguments

var A variable whose value is a variant.

Return Values

If var contains a variant, one of the following integers is returned:

0 Uninitialized (vlax-vbEmpty)

1 Contains no valid data (vlax-vbNull)

2 Integer (vlax-vbInteger)

3 Long integer (vlax-vbLong)

4 Single-precision floating-point number (vlax-vbSingle)
5 Double-precision floating-point number (vlax-vbDouble)
8 String (vlax-vbString)

9 Object (vlax-vbObject)

11 Boolean (vlax-vbBoolean)

8192 +n Safearray (vlax-vbArray) of some data type. For example,
an array of doubles (vlax-vbDouble) returns 8197
(8192 + 5).

If var does not contain a variant, an error results.

Examples
Set a variant to nil and display the variant’s data type:

_$ (setq varnil (vlax-make-variant nil))
#<variant 0 >

_$ (vlax-variant-type varnil)
0

vlax-variant-type | 305

306

Set a variant to an integer value and explicitly define the variant as an integer
data type:

_$ (setq varint (vlax-make-variant 5 vlax-vbInteger))
#<variant 2 5>

_$ (vlax-variant-type varint)
2

Set a variant to an integer value and display the variant’s data type:

_$ (setq varint (vlax-make-variant 5))
#<variant 3 5>

_$ (vlax-variant-type varint)

3

Notice that without explicitly defining the data type to vliax-make-variant,
an integer assignment results in a Long integer data type.

Set a variant to a string and display the variant’s data type:

_$ (setq varstr (vlax-make-variant "ghost"))
#<variant 8 ghost>

_$ (vlax-variant-type varstr)

8

Create a safearray of doubles, assign the safearray to a variant, and display the
variant’s data type:

_$ (setq 4dubs (vlax-make-safearray vlax-vbDouble '(0 . 3)))
#<safearray...>

_$ (setq var4dubs (vlax-make-variant 4dubs))
#<variant 8197 ...>

_$ (vlax-variant-type var4dubs)

8197

A variant type value greater than 8192 indicates that the variant contains
some type of safearray. Subtract 8192 from the return value to determine the
data type of the safearray. In this example, 8197-8192=5 (vlax-vbDouble).

Assign a real value to a variable, then issue vlax-variant-type to check the
variable’s data type:

(setq notvar 6.0)

6.0

_$ (vlax-variant-type notvar)
*** ERROR: bad argument type: variantp 6.0

This last example results in an error, because the variable passed to
vlax-variant-type does not contain a variant.

AutoLISP Functions

See Also

The vlax-make-safearray, vlax-make-variant, vlax-variant-change-type, and
vlax-variant-value functions.

vlax-variant-value

Returns the value of a variant

(vlax-variant-value var)

Arguments

var A variable whose value is a variant.

Return Values

The value of the variable. If the variable does not contain a variant, an error
occurs.

Examples

_$ (vlax-variant-value varstr)
n ghost n

_$ (vlax-variant-value varint)
5

_$ (vlax-variant-value notvar)
*** ERROR: bad argument type: variantp 6.0

The last example results in an error, because notvar does not contain a vari-
ant.

See Also

The vlax-make-safearray and vlax-make-variant functions.

vlax-vla-object->ename

Transforms a VLA-object to an AutoLISP entity

(vlax-vla-object->ename obj)

Arguments
obj A VLA-object.

vlax-variant-value | 307

Return Values
An AutoLISP entity name (ename data type).

Examples

_$ (vlax-vla-object->ename vlaobj)
<Entity name: 27e0540>

See Also
The vlax-ename->vla-object function.

vlax-write-enabled-p

Determines if an AutoCAD drawing object can be modified

(vlax-write-enabled-p obj)

Arguments
obj A VLA-object or AutoLISP entity object (ename).

Return Values

T, if the AutoCAD drawing object can be modified, nil if the object cannot
be modified.

vlisp-compile

Compiles AutoLISP source code into a FAS file

308

(vlisp-compile 'mode filename [out-filename])

NOTE The Visual LISP IDE must be open in order for vlisp-compile to work.

Arguments

mode The compiler mode, which can be one of the following
symbols:

st Standard build mode
1sm Optimize and link indirectly

1sa Optimize and link directly

AutoLISP Functions

filename A string identifying the AutoLISP source file. If the source
file is in the AutoCAD Support File Search Path, you can
omit the path when specifying the file name. If you omit
the file extension, .Isp is assumed.

out-filename A string identifying the compiled output file. If you do
not specify an output file, vlisp-compile names the
output with the same name as the input file, but replaces
the extension with .fas.

Note that if you specify an output file name but do not
specify a path name for either the input or the output file,
vlisp-compile places the output file in the AutoCAD
install directory.

Return Values

T, if compilation is successful, nil otherwise.

Examples
Assuming that yinyang.Isp resides in a directory that is in the AutoCAD Sup-
port File Search Path, the following command compiles this program:

_$ (vlisp-compile 'st "yinyang.lsp")
T

The output file is named yinyang.fas and resides in the same directory as the
source file.

The following command compiles yinyang.lsp and names the output file
GoodKarma.fas:

(vlisp-compile 'st "yinyang.lsp" "GoodKarma.fas")

Note that the output file from the previous command resides in the
AutoCAD install directory, not the directory where yinyang.Isp resides. The
following command compiles yinyang.Isp and directs the output file to the
c:\my documents directory:

(vlisp-compile 'st "yinyang.lsp" "c:/my documents/GoodKarma")
This last example identifies the full path of the file to be compiled:
(vlisp-compile ‘st "c:/program files/autocad 2000i/Sample/
yinyang.lsp")

The output file from this command is named yinyang.fas and resides in the
same directory as the input file.

vlisp-compile | 309

See Also

The “Compiling a Program from a File” topic in the Visual LISP Developer’s

Guide.

vir-acdb-reactor

Constructs a reactor object that notifies when an object is added to, modified in, or
erased from a drawing database

310

The vlr-acdb-reactor function constructs a database reactor object.

(vlr-acdb-reactor data callbacks)

Arguments
data

callbacks

Any AutoLISP data to be associated with a reactor object,
or nil, if no data.

A list of pairs of the following form:
(event-name . callback_function)

where event-name is one of the symbols listed in the

Database Reactor Events table below, and callback_function
is a symbol representing a function to be called when the
event fires. Each callback function accepts two arguments:

reactor_object The VLR object that called the callback
function

obj The database object (AutoLISP entity) associated
with the event

Database reactor events

Name

Event

:vlr-objectAppended

An object has been appended to the drawing database.

:vIr-objectUnAppended An object has been detached from the drawing database,

e.g., by using UNDO.

:vlr-objectReAppended A detached object has been restored in the drawing

database, e.g., by using REDO.

:vIr-objectOpenedForModify An object is about to be changed.

AutoLISP Functions

Database reactor events (continued)

Name Event

:vIr-objectModified An object has been changed.
:vlr-objectErased An object has been flagged as being erased.
:vlr-objectUnErased An object’s erased-flag has been removed.

vir-add

Enables a disabled reactor object

(vlr-add obj)

Arguments
obj A VLR object representing the reactor to be enabled.

Return Values

The obj argument.

See Also

The vlr-added-p and vlr-remove functions.
vir-added-p

Tests to determine if a reactor object is enabled

(vlr-added-p obj)

Arguments
obj A VLR object representing the reactor to be tested.

Return Values
T, if the specified reactor is enabled, or nil, if the reactor is disabled.

See Also

The vlr-add function.

viradd | 311

vir-beep-reaction

Produces a beep sound

(vlr-beep-reaction [args])

Arguments

This is a predefined callback function that accepts a variable number of argu-
ments, depending on the reactor type. The function can be assigned to an
event handler for debugging.

vlr-command-reactor

Constructs an editor reactor that notifies of a command event

312

(vlr-command-reactor data callbacks)

Arguments
data

callbacks

AutoLISP Functions

Any AutoLISP data to be associated with the reactor
object, or nil, if no data is to be associated with the
reactor.

A list of pairs of the following form:
(event-name . callback_function)

where event-name is one of the symbols listed in the
Command Reactor Events table below, and
callback_function is a symbol representing a function to be
called when the event fires. Each callback function
accepts two arguments:

reactor_object The VLR object that called the callback
function

list A list containing a single element, the string
identifying the command.

Return Values

The reactor_object argument.

Command reactor events

Event name Description

:vIr-unknownCommand A command not known to AutoCAD was issued.
:vlr-commandWillStart An AutoCAD command has been called.
:vlr-commandEnded An AutoCAD command has completed.
:vlr-commandCancelled An AutoCAD command has been canceled.
:vlr-commandFailed An AutoCAD command failed to complete.

vir-current-reaction-name

Returns the name (symbol) of the current event, if called from within a reactor’s callback

(vlr-current-reaction-name)

Return Values

A symbol indicating the event that triggered the reactor.
vir-data

Returns application-specific data associated with a reactor

(vlr-data obj)

Arguments

obj A VLR object representing the reactor object from which
to extract data.

Return Values

The application-specific data obtained from the reactor object.

vlr-current-reaction-name | 313

Examples

The following example obtains a string associated with the circleReactor
VLR object:

_$ (vlr-data circleReactor)
"Circle Reactor"

vir-data-set

Overwrites application-specific data associated with a reactor

314

(vlr-data-set obj data)

Arguments

obj A VLR object representing the reactor object whose data is
to be overwritten.

data Any AutoLISP data.

Return Values

The data argument.

Examples

Return the application-specific data value attached to a reactor:

_$ (vlr-data circleReactor)
"Circle Reactor"

Replaces the text string used to identify the reactor:

_$ (vlr-data-set circleReactor "Circle Area Reactor")
"Circle Area Reactor"

Verify the change:

_$ (vlr-data circleReactor)
"Circle Area Reactor"

NOTE The vlr-data-set function should be used with care to avoid creation
of circular structures.

AutoLISP Functions

vir-deepclone-reactor

Constructs an editor reactor object that notifies of a deep clone event

(vlr-deepclone-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the
“DeepClone reactor events” table below, and
callback_function is a symbol representing a function to be
called when the event fires. Each callback function
accepts two arguments:

reactor_object The VLR object that called the callback
function

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “DeepClone reactor callback
data.”

Return Values

The reactor_object argument.

DeepClone reactor events

Event name Description

:vIr-beginDeepClone A deep clone operation is beginning.

:vIr-beginDeepCloneXlation A deep clone operation has two stages. First, each object
and any owned objects are cloned. Second, any object ID
references are translated to their cloned IDs. This callback
occurs between these two stages.

:vlr-abortDeepClone A deep clone operation is aborting.

:vIr-endDeepClone A deep clone operation is ending.

vir-deepclone-reactor | 315

DeepClone reactor callback data

Name List length Parameters

:vIr-beginDeepClone 0
:vir-abortDeepClone
:vir-endDeepClone

:vIr-beginDeepCloneXlation 1 An integer containing the return error status;
if this value indicates an error, the deep clone
operation is terminated.

vlr-docmanager-reactor

Constructs a reactor object that notifies of events relating to drawing-documents

316

(vlr-docmanager-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the
“DocManager reactor events” table below, and
callback_function is a symbol representing a function to be
called when the event fires. Each callback function
accepts two arguments:

reactor_object The VLR object that called the callback
function

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “DocManager reactor callback
data.”

AutoLISP Functions

Return Values

The reactor_object argument.

DocManager reactor events

Event name

Description

:vIr-documentCreated

A new document was created for a drawing
(new or open).

Useful for updating your per-document
structures.

:vlr-documentToBeDestroyed

A document will be destroyed.

:vIr-documentLockModeWillChange

A command is about to start or finish modifying
elements in the document, and is obtaining or
releasing a lock on the document.

:vIr-documentLockModeChangeVetoed

A reactor invoked veto on itself from a
:vlr-documentLockModeChanged callback.

:vIr-documentLockModeChanged

The lock on the document has been obtained or
released.

:vIr-documentBecameCurrent

The current document has been changed.

This does not necessarily imply that the
document has been activated, because
changing the current document is necessary for
some operations. To obtain user input, the
document must be activated as well.

:vIr-documentToBeActivated

A currently inactive document has just received
the activate signal, implying that it is about to
become the current document.

:vIr-documentToBeDeactivated

Another window (inside or outside of AutoCAD)
has been activated.

vlr-docmanager-reactor | 317

318

DocManager reactor callback data

Name List length Parameters

:vlr-documentCreated 1 The affected document object

:vIr-documentToBeDestroyed (VLA-object).

:vIr-documentBecameCurrent

:vIr-documentToBeActivated

:vIr-documentToBeDeactivated

:vIr-documentLockModeChangeVetoed 2 First parameter is the affected
document object (VLA-object).
Second parameter is the global
command string passed in for the
lock request. If the callback is
being made on behalf of an
unlock request, the string will be
prefixed with “#”.

:vIr-documentLockModeWillChange 5 First parameter is the affected

:vIr-documentLockModeChanged

document object (VLA-object).
Second parameter is an integer
indicating the lock currently in
effect for the document object.
Third parameter is an integer
indicating the lock mode that will
be in effect after the lock is
applied.

Fourth parameter is the strongest
lock mode from all other
execution contexts.

Fifth parameter is the global
command string passed in for the
lock request. If the callback is
being made on behalf of an
unlock request, the string will be
prefixed with “#".

Lock modes may be any of the
following:

1—Auto Write Lock

2—Not Locked

4—Shared Write

8—Read

10—Exclusive Write

AutoLISP Functions

vlr-dwg-reactor

Constructs an editor reactor object that notifies of a drawing event (for example, open-

ing or closing a drawing file)

(vlr-dwg-reactor data callbacks)

Arguments
data

callbacks

Return Values

Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

A list of pairs of the following form:
(event-name . callback_function)

where event-name is one of the symbols listed in the
“DWG reactor events” table below, and callback_function
is a symbol representing a function to be called when the
event fires. Each callback function accepts two arguments:

reactor_object The VLR object that called the callback
function

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “DWG reactor callback data.”

The reactor_object argument.

DWG reactor events

Event name

Description

:vIr-beginClose

The drawing database is to be closed.

:vIr-databaseConstructed A drawing database has been constructed.

:vIr-databaseToBeDestroyed The contents of the drawing database is about to be

deleted from memory.

vir-beginDwgOpen

AutoCAD is about to open a drawing file.

vlr-dwg-reactor | 319

DWG reactor events (continued)

Event name Description

:vIr-endDwgOpen AutoCAD has ended the open operation.

:vIr-dwgFileOpened A new drawing has been loaded into the AutoCAD
drawing window.

vir-beginSave AutoCAD is about to save the drawing file.

vir-saveComplete AutoCAD has saved the current drawing to disk.

DWG reactor callback data

Name List length Parameters

:vIr-beginClose 0
:vIr-databaseConstructed
:vIr-databaseToBeDestroyed

:vIr-beginDwgOpen 1 A string identifying the file to open.
:vIr-endDwgOpen
:vIr-dwgFileOpened

:vlr-beginSave 1 A string containing the default file name for
save; may be changed by the user

:vIr-saveComplete 1 A string containing the actual file name
used for the save.

vir-dxf-reactor

Constructs an editor reactor object that notifies of an event related to reading or writing
a DXF file

(vlr-dxf-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

320 | AutoLISP Functions

where event-name is one of the symbols listed in the “DXF
reactor events” table below, and callback_function is a
symbol representing a function to be called when the
event fires. Each callback function accepts two arguments:

reactor_object The VLR object that called the callback
function

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “DXF reactor callback data.”

Return Values

The reactor_object argument.

DXF reactor events

Event name Description

:vIr-beginDxfln The contents of a DXF file is to be appended to the
drawing database.

:vlr-abortDxfIn The DXF import was not successful.

:vIr-dxfinComplete The DXF import was successful.

:vIr-beginDxfOut AutoCAD is about to export the drawing database into a
DXF file.

:vlr-abortDxfOut The DXF export operation failed.

:vIr-dxfOutComplete The DXF export operation was successful.

Name List length Parameters

:vIr-beginDxfln 0

:vlr-abortDxfIn
:vIr-dxfinComplete,
:vIr-beginDxfOut
:vlr-abortDxfOut
:vIr-dxfOutComplete

vlr-dxf-reactor | 321

vir-editor-reactor

Constructs an editor reactor object

(vlr-editor-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the

“Editor reactor events” table below, and callback_function
is a symbol representing a function to be called when the
event fires. Each callback function accepts two arguments:

reactor_object The VLR object that called the callback
function.

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “Editor reactor callback data”
on page 325.

Return Values

The reactor_object argument.

Editor reactor events

Event name Description

:vIr-beginClose The drawing database is to be closed.

:vIr-beginDxfln The contents of a DXF file is to be appended to the
drawing database.

:vlr-abortDxfIn The DXF import was not successful.

:vIr-dxfinComplete The DXF import completed successfully.

322 | AutoLISP Functions

Editor reactor events (continued)

Event name

Description

:vIr-beginDxfOut

AutoCAD is about to export the drawing database into a
DXF file.

:vlr-abortDxfOut

DXF export operation failed.

:vIr-dxfOutComplete

DXF export operation completed successfully.

:vIr-databaseToBeDestroyed

The contents of the drawing database is about to be
deleted from memory.

:vIr-unknownCommand

A command not known to AutoCAD was issued.

:vIr-commandWillStart

An AutoCAD command has been called.

vir-commandEnded

An AutoCAD command has completed.

:vIr-commandCancelled

An AutoCAD command has been canceled.

:vIr-commandFailed

An AutoCAD command failed to complete.

:vir-lispWillStart

An AutoLISP expression is to be evaluated.

:vir-lispEnded

Evaluation of an AutoLISP expression has completed.

:vir-lispCancelled

Evaluation of an AutoLISP expression has been canceled.

:vIr-beginDwgOpen

AutoCAD is about to open a drawing file.

:vIr-endDwgOpen

AutoCAD has ended the open operation.

:vIr-dwgFileOpened

A new drawing has been loaded into the AutoCAD
drawing window.

:vIr-beginSave

AutoCAD is about to save the drawing file.

:vlr-saveComplete

AutoCAD has saved the current drawing to disk.

:vir-sysVarWillChange

AutoCAD is about to change the value of a system
variable.

:vlr-sysVarChanged

The value of a system variable has changed.

vir-editor-reactor | 323

Editor reactor events (continued)

Event name

Description

:vIr-beginDxfOut

AutoCAD is about to export the drawing database into a
DXF file.

:vlr-abortDxfOut

DXF export operation failed.

:vIr-dxfOutComplete

DXF export operation completed successfully.

:vIr-databaseToBeDestroyed

The contents of the drawing database is about to be
deleted from memory.

:vIr-unknownCommand

A command not known to AutoCAD was issued.

:vIr-commandWillStart

An AutoCAD command has been called.

vir-commandEnded

An AutoCAD command has completed.

:vIr-commandCancelled

An AutoCAD command has been canceled.

:vIr-commandFailed

An AutoCAD command failed to complete.

:vir-lispWillStart

An AutoLISP expression is to be evaluated.

:vir-lispEnded

Evaluation of an AutoLISP expression has completed.

:vir-lispCancelled

Evaluation of an AutoLISP expression has been canceled.

:vIr-beginDwgOpen

AutoCAD is about to open a drawing file.

:vIr-endDwgOpen

AutoCAD has ended the open operation.

:vIr-dwgFileOpened

A new drawing has been loaded into the AutoCAD
drawing window.

:vlr-beginSave

AutoCAD is about to save the drawing file.

:vlr-saveComplete

AutoCAD has saved the current drawing to disk.

:vir-sysVarWillChange

AutoCAD is about to change the value of a system
variable.

:vlr-sysVarChanged

The value of a system variable has changed.

AutoLISP Functions

Editor reactor callback data

Name

Parameters

:vir-lispEnded
:vir-lispCancelled
:vIr-beginClose
:vIr-beginDxfln
:vlr-abortDxfIn
:vIr-dxfinComplete
:vIr-beginDxfOut
:vIr-abortDxfOut
:vIr-dxfOutComplete
:vIr-databaseToBeDestroyed

:vIr-unknownCommand
:vIr-commandWillStart
:vIr-commandEnded
:vIr-commandCancelled
:vlr-commandFailed

A string containing the command name.

:vir-lispWillStart

A string containing the first line of the
AutoLISP expression to evaluate.

:vIr-beginDwgOpen
:vIr-endDwgOpen
:vIr-dwgFileOpened

A string identifying the file to open.

:vIr-beginSave

A string containing the default file name for
save; this may be changed by the user.

:vIr-saveComplete

A string identifying the actual file name
used for the save.

:vr-sysVarWillChange

A string naming the system variable.

:vIr-sysVarChanged

First parameter is a string naming the
system variable.

Second parameter is an integer indicating
whether the change was successful

(1 = success, 0 = failed).

vir-editor-reactor | 325

vir-insert-reactor

Constructs an editor reactor object that notifies of an event related to block insertion

326

(vlr-insert-reactor data callbacks)

Arguments
data

callbacks

Return Values

Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

A list of pairs of the following form:
(event-name . callback_function)

where event-name is one of the symbols listed in the
“Insert reactor events” table below, and callback_function
is a symbol representing a function to be called when the
event fires. Fach callback function accepts two arguments:

reactor_object The VLR object that called the callback
function

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “Insert reactor callback data.”

The reactor_object argument.

Insert reactor events

Event name

Description

:vIr-begininsert

A block is about to be inserted into the drawing database.

:vIr-begininsertM

A 3D transformation matrix is about to be inserted into the
drawing database.

:vir-otherlnsert

A block or matrix has been added to the drawing
database. This notification is sent after the insert process
completes copying the object into the database, but
before ID translation or entity transformation occurs.

AutoLISP Functions

Insert reactor events (continued)

Event name

Description

:vlr-endlnsert

Usually indicates an insert operation on the drawing
database is complete. However, in some cases, the
transform has not yet happened, or the block that was
created has not yet been appended. This means the
objects copied are not yet graphical, and you cannot use
them in selection sets until the :vir-commandEnded
notification is received.

:vlr-abortinsert

Insert operation was terminated and did not complete,
leaving the database in an unstable state.

Insert reactor callback data

Name

List length

Parameters

:vIr-begininsert

3

First parameter is a VLA-object pointing to
the database in which the block is being
inserted.

Second parameter is a string naming the
block to be inserted.

Third parameter is a VLA-object identifying
the source database of the block.

:vIr-begininsertM

First parameter is a VLA-object pointing to
the database in which the 3D
transformation matrix is being inserted.
Second parameter is the 3D transformation
matrix to be inserted.

Third parameter is a VLA-object identifying
the source database of the matrix.

:vir-otherlnsert

First parameter is a VLA-object pointing to
the database in which the block or matrix is
being inserted.

Second parameter is a VLA-object
identifying the source database of the block
or matrix.

:vlr-endinsert
:vlr-abortinsert

VLA-object pointing to target database.

vlr-insert-reactor | 327

vir-linker-reactor

Constructs a reactor object that notifies your application every time an ObjectARX appli-

cation is loaded or unloaded

(vlr-linker-reactor data callbacks)

Arguments
data

callbacks

Return Values

Any AutoLISP data to be associated with the reactor
object.

A list of pairs of the following form:
(event-name . callback_function)

where event-name is one of the symbols listed in the table
“Linker reactor events” on page 328, and callback_function
is a symbol representing a function to be called when the
event fires. Each callback function accepts two arguments:

reactor_object The VLR object that called the callback
function

list A list containing the name of the ObjectARX
program that was loaded or unloaded (a string).

The reactor_object argument.

Linker reactor events

Name

Event

:vIr-rxApplLoaded

The dynamic linker has loaded a new ObjectARX program.
The program has finished its initialization.

:vIr-rxAppUnLoaded

The dynamic linker has unloaded an ObjectARX program.
The program already has done its clean-up.

Examples

_$ (vlr-linker-reactor nil
'((:vlr-rxAppLoaded . my-vlr-trace-reaction)))
#<VLR-Linker-Reactor>

328 | AutoLISP Functions

vir-lisp-reactor

Constructs an editor reactor object that notifies of a LISP event

(vlr-lisp-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Lisp
reactor events” table below, and callback_function is a
symbol representing a function to be called when the
event fires. Each callback function accepts two arguments:

reactor_object The VLR object that called the callback
function.

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “Lisp reactor callback data.”

Return Values

The reactor_object argument.

Lisp reactor events

Event name Description

:vir-lispWillStart An AutoLISP expression is to be evaluated.
:vir-lispEnded Evaluation of an AutoLISP expression has completed.
wvir-lispCancelled Evaluation of an AutoLISP expression has been canceled.

vir-lisp-reactor | 329

Lisp reactor callback data

Name List length Parameters

:vir-lispEnded 0
wvir-lispCancelled

:vir-lispWillStart 1 A string containing the first line of the
AutoLISP expression to evaluate.

vlr-miscellaneous-reactor

Constructs an editor reactor object that does not fall under any other editor reactor

types

330

(vlr-miscellaneous-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the
“Miscellaneous reactor events” table below, and
callback_function is a symbol representing a function to be
called when the event fires. Each callback function
accepts two arguments:

reactor_object The VLR object that called the callback
function.

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “Miscellaneous reactor
callback data.”

AutoLISP Functions

Return Values

The reactor_object argument.

Miscellaneous reactor events

Event name Description

:vr-pickfirstModified The pickfirst selection set of the current document has
been modified.

:vir-layoutSwitched The layout was switched.

Miscellaneous reactor callback data

Name List length Parameters

:vir-pickfirstModified 0

:vIr-layoutSwitched 1 A string naming the layout switched to.
vl-mouse-reactor

Constructs an editor reactor object that notifies of a mouse event (for example, a double-
click)

(vlr-mouse-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the

“Mouse reactor events” table below, and callback_function
is a symbol representing a function to be called when the
event fires. Fach callback function accepts two arguments:

reactor_object The VLR object that called the callback
function

vlr-mouse-reactor | 331

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “Mouse reactor callback
data.”

Return Values

The reactor_object argument.

Mouse reactor events

Event name Description

:vIr-beginDoubleClick The user has double-clicked.

:vIr-beginRightClick The user has right-clicked.

Mouse reactor callback data

Name List length Parameters

:vIr-beginDoubleClick 1 A 3D point list (list of 3 reals) showing the

:vIr-beginRightClick point clicked on, in WCS.
vir-notification

Determines whether or not a reactor will fire if its associated namespace is not active

332

(vlr-notification reactor)

Arguments
reactor A VLR object.

Return Values

A symbol, which can be either 'all-documents (the reactor fires whether or
not its associated document is active), or 'active-document-only (the reac-
tor fires only if its associated document is active).

AutoLISP Functions

vir-object-reactor

Constructs an object reactor object

(vlr-object-reactor owners data callbacks)

The reactor object is added to the drawing database, but does not become

persistent.

Arguments

owners

data

callbacks

An AutoLISP list of VLA-objects identifying the drawing
objects to be watched.

Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

A list of pairs of the following form:
(event-name . callback_function)

where event-name is one of the symbols listed in the table
“Object events” on page 334, and callback_function is a
symbol representing a function to be called when the
event fires. Each callback function accepts three
arguments:

owner The owner of the VLA-object the event applies to.

reactor_object The VLR object that called the callback
function.

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “Object events callback data”
on page 335.

vilr-object-reactor | 333

334

Return Values

The reactor_object argument.

Name

Event

:vir-cancelled

The modification of the object has been canceled.

:vlr-copied

The object has been copied.

:vir-erased

Erase-flag of the object has been set.

:vlr-unerased

Erase-flag of the object has been reset.

:vIr-goodbye

The object is about to be deleted from memory.

:vIr-openedForModify

The object is about to be modified.

:vIr-modified

The object has been modified. If the modification was
canceled, also :vir-cancelled and :vir-modifyUndone will be
fired.

:vIr-subObjModified

A sub-entity of the object has been modified. This event is
triggered for modifications to vertices of polylines or
meshes, and for attributes owned by blockReferences.

:vIr-modifyUndone

The object’s modification was undone.

:vIr-modifiedXData

The object’s extended entity data have been modified.

:vlr-unappended

The object has been detached from the drawing database.

:vlr-reappended

The object has been re-attached to the drawing database.

:vlr-objectClosed

The object’s modification has been finished.

AutoLISP Functions

Object events callback data

Name List length Parameters

:vlr-cancelled 0
:vlr-erased,
:vlr-unerased
:vIr-goodbye
:vIr-openedForModify
:vlr-modified
:vlr-modifyUndone
:vIr-modifiedXData
:vlr-unappended
:vlr-reappended
:vlr-objectClosed

:vlr-copied 1 The object created by the copy operation
(ename).

:vIr-subObjModified 1 The sub-object (ename) that has been
modified.

Examples

The following code attaches an object reactor to the mycircle object. It
defines the reactor to respond whenever the object is modified
(:vlr-modified) and to call the print-radius function in response to the
modification event:

(setqg circleReactor (vlr-object-reactor (list myCircle)
"Circle Reactor" '((:vlr-modified . print-radius))))

vir-owner-add

Adds an object to the list of owners of an object reactor

(vlr-owner-add reactor owner)

This function adds a new source of reactor events; the reactor will receive
events from the specified object.

Arguments
reactor A VLR object.
owner A VLA-object to be added to the list of notifiers for this

reactor.

vir-owner-add | 335

Return Values
The VLA-object to which the reactor has been added.

Examples

In the following example, an arc object named “archie” is added to the owner
list of reactor circleReactor:

_$ (vlr-owner-add circleReactor archie)
#<VLA-OBJECT IAcadArc 03adObcc>

See Also

The vlr-owner-remove function.

vir-owner-remove

Removes an object from the list of owners of an object reactor

336

(vlr-owner-remove reactor owner)

Arguments
reactor A VLR object.
owner A VLA-object to be removed from the list of notifiers for

this reactor.

Return Values

The VLA-object from which the reactor was removed.

Examples

_$ (vlr-owner-remove circleReactor archie)
#<VLA-OBJECT IAcadArc 03adObcc>

See Also

The vlr-owner-add function.

AutoLISP Functions

vir-owners

Returns the list of owners of an object reactor

vir-pers

(vlr-owners reactor)

Arguments
reactor A VLR object.

Return Values
A list of objects that notify the specified reactor.

Examples

_$ (vlr-owners circleReactor)

(#<VLA-OBJECT IAcadCircle 01db98f4> #<VLA-OBJECT IAcadCircle
01db9724> #<VLA-OBJECT IAcadCircle 01db93d4> #<VLA-OBJECT
IAcadCircle 01db9084>)

Makes a reactor persistent

(vlr-pers reactor)

Arguments
reactor A VLR object.

Return Values
The specified reactor object, if successful, nil otherwise.

Examples
Define a reactor:

_$ (setq circleReactor (vlr-object-reactor

(list myCircle) "Radius size" '((:vlr-modified . print-radius))))

#<VLR-Object-Reactor>
Make the reactor persistent:

$ (vlr-pers circleReactor)

#<VLR-Object-Reactor>

vir-owners

337

vir-pers-list

Returns a list of persistent reactors in the current drawing document

(vlr-pers-list [reactor])

Arguments

reactor The reactor object to be listed. If reactor is not specified,
vlr-pers-list lists all persistent reactors.

Return Values

A list of reactor objects.

Examples

_$ (vlr-pers-list)
(#<VLR-Object-Reactor> #<VLR-Object-Reactor>
(#<VLR-Object-Reactor>)

vir-pers-p

Determines whether or not a reactor is persistent

(vlr-pers-p reactor)

Arguments
reactor A VLR object.

Return Values
The specified reactor object, if it is persistent; nil, if the reactor is transient.

Examples

Make a reactor persistent:

_$ (vlr-pers circleReactor)
#<VLR-Object-Reactor>

Verify that a reactor is persistent:

_$ (vlr-pers-p circleReactor)
#<VLR-Object-Reactor>

338 | AutoLISP Functions

Change the persistent reactor to transient:

_$ (vlr-pers-release circleReactor)
#<VLR-Object-Reactor>

Verify that the reactor is no longer persistent:
_$ (vlr-pers-p circleReactor)

nil

vir-pers-release

Makes a reactor transient

(vlr-pers-release reactor)

Arguments
reactor VLR object.

Return Values

The specified reactor object, if successful, nil otherwise.

vir-reaction-name

Returns a list of all possible callback conditions for this reactor type

(vlr-reaction-names reactor-type)

Arguments

reactor-type One of the following symbols:

:VLR-AcDb-Reactor
:VLR-Command-Reactor
:VLR-DeepClone-Reactor
:VLR-DocManager-Reactor
:VLR-DWG-Reactor
:VLR-DXEF-Reactor
:VLR-Editor-Reactor
:VLR-Insert-Reactor
:VLR-Linker-Reactor
:VLR-Lisp-Reactor
:VLR-Miscellaneous-Reactor

vir-pers-release | 339

:VLR-Mouse-Reactor
:VLR-Object-Reactor
:VLR-SysVar-Reactor
:VLR-Toolbar-Reactor
:VLR-Undo-Reactor
:VLR-Wblock-Reactor
:VLR-Window-Reactor
:VLR-XREF-Reactor

Return Values

A list of symbols indicating the possible events for the specified reactor type.
Examples

_$ (vlr-reaction-names :VLR-Editor-Reactor)
(:vlr-unknownCommand :vlr-commandWillStart :vlr-commandEnded....

vilr-reaction-set

Adds or replaces a callback function in a reactor

(vlr-reaction-set reactor event function)

Arguments

reactor A VLR object.

event A symbol denoting one of the event types available for
this reactor type.

function A symbol representing the AutoLISP function to be added

or replaced.

Return Values

Unspecified.

Examples

The following command changes the circleReactor reactor to call the
print-area function when an object is modified:

_$ (vlr-reaction-set circleReactor :vlr-modified 'print-area)
PRINT-AREA

340 | AutoLISP Functions

vir-reactions

Returns a list of pairs (event-name . callback_function) for the reactor

(vlr-reactions reactor)

Arguments
reactor A VLR object.

Examples

_$ (vlr-reactions circleReactor)
((:vlr-modified . PRINT-RADIUS))

vir-reactors

Returns a list of existing reactors

(vlr-reactors [reactor-type...])

Arguments

reactor-type One or more of the following symbols:

:VLR-AcDb-Reactor
:VLR-Command-Reactor
:VLR-DeepClone-Reactor
:VLR-DocManager-Reactor
:VLR-DWG-Reactor
:VLR-DXF-Reactor
:VLR-Editor-Reactor
:VLR-Insert-Reactor
:VLR-Linker-Reactor
:VLR-Lisp-Reactor
:VLR-Miscellaneous-Reactor
:VLR-Mouse-Reactor
:VLR-Object-Reactor
:VLR-SysVar-Reactor
:VLR-Toolbar-Reactor
:VLR-Undo-Reactor
:VLR-Wblock-Reactor
:VLR-Window-Reactor
:VLR-XREF-Reactor

vlr-reactions

341

If you specify reactor-type arguments, vlr-reactors returns lists of the reactor
types you specified. If you omit reactor-type, vlr-reactors returns all existing
reactors.

Return Values

Alist of reactor lists, or nil, if there are no reactors of any specified type. Each
reactor list begins with a symbol identifying the reactor type, followed by
pointers to each reactor of that type.

Examples

List all reactors in a drawing:

_$ (vlr-reactors)
((:VLR-Object-Reactor #<VLR-Object-Reactor>) (:VLR-Editor-Reactor
#<VLR-Editor-Reactor>))

List all object reactors:

_$ (vlr-reactors :vlr-object-reactor)
((:VLR-Object-Reactor #<VLR-Object-Reactor>))

vlr-reactors returns a list containing a single reactor list.
List all database reactors:

_$ (vlr-reactors :vlr-acdb-reactor)
nil

There are no database reactors defined.
List all DWG reactors:

_$ (vlr-reactors :vlr-dwg-reactor)
((:VLR-DWG-Reactor #<VLR-DWG-Reactor> #<VLR-DWG-Reactor>))

vlr-reactors returns a list containing a list of DWG reactors.

vilr-remove

Disables a reactor

342

(vlr-remove reactor)

Arguments
reactor A VLR object.

Return Values

The reactor argument, or nil, if unsuccessful.

AutoLISP Functions

Examples
The following command disables the circleReactor reactor:

_$ (vlr-remove circleReactor)
#<VLR-Object-reactor>

See Also

The vlr-remove-all function.

vir-remove-all

Disables all reactors of the specified type

(vlr-remove-all [reactor-type])

Arguments

reactor-type One of the following symbols:

:VLR-AcDb-Reactor
:VLR-Command-Reactor
:VLR-DeepClone-Reactor
:VLR-DocManager-Reactor
:VLR-DWG-Reactor
:VLR-DXF-Reactor
:VLR-Editor-Reactor
:VLR-Insert-Reactor
:VLR-Linker-Reactor
:VLR-Lisp-Reactor
:VLR-Miscellaneous-Reactor
:VLR-Mouse-Reactor
:VLR-Object-Reactor
:VLR-SysVar-Reactor
:VLR-Toolbar-Reactor
:VLR-Undo-Reactor
:VLR-Wblock-Reactor
:VLR-Window-Reactor
:VLR-XREF-Reactor

If no reactor-type is specified, vlr-remove-all disables all
reactors.

vlr-remove-all | 343

Return Values

A list of lists. The first element of each list identifies the type of reactor, and
the remaining elements identify the disabled reactor objects. The function
returns nil if there are no reactors active.

Examples
The following function call disables all editor reactors:

_$ (vlr-remove-all :vlr-editor-reactor)
((:VLR-Editor-Reactor #<VLR-Editor-Reactor>))

The following call disables all reactors:

$ (vlr-remove-all)

((:VLR-Object-Reactor #<VLR-Object-Reactor> #<VLR-Object-Reactor>
#<VLR-Object-Reactor>) (:VLR-Editor-Reactor #<VLR-Editor-Reactor>))

See Also

The vlr-remove function.

vir-set-notification

Defines whether or not a reactor’s callback function will execute if its associated
namespace is not active

344

(vlr-set-notification reactor 'range)

Arguments
reactor A VLR object.
'range The range argument is a symbol that can be either 'all-

documents (execute the callback whether or not the reactor
is associated with the active document), or 'active-
document-only (execute the callback only if the reactor is
associated with the active document).

Return Values
The VLR obiject.

Examples

Set a reactor to execute its callback function even if its associated namespace
is not active:

_$ (vlr-set-notification circleReactor 'all-documents)

AutoLISP Functions

#<VLR-Object-Reactor>

vir-sysvar-reactor

Constructs an editor reactor object that notifies of a change to a system variable

(vlr-sysvar-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the

“SysVar reactor events” table below, and callback_function
is a symbol representing a function to be called when the
event fires. Each callback function accepts two arguments:

reactor_object The VLR object that called the callback
function.

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “SysVar reactor callback
data.”

Return Values

The reactor_object argument.

SysVar reactor events

Event name Description

:vir-sysVarWillChange AutoCAD is about to change the value of a system
variable.

:vIr-sysVarChanged The value of a system variable has changed.

vir-sysvar-reactor | 345

SysVar reactor callback data

Name List length Parameters

:vIr-sysVarWillChange 1 A string identifying the system variable
name.

:vlr-sysVarChanged 2 First parameter is a string identifying the

system variable name.

Second parameter is symbol indicating
whether or not the change was successful
(T if successful, nil if not).

vir-toolbar-reactor

Constructs an editor reactor object that notifies of a change to the bitmaps in a toolbar

346

(vlr-toolbar-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the

“Toolbar reactor events” table below, and callback_function
is a symbol representing a function to be called when the
event fires. Fach callback function accepts two arguments:

reactor_object The VLR object that called the callback
function.

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “Toolbar reactor callback
data.”

AutoLISP Functions

Return Values

The reactor_object argument.

Toolbar reactor events

Event name Description

:vIr-toolbarBitmapSizeWillChange The size of the AutoCAD toolbar icons is about to
change.

:vIr-toolbarBitmapSizeChanged The size of the AutoCAD toolbar icons has changed.

Toolbar reactor callback data

Name List length Parameters
:vIr-toolbarBitmapSizeWillChange 1 T, if the toolbar is being set to large
:vIr-toolbarBitmapSizeChanged bitmaps, nil if the toolbar is being set

to small bitmaps.

vir-trace-reaction

A pre-defined callback function that prints one or more callback arguments in the Trace
window

(vlr-trace-reaction)

This function can be used as a debugging tool to verify that a reactor has
fired.

Examples

Define a command reactor and assign vlr-trace-reaction as the callback
function:

_$ (VLR-Reaction-Set (VLR-Command-Reactor) :VLR-commandWillStart
'VLR-trace-reaction)
VLR-trace-reaction

At the AutoCAD Command prompt, enter the following:

_.LINE

vlr-trace-reaction | 347

vir-type

Respond to the command prompts, then activate the VLISP window and
open the Trace window. You should see the following in the Trace window:

; "Reaction": :VLR-commandWillStart; "argument list":
(#<VLR-COMMAND-REACTOR> ("LINE"))

The output from vlr-trace-reaction identifies the type of trigger event, the
reactor type, and the command that triggered the reactor.

Returns a symbol representing the reactor type

(vlr-type reactor)

Arguments
reactor A VLR object.

Return Values

A symbol identifying the reactor type. The following table lists the types that
may be returned by vir-type:

Reactor types

Reactor type Description

:VLR-AcDb-Reactor Database reactor.

:VLR-Command-Reactor An editor reactor notifying of a command event.
:VLR-DeepClone-Reactor An editor reactor notifying of a deep clone event.
:VLR-DocManager-Reactor Document management reactor.
:VLR-DWG-Reactor An editor reactor notifying of a drawing event (for

example, opening or closing a drawing file).

:VLR-DXF-Reactor An editor reactor notifying of an event related to reading
or writing of a DXF file.

:VLR-Editor-Reactor General editor reactor; maintained for backward-
compatibility.

:VLR-Insert-Reactor An editor reactor notifying of an event related to block
insertion.

348 | AutoLISP Functions

Reactor types (continued)

Reactor type Description
:VLR-Linker-Reactor Linker reactor.
:VLR-Lisp-Reactor An editor reactor notifying of a LISP event.

:VLR-Miscellaneous-Reactor ~ An editor reactor that does not fall under any of the other
editor reactor types.

:VLR-Mouse-Reactor An editor reactor notifying of a mouse event (for example,
a double-click).

:VLR-Object-Reactor Object reactor.

:VLR-SysVar-Reactor An editor reactor notifying of a change to a system
variable.

:VLR-Toolbar-Reactor An editor reactor notifying of a change to the bitmaps in a
toolbar.

:VLR-Undo-Reactor An editor reactor notifying of an undo event.

:VLR-Wblock-Reactor An editor reactor notifying of an event related to writing a
block.

:VLR-Window-Reactor An editor reactor notifying of an event related to moving

or sizing an AutoCAD window.

:VLR-XREF-Reactor An editor reactor notifying of an event related to attaching
or modifying XREFs.

Examples

_$ (vlr-type circleReactor)
:VLR-Object-Reactor

vir-types

Returns a list of all reactor types

(vlr-types)

Return Values

(:VLR-Linker-Reactor :VLR-Editor-Reactor :VLR-AcDb-Reactor)

vir-types | 349

vir-undo-reactor

Constructs an editor reactor object that notifies of an undo event

350

(vlr-undo-reactor data callbacks)

Arguments
data

callbacks

Return Values

Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

A list of pairs of the following form:
(event-name . callback_function)

where event-name is one of the symbols listed in the
“Undo reactor events” table below, and callback_function
is a symbol representing a function to be called when the
event fires. Each callback function accepts two arguments:

reactor_object The VLR object that called the callback
function.

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “Undo reactor callback data.”

The reactor_object argument.

Undo reactor events

Event name

Description

:vlr-undoSubcommandAuto The UNDO command’s Auto option has been executed.

:vIr-undoSubcommandControl The UNDO command’s Control option has been

executed.

:vIr-undoSubcommandBegin The UNDO command’s BEGIN or GROUP option is

being performed. BEGIN and GROUP mark the
beginning of a series of commands that can be undone
as one unit.

:vlr-undoSubcommandEnd The UNDO command’s END option is being performed.

UNDO/END marks the end of a series of commands
that can be undone as one unit.

AutoLISP Functions

Undo reactor events (continued)

Event name Description

:vIr-undoSubcommandMark The UNDO command’s MARK option is about to be
executed. This places a marker in the undo file so
UNDO/BACK can undo back to the marker.

:vlr-undoSubcommandBack The UNDO command’s BACK option is about to be
performed. UNDO/BACK undoes everything back to the
most recent MARK marker or back to the beginning of
the undo file if no MARK marker exists.

:vIr-undoSubcommandNumber The UNDO command’s NUMBER option is about to be
executed (the default action of the UNDO command).

Undo reactor callback data

Name List length

Parameters

:vIr-undoSubcommandAuto 2

First parameter is an integer indicating
the activity. The value is always 4,
indicating that notification occurred after
the operation was performed.

Second parameter is a symbol indicating
the state of Auto mode. Value is T if Auto
mode is turned on, nil if Auto mode is
turned off.

:vIr-undoSubcommandControl 2

First parameter is an integer indicating
the activity. The value is always 4,
indicating that notification occurred after
the operation was performed.

Second parameter is an integer indicating
the Control option selected. This can be
one of the following:

0—NONE was selected

1—ONE was selected

2—ALL was selected

:vlr-undoSubcommandBegin 1
:vlr-undoSubcommandEnd
:vIr-undoSubcommandMark
:vIr-undoSubcommandBack

An integer value of 0, indicating that
notification occurs before the actual
operation is performed.

:vIr-undoSubcommandNumber 2

First parameter is an integer indicating
the activity. The value is always O,
indicating that notification occurs before
the actual operation is performed.
Second parameter is an integer indicating
the number of steps being undone.

vlr-undo-reactor | 351

vir-wblock-reactor

Constructs an editor reactor object that notifies of an event related to writing a block

(vlr-wblock-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the
“Whblock reactor events” table below, and
callback_function is a symbol representing a function to be
called when the event fires. Each callback function
accepts two arguments:

reactor_object The VLR object that called the callback
function.

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “Wblock reactor callback
data.”

Return Values

The reactor_object argument.

Whblock reactor events

Event name Description
:VLR-wblockNotice A wblock operation is about to start.
:VLR-beginWblockPt A wblock operation is being performed on a set of
entities.
:VLR-beginWblockld ﬁlwtl)(lock operation is being performed on a specified
ock.

352 | AutoLISP Functions

Whlock reactor events (continued)

Event name

Description

:VLR-beginWblock

A wblock operation is being performed on an entire
database. Notification does not occur until all the
entities in the source database’s model space are copied
into the target database.

:VLR-otherWblock

A wblock operation is being performed on a drawing
database. This notification is sent after the wblock
process completes copying the objects into the target
database, but before ID translation occurs. At this time it
is possible to clone additional objects (such as
dictionaries and objects that reside in dictionaries that
would otherwise not be copied over) in the same way as
during beginDeepCloneXIlation notification.

:VLR-abortWblock

A wblock operation was terminated before completing.

:VLR-endWblock

A wblock operation completed successfully.

:VLR-beginWblockObjects

wblock has just initialized the object ID translation map.

Whlock reactor callback data

Name

List length Parameters

:VLR-wblockNotice

1 Database object (VLA-object) from which
the block will be created.

:VLR-beginWblockPt

3 First parameter is the target database
object (VLA-object).
Second parameter is the source database
object (VLA-object) containing the
objects being wblocked.
Third parameters is a 3D point list (in
WCS) to be used as the base point in the
target database.

:VLR-beginWblockld

3 First parameter is the target database
object (VLA-object).
Second parameter is the source database
object (VLA-object) containing the
objects being wblocked.
Third parameter is the object ID of the
BlockTableRecord being wblocked.

vlr-wblock-reactor | 353

Whlock reactor callback data (continued)

Name List length Parameters
:VLR-beginWblock 2 First parameter is the target database
:VLR-otherWblock object (VLA-object).

Second parameter is the source database
object (VLA-object) containing the
objects being wblocked.

:VLR-abortWblock 1 The target database object (VLA-object).
:VLR-endWblock

:VLR-beginWblockObjects 2 First parameter is the source database
object (VLA-object) containing the
objects being wblocked.

Second parameter is an ID map.

vlr-window-reactor

Constructs an editor reactor object that notifies of an event related to moving or sizing
an AutoCAD window

354

(vlr-window-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the
“Window reactor events” table below, and
callback_function is a symbol representing a function to be
called when the event fires. Each callback function
accepts two arguments:

reactor_object The VLR object that called the callback
function.

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “Window reactor callback
data.”

AutoLISP Functions

Return Values

The reactor_object argument.

Window reactor events

Event name Description

:vIr-docFrameMovedOrResized ~ An MDI child frame window (a document window) has
been moved or resized.

:vIr-mainFrameMovedOrResized The main AutoCAD window has been moved or

resized.
Window reactor callback data
Name List length Parameters
:vIr-docFrameMovedOrResized 2 The first parameter is an integer
:vIr-mainFrameMovedOrResized containing the HWND of the window.

The second parameter indicates whether
the window has been moved or resized.
The value is T if the window has been
moved, nil if the window has been
resized.

vilr-xref-reactor

Constructs an editor reactor object that notifies of an event related to attaching or mod-
ifying XREFs

(vlr-xref-reactor data callbacks)

Arguments

data Any AutoLISP data to be associated with the reactor
object, or nil, if no data.

callbacks A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “XREF
reactor events” table below, and callback_function is a
symbol representing a function to be called when the
event fires. Each callback function accepts two arguments:

vlr-xref-reactor | 355

reactor_object The VLR object that called the callback
function.

list A list of extra data elements associated with the
particular event. The contents of this list for particular
events is shown in the table “XREF reactor callback data.”

Return Values

The reactor_object argument.

XREF reactor events

Event name Description
:VLR-beginAttach An XREF is about to be attached.
:VLR-otherAttach An external reference is being added to the drawing

database. This event occurs after objects are cloned,
but before any translation. This callback function is
sent just after beginDeepCloneXlation notification,
but only occurs for the XREF attach process.

:VLR-abortAttach An XREF attach operation was terminated before
successful completion.

:VLR-endAttach An XREF attach operation completed successfully.

:VLR-redirected An object ID in the XREF drawing is being modified

to point to the associated object in the drawing
being XREFed into.

:VLR-comandeered The object ID of the object is being appended to the
symbol table of the drawing being XREFed into.

:VLR-beginRestore An existing XREF is about to be resolved (typically
when a drawing with XREFs is loading).

:VLR-abortRestore An XREF unload or reload was terminated before
successful completion.

:VLR-endRestore An existing XREF has been resolved (typically when a
drawing with XREFs has completed loading).

:VLR-xrefSubcommandBindltem The BIND subcommand of XREF was invoked, or a
pre-existing xref is being bound.
Note that the BIND subcommand is interactive and
triggers multiple events.

356 | AutoLISP Functions

XREF reactor events (continued)

Event name

Description

:\VLR-xrefSubcommandAttachltem

The ATTACH subcommand of XREF was invoked, or
a pre-existing xref is being resolved.

Note that the ATTACH subcommand is interactive
and triggers multiple events.

:VLR-xrefSubcommandOverlayltem

The OVERLAY subcommand of XREF was invoked, or
a pre-existing xref is being resolved.

Note that the OVERLAY subcommand is interactive
and triggers multiple events.

:VLR-xrefSubcommandDetachltem

The DETACH subcommand of XREF was invoked.
Note that the OVERLAY subcommand is interactive
and triggers multiple events.

:VLR-xrefSubcommandPathltem

The PATH subcommand of XREF was invoked.
Note that the PATH subcommand is interactive and
triggers multiple events.

:VLR-xrefSubcommandReloadltem

The RELOAD subcommand of XREF was invoked, or
a pre-existing xref is being reloaded.

Note that the RELOAD subcommand is interactive
and triggers multiple events.

:VLR-xrefSubcommandUnloadltem

The UNLOAD subcommand of XREF was invoked, or
a pre-existing xref is being unloaded.

XREF reactor callback data

Name

List length Parameters

:VLR-beginAttach

3 First parameter is a VLA-object
pointing to the target drawing
database.

Second parameter is a string
containing the file name of the xref
being attached.

Third parameter is a VLA-object
pointing to the drawing database that
contains the objects being attached.

:VLR-otherAttach

2 First parameter is a VLA-object
pointing to the target drawing
database.

Second parameter is a VLA-object
pointing to the drawing database that
contains the objects being attached.

vlr-xref-reactor | 357

XREF reactor callback data (continued)

Name List length Parameters

:VLR-abortAttach 1 A VLA-object pointing to the drawing
database that contains the objects
being attached.

:VLR-endAttach 1 A VLA-object pointing to the target
drawing database.

:VLR-redirected 2 First parameter is an integer
containing the object ID for the
redirected symbol table record (STR)
in the drawing being XREFed to.
Second parameter is an integer
containing the object ID for the object
in the xref drawing.

:VLR-comandeered 3 First parameter is a VLA-object
pointing to the database receiving the
XREF.
Second parameter is an integer
containing the object ID of the object
being commandeered.
Third parameter is a VLA-object
pointing to the drawing database that
contains the objects being attached.

:VLR-beginRestore 3 First parameter is a VLA-object
pointing to the database receiving the
XREF.
Second parameter is a string
containing the XREF block table
record (BTR) name.
Third parameter is a VLA-object
pointing to the drawing database that
contains the objects being attached.

:VLR-abortRestore 1 A VLA-object pointing to the target
:VLR-endRestore drawing database.

358 | AutoLISP Functions

XREF reactor callback data (continued)

Name

List length

Parameters

:VLR-xrefSubcommandBindltem

2

First parameter is an integer indicating
the activity the BIND is carrying out.
Possible values are:

0—BIND subcommand invoked.
2—xref with the indicated object ID is
being bound.

3—xref with the indicated object ID
was successfully bound.

4—BIND subcommand completed.
5—BIND operation is about to either
terminate or fail to complete on the
specified object ID.

6—BIND operation has either
terminated or failed to complete on
the specified object ID.

7—Sent for an XDep block bound by
XBind.

8—Sent for all other symbols: Layers,
Linetypes, TextStyles, and DimStyles.
Second parameter is an integer
containing the object ID of the xref
being bound, or 0 if not applicable.

:\VLR-xrefSubcommandAttachltem

2

First parameter is an integer indicating
the activity the ATTACH is carrying
out. Possible values are:

0—BIND subcommand invoked.
2—xref with the indicated object ID is
being bound.

3—xref with the indicated object ID
was successfully bound.

4—BIND subcommand completed.
5—BIND operation is about to either
terminate or fail to complete on the
specified object ID.

6—BIND operation has either
terminated or failed to complete on
the specified object ID.

Second parameter is a string
identifying the file being attached, or
nil if not applicable.

vlr-xref-reactor | 359

XREF reactor callback data (continued)

Name List length Parameters

:VLR-xrefSubcommandOverlayltem 2 First parameter is an integer indicating
the activity the OVERLAY is carrying
out. Possible values are:
0—BIND subcommand invoked.
2—xref with the indicated object ID is
being bound.
3—xref with the indicated object ID
was successfully bound.
4—BIND subcommand completed.
5—BIND operation is about to either
terminate or fail to complete on the
specified object ID.
6—BIND operation has either
terminated or failed to complete on
the specified object ID.

Second parameter is a string
identifying the file being overlaid, or
nil if not applicable.

:VLR-xrefSubcommandDetachltem 2 First parameter is an integer indicating
the activity the DETACH is carrying
out. Possible values are:
0—BIND subcommand invoked.
2—xref with the indicated object ID is
being bound.
3—xref with the indicated object ID
was successfully bound.
4—BIND subcommand completed.
5—BIND operation is about to either
terminate or fail to complete on the
specified object ID.
6—BIND operation has either
terminated or failed to complete on
the specified object ID.

Second parameter is an integer
containing the object ID of the xref
being detached, or 0 if not applicable.

360 | AutoLISP Functions

XREF reactor callback data (continued)

Name List length Parameters

:VLR-xrefSubcommandPathltem 3 First parameter is an integer indicating
the activity the DETACH is carrying
out. Possible values are:
0—BIND subcommand invoked.
2—xref with the indicated object ID is
being bound.
3—xref with the indicated object ID
was successfully bound.
4—BIND subcommand completed.
5—BIND operation is about to either
terminate or fail to complete on the
specified object ID.
6—BIND operation has either
terminated or failed to complete on
the specified object ID.

Second parameter is an integer
containing the object ID of the xref
being operated on, or 0 if not
applicable.

Third parameter is a string identifying
the new path name of the xref, ornil
if not applicable.

:VLR-xrefSubcommandReloadltem 2 First parameter is an integer indicating
the activity the RELOAD is carrying
out. Possible values are:
0—BIND subcommand invoked.
2—xref with the indicated object ID is
being bound.
3—xref with the indicated object ID
was successfully bound.
4—BIND subcommand completed.
5—BIND operation is about to either
terminate or fail to complete on the
specified object ID.
6—BIND operation has either
terminated or failed to complete on
the specified object ID.

Second parameter is an integer
containing the object ID of the xref
being reloaded, or 0 if not applicable.

vlr-xref-reactor | 361

vports

XREF reactor callback data (continued)

Name List length

Parameters

:VLR-xrefSubcommandUnloadltem 2

First parameter is an integer indicating
the activity the UNLOAD is carrying
out. Possible values are:

0—BIND subcommand invoked.
2—xref with the indicated object ID is
being bound.

3—xref with the indicated object ID
was successfully bound.

4—BIND subcommand completed.
5—BIND operation is about to either
terminate or fail to complete on the
specified object ID.

6—BIND operation has either
terminated or failed to complete on
the specified object ID.

Second parameter is an integer
containing the object ID of the xref
being unloaded, or 0 if not applicable.

Returns a list of viewport descriptors for the current viewport configuration

(vports)

Return Values

One or more viewport descriptor lists consisting of the viewport identifica-
tion number and the coordinates of the viewport’s lower-left and upper-right

corners.

If the AutoCAD TILEMODE system variable is set to 1 (on), the returned list
describes the viewport configuration created with the AutoCAD VPORTS com-
mand. The corners of the viewports are expressed in values between 0.0 and
1.0, with (0.0, 0.0) representing the lower-left corner of the display screen’s
graphics area, and (1.0, 1.0) the upper-right corner. If TILEMODE is O (off), the
returned list describes the viewport objects created with the MVIEW com-
mand. The viewport object corners are expressed in paper space coordinates.
Viewport number 1 is always paper space when TILEMODE is off.

362 | AutoLISP Functions

Examples

Given a single-viewport configuration with TILEMODE on, the vports func-
tion might return the following:

((1 (0.0 0.0) (1.0 1.0)))

Given four equal-sized viewports located in the four corners of the screen
when TILEMODE is on, the vports function might return the following lists:

((5 (0.5 0.0) (1.0 0.5))
(2 (0.5 0.5) (1.0 1.0))
(3 (0.0 0.5) (0.5 1.0))
(4 (0.0 0.0) (0.5 0.5)))

The current viewport’s descriptor is always first in the list. In the previous
example, viewport number 5 is the current viewport.

wcmatch

Performs a wild-card pattern match on a string

(wcmatch string pattern)

Arguments

string A string to be compared. The comparison is case-sensitive,
so upper- and lowercase characters must match.

pattern A string containing the pattern to match against string.

The pattern can contain the wild-card pattern-matching
characters shown in the table “Wild-card characters” on
page 364. You can use commas in a pattern to enter more
than one pattern condition. Only the first 500 characters
(approximately) of the string and pattern are compared;
anything beyond that is ignored.

Both arguments can be either a quoted string or a string variable. It is valid
to use variables and values returned from AutoLISP functions for string and
pattern values.

wcmatch | 363

364

Return Values

If string and pattern match, wematch returns T, otherwise, wematch returns

nil.

Wild-card characters

Character Definition

(pound) Matches any single numeric digit

@ (at) Matches any single alphabetic character
(period) Matches any single nonalphanumeric character

* (asterisk)

Matches any character sequence, including an empty one, and
it can be used anywhere in the search pattern: at the
beginning, middle, or end

? (question mark)

Matches any single character

~ (tilde) If it is the first character in the pattern, it matches anything
except the pattern

[...] Matches any one of the characters enclosed

[~...] Matches any single character not enclosed

— (hyphen) Used inside brackets to specify a range for a single character

, (comma)

Separates two patterns

(reverse quote)

Escapes special characters (reads next character literally)

Examples

The following command tests a string to see if it begins with the character n:

Command: (wcmatch "Name" "N*")

T

The following example performs three comparisons. If any of the three pat-
tern conditions is met, wematch returns T. In this case the tests are: does the
string contain three characters; does the string not contain an m; and does the

AutoLISP Functions

string begin with the letter “n.” If any of the three pattern conditions is met,
wcmatch returns T:

Command: (wcmatch "Name" "?2?,~*m* N*")
T

In this example, the last condition was met, so wematch returned T.

Using Escape Characters with wcmatch

To test for a wild-card character in a string, you can use the single reverse-
quote character (%) to escape the character. Escape means that the character
following the single reverse quote is not read as a wild-card character; it is
compared at its face value. For example, to search for a comma anywhere in
the string “Name”, enter the following:

Command: (wcmatch "Name" "*",*")
nil

Both the C and AutoLISP programming languages use the backslash (\) as an
escape character, so you need two backslashes (\\) to produce one backslash
in a string. To test for a backslash character anywhere in “Name”, use the fol-
lowing function call:

Command: (wcmatch "Name" "*"*")
nil

All characters enclosed in brackets ([. . . 1) are read literally, so there is no
need to escape them, with the following exceptions: the tilde character (~) is
read literally only when it is not the first bracketed character (asin " [a~BC]");
otherwise it is read as the negation character, meaning that wematch should
match all characters except those following the tilde (as in "[~aBc]"). The
dash character (-) is read literally only when it is the first or last bracketed
character (as in "[—aBc]" or "[ABCc—]") or when it follows a leading tilde (as
in "[~-ABc]"). Otherwise, the dash character (-) is used within brackets to
specify a range of values for a specific character. The range works only for sin-
gle characters, so "STR[1-38]1" matches STR1, STR2, STR3, and STR8, and
"[a-Z]" matches any single uppercase letter.

The closing bracket character (1) is also read literally if it is the first bracketed
character or if it follows a leading tilde (asin "[]ABC]" or "[~]ABC]").

NOTE Because additional wild-card characters might be added in future
releases of AutoLISP, it is a good idea to escape all nonalphanumeric characters
in your pattern to ensure upward compatibility.

wcmatch | 365

while

Evaluates a test expression, and if it is not nil, evaluates other expressions; repeats this
process until the test expression evaluates to nil

(while testexpr [expr...])

The while function continues until testexpr is nil.

Arguments
testexpr The expression containing the test condition.
expr One or more expressions to be evaluated until testexpr is

nil.

Return Values

The most recent value of the last expr.

Examples

The following code calls user function some-func ten times, with test set to
1 through 10. It then returns 11, which is the value of the last expression
evaluated:

(setqg test 1)

(while (<= test 10)

(some-func test)
(setqg test (1l+ test))

)

write-char

Writes one character to the screen or to an open file

(write-char num [file-desc])

Arguments
num The decimal ASCII code for the character to be written.
file-desc A file descriptor for an open file.

Return Values

The num argument.

366 | AutoLISP Functions

Examples

The following command writes the letter C to the command window, and
returns the supplied num argument:

Command: (write-char 67)
ce67

Assuming that £ is the descriptor for an open file, the following command
writes the letter C to that file:

Command: (write-char 67 f)
67

Note that write-char cannot write a NULL character (ASCII code 0) to a file.

See Also
The Customization Guide for a list of ASCII codes.

write-line

Writes a string to the screen or to an open file

(write-line string [file-desc])

Arguments
string A string.
file-desc A file descriptor for an open file.

Return Values

The string, quoted in the normal manner. The quotes are omitted when writ-
ing to a file.

Examples

Open a new file:

Command: (setq f (open "c:\\my documents\\new.tst" "w"))
#<file "c:\\my documents\\new.tst">

write-line | 367

xdroom

Use write-1line to write a line to the file:

Command: (write-line "To boldly go where nomad has gone before." f)
"To boldly go where nomad has gone before."

The line is not physically written until you close the file:

Command: (close f)
nil

Returns the amount of extended data (xdata) space that is available for an object (entity)

(xdroom ename)

Because there is a limit (currently, 16 kilobytes) on the amount of extended
data that can be assigned to an entity definition, and because multiple appli-
cations can append extended data to the same entity, this function is pro-
vided so an application can verify there is room for the extended data that it
will append. It can be called in conjunction with xdsize, which returns the
size of an extended data list.

Arguments

ename An entity name (ename data type).

Return Values

An integer reflecting the number of bytes of available space. If unsuccessful,
xdroom returns nil.

Examples

The following example that looks up the available space for extended data of
a viewport object:

Command: (xdroom vpname)
16162

In this example, 16,162 bytes of the original 16,383 bytes of extended data
space are available, meaning that 221 bytes are used.

368 | AutoLISP Functions

xdsize

Returns the size (in bytes) that a list occupies when it is linked to an object (entity) as
extended data

(xdsize 1st)

Arguments

Ist A valid list of extended data that contain an application
name previously registered with the use of the regapp
function. See the “Examples” section of this function for
Ist examples.

Return Values

An integer reflecting the size, in bytes. If unsuccessful, xdsize returns nil.

Brace fields (group code 1002) must be balanced. An invalid Ist generates an
error and places the appropriate error code in the ERRNO variable. If the
extended data contains an unregistered application name, you see this error
message (assuming that CMDECHO is on):

Invalid application name in 1001 group

Examples

The Ist can start with a -3 group code (the extended data sentinel), but it is
not required. Because extended data can contain information from multiple
applications, the list must have a set of enclosing parentheses.

(-3 ("MYAPP" (1000 . "SUITOFARMOR")
(1002 . "{")
(1040 . 0.0)
(1040 . 1.0)
(1002 . "3")

)

Here is the same example without the -3 group code. This list is just the cdr
of the first example, but it is important that the enclosing parentheses are
included:

(("MYAPP" (1000 . "SUITOFARMOR")
(1002 . "{")
(1040 . 0.0)
(1040 . 1.0)
(1002 . "3")

xdsize | 369

zerop

Verifies that a number evaluates to zero

(zerop number)

Arguments

number A number.

Return Values

T if number evaluates to zero, otherwise nil.

Examples

Command: (zerop 0)
T

Command: (zerop 0.0)
T

Command: (zerop 0.0001)
nil

370 | AutoLISP Functions

Externally Defined
Commands

AutoCAD® commands defined by ObjectARX® or
AutoLISP® applications are called externally defined.
AutoLISP applications may need to access externally
defined commands differently from the way they access
built-in AutoLISP functions. Many externally defined
commands have their own programming interfaces that
allow AutoLISP applications to take advantage of their

functionality.

For additional information on the commands described

in this appendix, see the Command Reference.

In this chapter

B Alphabetical listing of
AutoCAD commands defined
by AutoLISP or ObjectARX

applications

371

3dsin

Imports a 3D Studio (.3ds) file (Externally-defined: render ARX application)

372

(c:3dsin mode [multimat create] file)

Arguments

mode An integer that specifies whether the command is to be
used interactively (mode = 1) or noninteractively
(mode = 0).

multimat An integer that specifies how to treat objects with
multiple materials. Required if mode is set to 0. Allowable
values are:

0 Create a new object for each material
1 Assign the first material to the new object

create An integer that specifies how to organize new objects.
This mode always imports all the objects in the .3ds file.
Required if mode is set to 0. Allowable values are:

0 Create a layer for each 3DS object

1 Create a layer for each 3DS color

2 Create a layer for each 3DS material
3 Place all new objects on a single layer

file A string specifying the .3ds file to import; the .3ds file
extension is required.

Mode 0 always imports all the objects in the .3ds file.

Examples

Open the 3D Studio file globe.3ds for import and prompt the user for import
specifics:

(c:3dsin 1 "globe.3ds")

Import all of shadow.3ds with no user input, splitting objects with multiple
materials and putting all new objects on the same layer:

Externally Defined Commands

Command: (c:3dsin 0 0 3 "c:/my documents/cad drawings/shadow.3ds")
Initializing Render...
Initializing preferences...done.
Processing object B_Leg0l
Converting material SKIN
Processing object B_Leg02
Processing object Central 01
Processing object Central 02
Processing object F_Leg0l
Processing object F_Leg02
Processing object M Quad0l
Processing object ML Feele0l
Processing object ML _Feele02
Processing object Pre_Quad0l
Processing object Pre_Quad02

3D Studio file import completed

1

3dsout

Exports a 3D Studio file (Externally-defined: render ARX application)

(c:3dsout sset omode div smooth weld file)

Arguments

sset

omode

div

smooth

A selection set containing the AutoCAD objects to export.

An integer (0 or 1) that specifies the output mode for the
representation of AutoCAD data. Currently, 3dsout
output is the same whether omode is set to 0 or 1

An integer that specifies how to divide AutoCAD objects
into 3D Studio objects. Allowable values are:

0 Create one object for each AutoCAD layer
1 Create one object for each AutoCAD color
2 Create one object for each AutoCAD object type

An integer that specifies the threshold angle for automatic
smoothing. If smooth is set to -1, no auto-smoothing is
done; if set to 0-360, AutoCAD generates smoothing
when the angle between face normals is less than this
value.

3dsout | 373

align

weld A real number that specifies the distance threshold for
welding nearby vertices. If weld is set to a value less than
0, welding is disabled; if set to a value greater than or
equal to 0, AutoCAD welds vertices closer than this value.

file A string specifying the name of the 3D Studio file to
create; the .3ds file extension is required.

Examples

Export all of a drawing, creating 3D Studio objects based on drawing layer,
using a smoothing threshold of 30 degrees and a welding distance of 0.1:

(c:3dsout (ssget "X") 0 0 30 0.1 "testav.3ds")

Translates and rotates objects, allowing them to be aligned with other objects (Exter-
nally-defined: geom3d ARX application)

(align argl arg2 ...)

Arguments

argl arg2... Arguments to the AutoCAD align command. The order,
number, and type of arguments for the align function are
the same as if you were entering ALIGN at the command
line.

To indicate a null response (a user pressing ENTER),
specify nil or an empty string ("").
Return Values

T if successful, otherwise nil.

Examples

The following example specifies two pairs of source and destination points,
which perform a 2D move:

(setq ss (ssget))
(align ss sl dl s2 d2 "" "2d")

374 | Externally Defined Commands

cal

Invokes the on-line geometry calculator and returns the value of the evaluated expres-
sion (Externally-defined: geomcal ARX application)

(c:cal expression)

Arguments

expression A quoted string. Refer to CAL in the Command Reference for
a description of allowable expressions.

Return Values

The result of the expression.

Examples

The following example uses cal in an AutoLISP expression with the trans
function:

(trans (c:cal "[1,2,3]+MID") 1 2)

fog

Adds distance from the view (Externally-defined: render ARX application)

(c:fog enabled [color [near_dist [far dist
[near percent [far percent [background]]]]]])

Arguments

enabled A string that turns fog on and off without affecting other
settings. Default is ON.

color A 3Dpoint specifying a standard AutoCAD color. Default
is (111).

near_dist A real number defining where the fog starts. Default is 0.0.

far_dist A real number defining where the fog ends. Default is 1.0.

near_percent A real number defining the percentage of fog at the start

of the bank. Default is 0.0.

cal | 375

far_percent A real number defining the percentage of fog at the end of
the bank. Default is 1.0.

background A string that applies fog to the background as well as to
the geometry. Default is OFF (do not apply fog to the
background).

With the FOG command, you can provide visual information about the
distance of objects from the view’s eye. To maximize fog, add white to an
image; to maximize depth cueing, add black.

Nil or missing trailing arguments are not changed.

light

Creates, modifies, and deletes lights and lighting effects (Externally-defined: render ARX
application)

(c:light mode [options])

Arguments

mode A string indicating the action to be performed. Allowable
mode values are:

A Set or retrieve ambient light intensity
D Delete existing lights

L Listall lights in the drawing or return a definition of a
specified light

M Modity existing lights

ND Create a new distant light
NP Create a new point light
NS Create a new spotlight

R Rename an existing light

options The options allowed depend on the mode and are listed
separately for each mode.

NOTE This command is not allowed in paper space.

376 | Externally Defined Commands

A—Ambient Light

Set or retrieve the ambient light intensity.

(c:light "A" [intensity [color]])

Arguments

intensity A real number from 0.0 to 1.0; if intensity is omitted, it
defaults to 1.0.

color A list that specifies any RGB triplet; if omitted, it defaults
to (1.0 1.0 1.0).

Examples

To set ambient light intensity to 0.6, issue the following:

Command: (c:light "A" 0.6)
1

To retrieve the current ambient light intensity, omit the intensity argu-
ment:

Command: (c:light "A")
(0.6 (1.0 1.0 1.0))

The intensity returned is 0.6, and the color is 1.0 1.0 1.0.

D—Delete Lights
Delete existing lights.

(c:light "D" name)

Arguments
name A string specifying the name of the light to delete.

Examples
The following function call deletes a light named “OLDLGT":

(c:light "D" "OLDLGT")

L—List Lights
List all lights in the drawing or return a definition of the specified light.

(c:light "L" [name])

light | 377

Arguments

name A string specifying the name of the light to list. If you
omit the name argument, c:1ight returns a list of all the
lights defined in the drawing.

Examples

The following command lists all lights defined in the current drawing:

Command: (c:light "L")
("BUDLIGHT" "LIGHTOLl")

The following command lists the properties of a light named “LIGHTO01":

Command: (c:light "L" "LIGHTO1l")
("P" <Entity name: 4cf3ae8>1.0 (26.5609 43.423 48.6995) (0.0 0.0 0.0)
(0.705882 0.705882 0.705882) 512 nil nil 3.0 "OFF" 0 nil)

M—Modify Lights

Modifies existing lights.

(c:light "M" name [intensity [from [to [color
[shadowmapsize [hotspot [falloff [shadowsoftness
[shadow [shadowobjects [month [day [hour [minute
[daylight [latitude [longitude
[attenuation]]]]]1111111111111)

Arguments

The arguments for the Modify mode are described in the following table:

LIGHT—M” mode arguments

Argument Data type Description Default

name STR Unique light name None

intensity REAL A real number from 0.0 to the Based on

default maximum attenuation

from LIST Light location Current look-from
point

to LIST Light target Current look-at
point

color LIST Any RGB triplet 1.0,1.0,1.0

378 | Externally Defined Commands

LIGHT—M” mode arguments (continued)

Argument Data type Description Default
shadowmapsize INT Integer from 0 to 4096 (the size, in 0
pixels, of one side of the shadow
map)
hotspot REAL Angle of the brightness beam in 44.0
degrees (must be in the range of
1-160)
falloff REAL Angle that includes the rapid decay =~ 45.0

area, in degrees (must be in the
range 0-160 and greater than the
hotspot value)

shadowsoftness ~ REAL Real number in the range 0.0-10.0 0.0

shadow STR Shadow-casting toggle. Valid values 0.0
are: “off” (no shadows) and “on”
(cast shadows)

shadowobjects ENAME A selection of objects that bound 0.0
the shadow maps

month INT Integer from 1 to 12 9

day INT Integer from 1 to 31 21

hour INT Integer from 0 to 24 15

minute INT Integer from 0 to 59 0

daylight STR Daylight savings toggle. Valid “off"”

values are: “off” (no daylight
savings) and “on” (daylight

savings)
latitude REAL Real number in the range 0-90 37.62
longitude REAL Real number in the range 0-180 122.37
timezone INT Integer from -12 to 12, 8 (PST)

representing the hours behind
Greenwich Mean Time (GMT)

attenuation INT 0 = no attenuation 1
1 = inverse linear attenuation
2 = inverse square attenuation

light | 379

380

The hotspot and falloff arguments apply only to spotlights. You must pass
them as nil when you create a new distant light.

You can specify nil for any argument that does not apply to the type of light
you are modifying, or if you want the property affected by the argument to
retain its current value. You can omit any arguments located at the end of the
argument list (for example, attenuation, or attenuation and timezone, or atten-
uation, timezone, and longitude...).

Examples

The following code changes the color of the distant light named “D1” to blue:

(c:light "M" "D1" nil nil nil ' (0.0 0.0 1.0))

ND—New Distant Light

Create a new distant light.

(c:light "ND" name [intensity [from [to [color
[shadowmapsize [nil [nil [shadowsoftness [shadow
[month [day [hour [minute [daylightsavings [latitude
[longitude [timezone [attenuation
[shadowobjects]]]1111111111111111)

Arguments

The arguments for the New Distant Light mode are described in the follow-
ing table:

LIGHT—ND’” mode arguments

Argument Data type Description Default
name STR Unique light name None
intensity REAL A real number from 0.0 to the Based on
default maximum attenuation
from LIST Light location Current look-from
point
to LIST Light target Current look-at
point
color LIST Any RGB triplet 1.0,1.0,1.0
shadowmapsize INT Integer from 0 to 4096 (the size, in 0
pixels, of one side of the shadow
map)

Externally Defined Commands

LIGHT—“ND’” mode arguments (continued)

Argument Data type Description Default
hotspot REAL Angle of the brightness beam in 44.0
degrees (must be in the range of
1-160)
falloff REAL Angle that includes the rapid decay =~ 45.0

area, in degrees (must be in the
range 0-160 and greater than the
hotspot value)

shadowsoftness ~ REAL Real number in the range 0.0-10.0 0.0

shadow STR Shadow-casting toggle. Valid values 0.0
are: “off” (no shadows) and “on”
(cast shadows)

shadowobjects ENAME A selection of objects that bound 0.0
the shadow maps

month INT Integer from 1 to 12 9

day INT Integer from 1 to 31 21

hour INT Integer from 0 to 24 15

minute INT Integer from 0 to 59 0

daylight STR Daylight savings toggle. Valid “off”

values are: “off” (no daylight
savings) and “on” (daylight

savings)
latitude REAL Real number in the range 0-90 37.62
longitude REAL Real number in the range 0-180 122.37
timezone INT Integer from -12 to 12, 8 (PST)

representing the hours behind
Greenwich Mean Time (GMT)

NP—New Point Light
Create a new point light.
(c:light "NP" name [intensity [from [nil [color

[shadowmapsize [nil [nil [shadowsoftness [shadow
[attenuation[shadowobjects J]]]1]1111111)

light | 381

382

Arguments

The arguments for the New Point Light mode are described in the following
table:

LIGHT— “NP” mode arguments

Argument Data type Description Default
name STR Unique light name None
intensity REAL A real number from 0.0 to the Based on
default maximum attenuation
from LIST Light location Current look-from
point
color LIST Any RGB triplet 1.0,1.0,1.0
shadowmapsize INT Integer from 0 to 4096 (the size, in 0
pixels, of one side of the shadow
map)
shadowsoftness ~ REAL Real number in the range 0.0-10.0 0.0
shadow STR Shadow-casting toggle. Valid values 0.0

are: “off” (no shadows) and “on”
(cast shadows)

attenuation INT 0 = no attenuation 1
1 = inverse linear attenuation
2 = inverse square attenuation

shadowobjects ENAME A selection of objects that bound 0.0
the shadow maps

Three arguments—to (after from), hotspot, and falloff (after
shadowmapsize)—do not apply to point lights. You must pass them as nil
when you create a new point light.

Examples
For example, the following code creates a new point light named NEWPT1.

(c:light "NP" "NEWPT1")

NEWPT1 would have the default intensity, the current attenuation setting,
the default location looking at the current view, and the default color of
white.

Externally Defined Commands

NOTE For pointlights, the default maximum intensity depends on the current
point/spotlight attenuation setting. With no attenuation, it is 1.00; with inverse
linear attenuation, it is twice the drawing's maximum extents distance; and with
inverse square attenuation, it is the square of twice the maximum extents dis-
tance.

NS—New Spotlight

Creates a new spotlight.

(c:light "NS" name [intensity [from [to [color
[shadowmapsize [hotspot [falloff [shadowsoftness
[shadow [attenuation [shadowobjects]]]]1]1111111)

Arguments

The arguments for the New Spotlight mode are described in the following
table:

LIGHT— “NS” mode arguments

Argument Data type Description Default
name STR Unique light name None
intensity REAL A real number from 0.0 to the Based on
default maximum attenuation
from LIST Light location Current look-from
point
to LIST Light target Current look-at
point
color LIST Any RGB triplet 1.0,1.0,1.0
shadowmapsize INT Integer from 0 to 4096 (the size, in 0
pixels, of one side of the shadow
map)
hotspot REAL Angle of the brightness beam in 44.0
degrees (must be in the range of
1-160)
falloff REAL Angle that includes the rapid decay =~ 45.0

area, in degrees (must be in the
range 0-160 and greater than the
hotspot value)

light | 383

384

LIGHT— “NS” mode arguments (continued)

Argument Data type Description Default
shadowsoftness ~ REAL Real number in the range 0.0-10.0 0.0
shadow STR Shadow-casting toggle. Valid values 0.0

are: “off” (no shadows) and “on”
(cast shadows)

attenuation INT 0 = no attenuation 1
1 = inverse linear attenuation
2 = inverse square attenuation

shadowobjects ENAME A selection of objects that bound 0.0
the shadow maps

Examples
The following code creates a new spotlight named “GSPOT”:

Command: (c:light "NS" "GSPOT" 43.82 '(12.0 6.0 24.0) '(78.0 78.0
24.0) nil nil 30.0 32.0)

1

GSPOT is a spotlight with an intensity of 43.82. Its color is the default (white).
The spotlight’s location is (12,6,24), and its target is (78,78,24). Its cone is 32
degrees wide, with a hotspot of 30 degrees.

NOTE For spotlights, the default maximum intensity depends on the current
point/spotlight attenuation setting. With no attenuation, it is 1.00; with inverse
linear attenuation, it is twice the drawing's maximum extents distance; and with
inverse square attenuation, it is the square of twice the maximum extents dis-
tance.

R—Rename Light

Rename a light.

(c:light "R" old_name new_name)

Arguments
old_name A string specifying the name of the light to rename.
new_name A string specifying the light’s new name.

Externally Defined Commands

Isedit

The following function call changes the light named “GSPOT” to
“HOTSPOT”:

Examples

Command: (c:light "R" "GSPOT" "HOTSPOT")
1

Creates or modifies landscape objects (Externally-defined: render ARX application)

(c:1lsedit mode [options])

This form of the c:1sedit is used to create or modify instances of landscape
objects in the drawing.

(c:lsedit "LIST" object)

This form of c:1sedit lists the attributes of the specified landscape object.
The list returned identifies the name, height, position, and view alignment
of the specified object.

(c:lsedit object height [position [alignment]])

This form of 1sedit modifies a landscape object.

Arguments

The arguments for the LSEDIT command are described in the following table:

LSEDIT arguments

Argument Data type Description Default
object ENAME Handle of the landscape object None
height REAL Height of the object in drawing None
units. If nil, the current value is
unchanged.
position LIST (of The position of the base of the None
reals) object. If nil, the current value is
unchanged.

Isedit | 385

Islib

LSEDIT arguments (continued)

Argument Data type

Description Default

alignment INT

Specifies the geometry and None
alignment of the entry:

0—view-aligned single face
1—non-view-aligned single face
2—non-view-aligned crossing faces
3—view-aligned crossing faces

If nil, the current value is

unchanged.

Examples

Modify a landscape object, where <ename> is the AutoCAD name (entsel) of
the object to modify; leave alignment unchanged:

(c:lsedit <ename> 35.0 ’(10.0 23.0) nil)

Manages the landscape library (Externally-defined: render ARX application)

386

(c:1slib mode [options])

Arguments

mode

The mode arguments can be one of the following:

ADD Add an entry to a landscape library

DELETE Delete an entry from a landscape library

MODIFY Modify an entry in a landscape library

OPEN Open a landscape library

SAVE Save the current landscape library

LIST List the entries in the current landscape library

options

The allowable options arguments varies depending on

mode. See the description of each mode to determine the
allowable options.

Externally Defined Commands

ADD

Add an entry to the current library.

(c:1slib "ADD" name texture-map opacity-map alignment)

Arguments
name A string naming the entry in the landscape library.
texture-map A string naming the image file for the entry.
opacity-map A string naming the opacity image for the entry.
alignment An integer specifying the geometry and alignment of the
entry. Can be one of the following:
0 view-aligned single face
1 non-view-aligned single face
2 non-view-aligned crossing faces
3 view-aligned crossing faces

There are no default values for any of these arguments.

Examples

Add an entry called “Maple tree” to the current landscape library:

(c:1lslib "ADD" "Maple tree" "maple.tga" "mapleo.tga" 0)

DELETE

Remove an entry from the current library.

(c:lslib "DELETE" name)

Arguments

name A string naming the entry in the landscape library.

Examples

Remove the entry called “Maple tree” from the current landscape library:

(c:1lslib "delete" "Maple tree")

Islib | 387

MODIFY
(c:lslib "MODIFY" name texture-map [opacity-map
[alignment]])

Change an entry in the current library. The texture-map, opacity-map, and
alignment arguments can be passed as nil, in which case the value is

unchanged.

Arguments

name A string naming the entry in the landscape library.
texture-map A string naming the image file for the entry.

opacity-map A string naming the opacity image for the entry.
alignment An integer specifying the geometry and alignment of the

entry. Can be one of the following:
0 view-aligned single face
1 non-view-aligned single face
2 non-view-aligned crossing faces
3 view-aligned crossing faces
There are no default values for any of these arguments.
Examples
Change the “Maple tree” to be non-view-aligned with crossing faces:
(c:1lslib "MODIFY" "Maple tree" nil nil 2)

OPEN

Open a new library and make it the current library.
(c:lslib "OPEN" name)

Arguments

name A string naming the landscape library to open.

Examples
Open the TREES.LLI file and make it the current landscape library:

(c:1lslib "OPEN" "TREES.LLI")

388 | Externally Defined Commands

Isnew

SAVE

Save the current landscape library as the named file.
(c:lslib "SAVE" name)

Arguments

name A string naming the landscape library file.

Examples
Save the file as TREES.LLI:

(c:1lslib "SAVE" "TREES.LLI")

LIST

Lists all the elements in the current library. This command takes no argu-
ments. The list includes landscape entries of the form '(“NAME” “TEX-MAP”
“OP-MAP” ALIGN).

(c:lslib "LIST")

Examples
The following illustrates output from the LIST option:

(("Bush #1" "8bush02l.tga" "8bush02o.tga" 0)
("Cactus" "8plntl5l.tga" "8plntl5o.tga" 0)
("Dawn Redwood" "8tree391l.tga" "8tree39%o.tga" 0))

Create landscape objects (Externally-defined: render ARX application)

(c:lsnew object-type height position alignment)

The LSNEW command is used to create instances of landscape objects in the
drawing.

Arguments

object-type A string naming the landscape library entry.

height A real number indicating the height of the object in
drawing units.

position A list of reals indicating the position of the base of the

object.

Isnew | 389

alignment An integer specifying the geometry and alignment of the
entry. Can be one of the following:

0 view-aligned single face

1 non-view-aligned single face

2 non-view-aligned crossing faces
3 view-aligned crossing faces

There are no default values for any of these arguments.

Examples

Create a new instance of “Cactus” that is 25 units tall, located at 0, 1, 3, and
has a single non-view-aligned face.

Command: (c:lsnew "Cactus" 25.0 '(0.0 1.0 3.0) 1)
1

matlib

Manages materials libraries (Externally-defined: render ARX application)

(c:matlib mode name [file])

Arguments

mode A string that specifies the action that this function
performs. Can be one of the following:

I Import a material from a library.

E Export a material to a library.

D Delete a material from the drawing.

C Delete unattached materials from the drawing.
L List materials

name A string that specifies the name of the material to import,
export, or delete.

file A string that specifies the name of the materials library.
file. The file argument must include the .mli extension

390 | Externally Defined Commands

Examples

Imports the material BRASS from the standard AutoCAD Render materials
library, render.mli:

Command: (c:matlib "I" "brass" "c:/acad2000/support/render.mli")
1

The file argument is not used with the Delete mode:

(c:matlib "D" "steel")

mirror3d

Reflects selected objects about a user-specified plane (Externally-defined: geom3d ARX
application)

(mirror3d argl arg2 ...)

Arguments

The order, number, and type of arguments for the mirror3d function are the
same as if you were entering the MIRROR3D AutoCAD command. To signify a
user pressing ENTER without typing any values, use nil or an empty string

().

Return Values

T if successful, otherwise nil.

Examples

The following example mirrors the selected objects about the XY plane that
passes through the point 0,0,5, and then deletes the old objects:

(setq ss (ssget))
(mirror3d ss "XY" '(0 0 5) "y")

mirror3d | 391

render

Creates a realistically shaded image of a 3D wireframe model using geometry, lighting,
and surface finish information (Externally-defined: render ARX application)

(c:render [filename|pointl point2])

Arguments

filename A string naming a rendering file.
If the filename argument is present, the rendering is
written to a file of that name. If a driver to render to a file
hasn’t been configured, the filename argument is
ignored. The current configuration must specify
rendering to a file.

pointl1 A list of reals indicating the first crop window point.

point1 A list of reals indicating the second crop window point.

The rendering is controlled by the current settings; set these by using the
c:rpref function. For example:

(c:rpref "Toggle" "CropWindow" "On")

NOTE When the current rendering preferences specify Query for Selection and
the PICKFIRST system variable is turned on, then if a selection set is current when
you invoke c:render, the objects in the set are rendered with no further
prompting.

Setting the Render to File Options

Sets the render to file options for rendering.

(c:rfileopt fileformat xres yres aratio colormode
<mode-specific options>)

392 | Externally Defined Commands

Arguments

The following table describes the c:rfileopt arguments.

RFILEOPT arguments

Argument Data type Description
fileformat STR Identifier for the requested format:
TGA—Targa format
PCX—Z-Soft bitmap format
BMP—Microsoft Windows format
PS—PostScript
TIFF—Tagged Image File Format
xres INT X resolution of the output file (valid values range from 1
to 4096)
yres INT Y resolution of the output file (valid values range from 1 to
4096)
aratio REAL Pixel aspect ratio
colormode STR Each file format accepts a subset of the following values:

MONO—Monochrome

G8—256 gray levels

C8—256 colors

C16—16-bit color

C24—24-Dbit color

C32—24-bit color with 8 bits of alpha

render | 393

394

TGA

Specifies the Targa format.

(c:rfileopt "TGA" xres yres aratio colormode
interlace compress bottomup)

Arguments
TGA format arguments
Argument Data type Description
colormode STR Color mode: G8, C8, C24, or C32
interlace INT Interlace mode:
1—no interlace
2—2:1 interlace
4—4:1 interlace
compress STR Compression (default = “COMP”):
COMP—Compression on
nil—No compression
bottomup STR Bottom up (default = “UP”):
UP—bottom up
nil—top down
Examples

(C:RFILEOPT "TGA" 640 480 1.0 "C32" 1 "COMP" "UP")

PCX
Specifies the Z-Soft Bitmap format.

(c:rfileopt "PCX" xres yres aratio colormode)

Arguments

PCX format arguments

Argument Data type Description

colormode STR Color mode: MONO, G8, or C8

Externally Defined Commands

Examples

(C:RFILEOPT "PCX" 640 480 1.0 "G8")

BMP

Specifies the Microsoft Windows bitmap format.

(c:rfileopt "BMP" xres yres aratio colormode)

Arguments

BMP format arguments

Argument Data type Description

colormode STR Color mode: MONO, G8, or C8
Examples

(C:RFILEOPT "BMP" 640 480 1.0 "C8")
PS

Specifies the PostScript format.

(c:rfileopt "PS" xres yres aratio colormode portrait
imagesize [size])

Arguments
PS format arguments
Argument Data type Description
colormode STR Color mode: MONO, G8, C8, or C24
portrait STR Landscape or portrait (default = “L"):
P—Portrait
L—Landscape
imagesize STR Type (default = “A”)
A—Auto
I—Image
C—Custom
size INT Size of the image

render | 395

Examples
(C:RFILEOPT "PS" 640 480 1.0 "C24" "P" "C" 640)

TIFF
Specifies the Tagged Image File format.

(c:rfileopt "TIFF" xres yres aratio colormode)

Arguments

TIFF format arguments

Argument Data type Description

colormode STR Color mode: MONO, G8, C8, C24, or C32
Examples

(C:RFILEOPT "TIFF" 640 480 1.0 "C24")

renderupdate

Regenerate the ent2face file on the next rendering (Externally-defined: render ARX
application)

(c:renderupdate [RU_value])

Use the renderupdate command with no arguments to regenerate the
en2face file on the next rendering.

Arguments
RU_value A string specifying one of the following:

ALWAYS Generate a new geometry file for each
rendering.

OFF Return Render to the normal geometry caching
mode.

396 | Externally Defined Commands

replay

Displays a BMP, TGA, or TIFF image (Externally-defined: render ARX application)

(c:replay filename type [x0ff yoff xsize ysize])

With the REPLAY command, you can display BMP, TGA, or TIFF files on the
AutoCAD rendering display. Use this command’s function to replay the
image file at various offsets and sizes.

Arguments

filename A string naming the image file.

type A string identifying the file type. Can be BMP, TGA, or
TIFF.

xoff An integer specifying the image X offset in pixels. Default
is 0.

yoff An integer specifying the image Y offset in pixels. Default
is 0.

xsize Image X size in pixels. Default is the actual X size.

ysize Image Y size in pixels. Default is the actual Y size.

Examples

The following call replays an image named test.tga, displaying pixels starting
from the lower left of the image (zero offset) out to 500 pixels wide and 400
pixels in height:

(c:replay "TEST" "TGA" 0 0 500 400)

replay | 397

rmat

Creates, edits, attaches, and detaches rendering materials (Externally-defined: render
ARX application)

398

(c:rmat mode options)

Arguments

mode A string. Can be one of the following:
A Attaches material
C Copies material
D Detaches material

L Lists all materials in the drawing or returns a definition
of the specified material

M Modifies material
N Creates new material
options The options allowed depend on the mode specified.

A—Attach Material

The “A” (attach) mode lets you attach a material to selected objects or an ACI
(AutoCAD Color Index) value, depending on whether the third argument
(layer-name) is an integer or a selection set.

(c:rmat "A" name [aci | selection-set | layer-name])

Arguments

The following table describes the attach arguments.

Attach arguments

Argument Data type Description

name STR Name of the material to attach

aci INT ACI number in the range of 0 through 255
selection-set INT Selection set that contains the entities to attach
layer-name STR Name of the layer

Externally Defined Commands

Examples

Attach the material PURPLE TIGER to the ACI 1 (red):

(c:rmat "A" "PURPLE TIGER" 1)

If you omit the third argument, the “A” mode returns a list of three items:
m A list of layer names the material is attached to.

m A list of ACIs the material is attached to.
m A selection set that contains the objects the material is attached to.

The following example illustrates the values returned when the third argu-
ment is omitted:

Command: (c:rmat "a" "twood")
Gathering objects..l1 found

Layer names ACI's
(("first" "second")(135) <Selection set 12>))

A material index value in the range 1-255 is an ACI number; an index greater
than 255 indicates an AutoCAD Render material not assigned by ACI.

C—Copy Material

Creates a new material by copying one already present in the drawing.

(c:rmat "C" cur_name new_name)

Arguments

cur_name A string that specifies the name of the material to copy.
new_name A string that specifies the name for the new material.
Examples

Modify a material to change its definition:
(c:rmat "C" "RED" "RED2")

D—Detach Material

The “D” (detach) mode lets you detach a material from selected objects, an
ACI (AutoCAD Color Index) value, or layers, depending on whether the sec-
ond argument (selection-set) is an integer, a selection set, or a string.

(c:rmat "D" name [aci | selection-set | layer-name])

rmat | 399

400

Arguments

The following table describes the detach arguments.

Detach arguments

Argument Data type Description Default
name STR Name of the material to detach None
aci INT ACI number in the range of 0 None

through 255

selection-set INT Selection set that contains the None
entities to detach

layer-name STR Name of the layer None

Examples

Prompt the user to select objects, and then detach each object from its
material:

(c:rmat "D" (ssget))
L—List Material

Lists material definitions in the drawing.

(c:rmat "L" [name])

Arguments

name A string that specifies the material definition to list. If the
name argument is omitted, c:rmat lists all materials in the
drawing.

Examples

List all materials in the drawing:

Command: (c:rmat "L")

("*GLOBAL*" "BLUE GLASS" "WHITE PLASTIC" "TWOOD" "BEIGE MATTE")
The first string in the list specifies the default global material, *GLOBAL*. You
can pass this string to c:rmat just as you can pass the names of library or user-
defined materials, as demonstrated in the following example:

Externally Defined Commands

Command: (c:rmat "L" "*GLOBAL*")

("*GLOBAL*" "STANDARD" (-1.0 -1.0 -1.0) 0.7 ("" 0.0 0 (1.0 1.0) (0.0
0.0) 0.0 0 0) (-1.0 =1.0 =1.0) 0.1 (-1.0 -=1.0 -1.0) 0.2 ("" 0.0 0)
0.5 0.0 ("" 0.0 0 (1.0 1.0) (0.0 0.0) 0.0 0 0) 1.0 ("" 0.0 0 (1.0

1.0) (0.0 0.0) 0.0 0 0))

The list items in a material definition are the same as the arguments to the
Modify or New modes.

M—Modify Material

The options for the “M” (modify) mode are the same as for the “N” (new)
mode. If an argument is nil, or is omitted from the end of the argument list,
the property affected by the argument retains its current value.

For example, the following call changes BLUE MARBLE to have a medium
blue stone (matrix) color and black veins:

(c:rmat "M" "BLUE MARBLE" "marble" ’(0.5 0.5 1.0) ’(0.0 0.0 0.0))

N—New Material

The “N” (new) mode creates a new material. The arguments to this function
depend not only on the mode, but also on the type of material you're creat-
ing. The procedural materials: marble, granite, and wood, each have a unique
set of arguments, which differs from the standard material arguments.
Arguments

The following table describes the new arguments:

New arguments

Argument Data type Description Default

name STR Name of the material to create None

material-type STR Type of new material. The options None
are:

STANDARD—standard material
MARBLE—marble material
GRANITE—granite material
WOOD—wood material

description (Varies) Arguments depend on the type of (Varies)
material you’re creating

selection-set INT Selection set that contains the None
entities to detach

layer-name STR Name of the layer None

rmat | 401

In addition, the arguments for each kind of bitmap are specified in a sublist
as described under “Bitmap Arguments” on page 407.
Standard

The material type string “STANDARD” indicates you're creating a new stan-
dard material.

(c:rmat "N" name "STANDARD" [color [color-weight [pattern
[ambient [amb-weight [refl [refl-weight [refl-map
[roughness [transparency [opacitymap [refraction
[bumpmap]]]]111111111)

Arguments

The following table describes the standard arguments:

Standard arguments

Argument Data type Description Default

color LIST Material color as an RGB triple; (-1.0-1.0-1.0)—
(or reals) (-1.0 - 1.0 -1.0) means derive the By ACI
color from an object’s ACI (diffuse

color)
color-weight REAL Weight factor (color Value)—the 0.7
amount of diffuse color
pattern LIST Pattern/texture map arguments None
ambient LIST Ambient (shadow) color as an RGB (-1.0-1.0-1.0)—
(or reals) triple By ACI
amb-weight REAL Weight factor (ambient Value)—the 0.1
amount of specular color
refl LIST Reflection (specular) color as an (-1.0-1.0-1.0)—
(or reals) RGB triple By ACI
refl-weight REAL Weight factor (reflection Value)— 0.2
the amount of specular color
refl-map LIST Reflection/environment map None
arguments

402 | Externally Defined Commands

Standard arguments (continued)

Argument Data type Description Default
roughness REAL Roughness—the size of a specular 0.5
highlight
transparency REAL Transparency of the material 0.0
opacity-map LIST Opacity map arguments None
refraction REAL Index of refraction 1.0
bumpmap LIST Bump map arguments None
Examples

The following call creates a shiny red material with a pattern map:

(c:rmat "N" "RED LACQUER" "STANDARD" ; Name and type

'(1.0 0.0 0.0) (1.0) ; Color (red), weight, and texture map

' ("INLAY.TGA” 0.75 0 (0.5 0.5) (0.3 0.3) 0.0 0 1)

'(1.0 0.0 0.0) 1.0 ; Ambient color and its weight (same as diffuse)
'(1.0 0.0 0.0) 1.0 Reflection color (white) and its weight

’
nil ; No reflection map
0.2 ; Roughness (low)
0.0 ; Transparency (none)
nil ; No opacity map
0.0 ; Refraction (none)
nil ; No bump map

The next call creates a material, MAPS, that uses multiple bitmaps:

(c:rmat "N" "MAPS" "STANDARD"

'(1.0 0.0 0.0) (1.0) '("weave.tga" 1.0 0)
'(1.0 0.0 0.0) 1.0

'(1.0 0.0 0.0) 1.0 '("room.tga" 0.75)
0.5
0.0
'("hole.tga")
1.0
'("ridges.tga")

The following call creates a material with no bitmaps and default values, with
reflections that are generated by ray tracing when rendered with Photo Ray-
trace or with environment map with Photo Real:

(c:rmat "N" "SHINE" "STANDARD" nil nil nil nil nil nil nil
'(nil nil 1))

rmat | 403

Marble
The material type string “MARBLE” indicates that you are creating a new
marble material.

(c:rmat "N" name "MARBLE" [stone-color [vein-color
[refl [refl-weight [refl-map [roughness [turbulence
[sharpness [scale [bumpmap]]]]]11111]1)

Arguments

The following table describes the marble arguments:

RMAT—Marble arguments

Argument Data type Description Default
stone-color LIST RGB value specifying the main (-1.0-1.0 -1.0)—
(of reals) matrix color of the marble white
vein-color LIST RGB value specifying the vein color (-1.0-1.0 -1.0)—
(of reals) of the marble black
refl LIST Reflection (specular) color as an (-1.0-1.0 -1.0)—
(of reals) RGB value By ACI
refl-wgt REAL Weight factor (reflection Value)— 0.2
the amount of specular color
refl-map LIST Reflection/environment map None
arguments
roughness REAL Roughness—the size of a specular 0.5
highlight
turbulence INT Turbulence factor—swirliness of the 3
veins
sharpness REAL Sharpness factor—the amount of 1.0
blur
scale REAL Overall scale factor 0.16
bumpmap LIST Bumpmap arguments None
Examples

The following call creates a marble with a pink matrix and black veins:

(c:rmat "N" "PINK MARBLE" "MARBLE" '(1.0 0.34 0.79))

404 | Externally Defined Commands

Granite

The material type string “GRANITE” indicates that you're creating a new

granite material.

(c:rmat "N" name

"GRANITE"

[first-color [amountl

[second-color [amount2 [third-color [amount3

[fourth-color [amount 4 [refl [refl-weight

[refl-map [roughness [sharpness [scale
[bumpmap]]]111111111111)

Arguments

The following table describes the granite arguments:

RMAT—Granite arguments

Argument Data type Description Default
first-color LIST RGB value (-1.0-1.0 -1.0)—
(of reals) white
amount1 REAL Weight factor (color Value) for first 1.0
color
second-color LIST RGB value (0.50.50.5)—
(of reals) dark gray
amount2 REAL Weight factor (color Value) for 1.0
second color
third-color LIST RGB value (0.0 0.0 0.0)—
(of reals) black
amount3 REAL Weight factor (color Value) for third 1.0
color
fourth-color LIST RGB value (0.70.70.7)—
(of reals) light gray
amount4 REAL Weight factor (color Value) for 1.0
fourth color
refl LIST Reflection (specular) color as an (-1.0-1.0 -1.0)—
(of reals) RGB value By ACI
refl-weight REAL Weight factor (reflection Value)— 0.2

the amount of specular color

rmat | 405

406

RMAT—Granite arguments (continued)

Argument Data type Description Default

refl-map LIST Reflection/environment map None
arguments

roughness REAL Roughness—the size of a specular 0.5
highlight

sharpness REAL Sharpness factor—the amount of 1.0
blur

scale REAL Overall scale factor 0.16

bumpmap LIST Bumpmap arguments None

Examples

Create a granite without dark gray, with more black, and with yellow instead
of light gray:

(c:rmap "N" "YELLOW GRANITE"
nil 0.5 nil 0.0 nil 0.85 '(1.0 1.0 0.0) 0.6)

Wood

The material type string “WOOD” indicates that you're creating a new wood
material.

(c:rmat "N" name "WOOD" [light-color
[dark-color [refl [refl-weight [refl-map [roughness
[ratio [density [width [shape [bumpmap]]]]1]1111111)

Arguments

The following table describes the wood arguments:

RMAT—Wood arguments

Argument Data type Description Default

light-color LIST RGB value specifying the color of (0.6 0.40.3)
(of reals) the light rings

dark-color LIST RGB value specifying the color of (0.30.20.2)—
(of reals) the dark rings black

Externally Defined Commands

RMAT—Wood arguments (continued)

Argument Data type Description Default
refl LIST Reflection (specular) color as an (-1.0-1.0 -1.0)—
(of reals) RGB value By ACI
refl-weight REAL Weight factor (reflection Value)— 0.2
the amount of specular color
refl-map LIST Reflection/environment map None
arguments
roughness REAL Roughness—the size of a specular 0.5
highlight
ratio REAL Ratio of light to dark rings 0.5
density REAL Density of the rings 6.0
width REAL Ring width variation 0.2
shape REAL Ring shape variation 0.2
scale REAL Overall scale factor 0.16
bumpmap LIST Bumpmap arguments None
Examples

Create a wood with an irregular grain:
(c:rmat "N" "CRYPTO" "WOOD" nil nil nil nil nil nil nil nil nil 0.56)

Bitmap Arguments

The arguments to specify a bitmap are passed to a list, which you can include
as a sublist in the c: rmat call (this is the form shown at the beginning of each
of the following sections) or assign to a symbol before you call c:rmat.

rmat | 407

408

Pattern/Texture

' (name [blend [repeat [scale [offset [reserved [map-style
[auto-axis]]]1]]11])

Arguments

The following table describes the pattern/texture arguments:

Pattern/texture arguments

Argument Data type Description Default
name STR Name of the bitmap file None
blend REAL Amount of map color to use 1.0
repeat INT Whether to repeat (tile) the bitmap: 0

0—no tiling (crop)
1—tile (repeat pattern)

scale LIST (of U and V scale factors (1.01.0)
reals)

offset LIST (of U and V offsets (0.0 0.0)
reals)

reserved REAL Reserved placeholder None

map-style INT Whether the map style is: 0

0—fixed scale
1—fit to entity

auto-axis INT Whether or not Auto Axis is enabled: 1
0—disabled
T—enabled

Externally Defined Commands

Reflection/Environment
' (name [blend [raytracel]l])

Arguments

The following table describes the reflection/environment arguments:

Reflection/environment arguments

Argument Data type Description Default
name STR Name of the bitmap file None
blend REAL Amount of map color to use 1.0
mirror REAL Whether to generate mirrored 0

reflections:

0—no mirror

T—mirror

During mirror generates raytraced
reflections; during scanline uses
environment map for reflections

Opacity

' (name [blend [repeat [scale [offset [reserved [map-style
[auto-axis]]]1]11])

Arguments

The following table describes the opacity arguments:

Opacity arguments

Argument Data type Description Default
name STR Name of the bitmap file None
blend REAL Amount of map color to use 1.0
repeat INT Whether to repeat (tile) the bitmap: 0

0—no tiling (crop)
1—tile (repeat pattern)

rmat | 409

Opacity arguments (continued)

Argument Data type Description Default
scale LIST U and V scale factors (1.01.0)
(of reals)
offset LIST U and V offsets (0.0 0.0)
(of reals)
reserved REAL Reserved placeholder None
map-style INT Whether the map style is: 0
0—fixed scale
1—fit to entity
auto-axis INT Whether or not Auto Axis is enabled: 1
0—disabled
1—enabled
Bump Map

' (name [amplitude [repeat [scale [offset [reserved
[map-style [auto-axis]]]]]11)

The following table describes the bump arguments:

Bump arguments

Argument Data type Description Default
name STR Name of the bitmap file None
amplitude REAL Degree of bumpiness 1.0
repeat INT Whether to repeat (tile) the bitmap: 0
0—no tiling (crop)
1—tile (repeat pattern)
scale LIST U and V scale factors (1.01.0)
(of reals)
offset LIST U and V offsets (0.0 0.0)
(of reals)
reserved REAL Reserved placeholder None

410 | Externally Defined Commands

Bump arguments (continued)

Argument Data type Description Default

map-style INT Whether the map style is: 0
0—fixed scale
1—fit to entity

auto-axis INT Whether or not Auto Axis is enabled: 1
0—disabled
T—enabled

rotate3d

Rotates an object about an arbitrary 3D axis (Externally-defined: geom3d ARX applica-
tion)

(rotate3d args ...)

Arguments

args The order, number, and type of arguments for the
rotate3d function are the same as if you were entering
them at the command line; see ROTATE3D in the Command
Reference for more information.

To signify a null response (user pressing ENTER without
specifying any arguments), use nil or an empty string
(nun)

Return Values

If successful, rotate3d returns T; otherwise it returns nil.

Examples

The following example rotates the selected objects 30 degrees about the axis
specified by points p1 and p2.

(setqg ss (ssget))
(rotate3d ss pl p2 30)

AutoLISP support for the rotate3d function is implemented with the use of
the SAGET library.

rotate3d | 411

rpref

Sets rendering preferences (Externally-defined: render ARX application)

(c:rpref mode option [setting])

THE c: rpref FUNCTION determines which rendering parameters will be used,
and which rendering behavior will be the default.

Arguments

mode A string that can be one of the following:
DEST Destination of viewport, Render window, or file
ICON Scale of the Light and Materials icon blocks
ROPT More rendering options
SELECT Whether to prompt for object selection

STYPE Rendering type of Render, Photo Real, or Photo
Raytrace

TOGGLE Rendering options
option Depends on mode.

setting Depends on mode.
See Also “Setting the Render to File Options” on page 392.

DEST—Destination Preference

Selects which output device is used.
(c:rpref "DEST" option)

Arguments

option A string that specifies the rendering destination. Can be
one of the following:

FRAMEBUFFER Render to display
HARDCOPY Render to Render window
FILE Render to file

412 | Externally Defined Commands

Examples
The following call specifies rendering to a file:

(c:rpref "DEST" "FILE")

ICON—Icon Preference

Specifies the size of the light or material icon block in a drawing.

(c:rpref "ICON" option)

Arguments

option A real that specifies the size of the icon block. The default
value is 1.00.

Examples

The following function call changes the icon scale to 50 percent:

(c:rpref "ICON" 0.5)

STYPE—Rendering Type Preference

Specifies which type of Render is used.

(c:rpref "STYPE" option)

Arguments
option A string that specifies the rendering type. Can be one of
the following:
ARENDER Basic rendering
ASCAN Photo Real rendering
ARAY Photo Raytrace rendering
Examples

The following code specifies that the next rendering will be generated by the
basic AutoCAD renderer.

(c:rpref "STYPE" "ARENDER")

SELECT—Selection Preference

Specifies whether to prompt for object selection before generating a
rendering.

(c:rpref "SELECT" option)

rpref | 413

Arguments

option A string that specifies the prompting. Can be one of the
following:

ALL Render full scene

ASK Prompt for object selection

Examples
The following call sets rendering to prompt for object selection:
(c:rpref "SELECT" "ASK")

TOGGLE—Toggle Preference

Controls various rendering options.

(c:rpref "TOGGLE" option setting)

Arguments
option A string that specifies the prompting. Can be one of the
following:
CACHE Render to a cache file. As long as the drawing
geometry or view is unchanged, the cached file is used for
subsequent renderings, eliminating the need to
retessellate.
SHADOW Render with shadows.
SMOOTH Render with smoothing.
MERGE Merge objects with background.
FINISH Apply materials.
SKIPRDLG Do not display the Render dialog box.
setting A string that specifies the state of the toggle. Possible
values for setting are "oN" and "OFF".
Examples

The following calls turn off Merge rendering and turn on shadows:

(c:rpref "TOGGLE" "MERGE" "OFF")
(c:rpref "TOGGLE" "SMOOTH" "ON")

414 | Externally Defined Commands

saveimg

Saves a rendered image to a file in BMP, TGA, or TIFF format (Externally-defined: render
ARX application)

(c:saveimg filename type [portion] [xoff yoff xsize
ysize] [compression])

When AutoCAD is configured to render to a separate display, the portion
argument should not be used. You can specify a size and offset for the image;
and for TGA and TIFF files, you can specify a compression scheme.

Arguments

The arguments to saveimg are described in the following table:

SAVEIMG function arguments

Argument Data type Description Default
filename STR Image file name None
type STR File type: BMP, TGA, or TIFF None
portion STR Portion of the screen to save: “A"

A—active viewport
D—drawing area
F—full screen

NOTE This argument is now
ignored, but is provided for script

compatibility.
xoff INT X offset in pixels 0
yoff INT Y offset in pixels 0
xsize INT X size in pixels Actual X size
ysize INT Y size in pixels Actual Y size
compression STR Compression scheme: None
NONE

PACK (TIFF files only)
RLE (TGA files only)

saveimg | 415

scene

Examples

The following example saves a full-screen TIFF image named fest.tif, without
compressing the file:

(c:saveimg "TEST" "TIF" "NONE")

Creates new scenes and modifies or deletes existing scenes in paper space only (Exter-
nally-defined: render ARX application)

(c:scene mode [options])

Arguments

mode A string that can be one of the following:
D Deletes an existing scene

L Listsall scenes in the drawing or returns a definition of
the specified scene

M Modifies an existing scene
N Creates a new scene
R Renames an existing scene
S Sets the current scene
options The allowable options depend on the mode specified.

D—Delete Scene

Deletes an existing scene.
(c:scene "D" name)

Arguments
name A string that specifies the name of the scene to delete.
If the deleted scene is the current scene, *NONE* becomes the current scene.

Examples

(c:scene "D" "PLANVIEW")

416 | Externally Defined Commands

L—List Scene

Lists all scenes in the drawing or returns a definition of the specified scene.
(c:scene "L" [name])

Arguments

name A string that specifies the name of the scene to list. If the
name argument is omitted, c:scene returns a list of all the
scenes defined in the drawing.

Return Values

When you specify name, c:scene returns the definition of the named scene.

Examples
The following code returns a list of scene names defined in the drawing.

Command: (c:scene "L")
("" "SCENEl" "SCENE2" "SCENE3")

The empty string (") is the default scene, *NONE*, which can’t be modified.
The following function call returns a definition of the named scene:

Command: (c:scene "L" "SCENE2")

(T T)
("VIEW1" nil)
("VIEW2" ("LIGHT1" "LIGHT2"))

M—Modify Scene

Modifies an existing scene.

(c:scene "M" name [view [lights]])

The options for the Modify mode are the same as those for the New mode,
except that you can pass view as nil to modify only the lights.

NOTE You must pass the 1ights argument as a list even when you specify
only one light.

For example, the following call modifies a scene named SCENE1 to use the
named view FRONT and all the lights in the drawing:

(c:scene "M" "SCENELl" "FRONT" (C:LIGHT "L"))

scene | 417

The following call modifies SCENE1 to use the named view BACK and only the
lights P1 and P2:

(c:scene "M" "SCENE1" "BACK" '("Pl" "P2"))

N—New Scene

Creates a new scene.

(c:scene "N" name [view [lights]])

Arguments

name A string that specifies the name of the new scene.

view Either a string identifying an AutoCAD named view, or
the symbol T to indicate *CURRENT* view.

lights The lights argument can be one of the following:

m A list of strings containing light names to be used.
m The symbol T, indicating *ALL* lights in the drawing.
m nil, indicating no lights in the drawing.

SCENE—‘N” mode argument

Argument Data type Description Default
lights LIST List of light names. Must use a list *ALL* lights in the
(of strings) even if specifying a single light. drawing

T (SYM) Use *ALL* lights in the drawing

nil Use no lights in the drawing An “over-the-
shoulder” distant
light

Examples

To create a new scene named DEFAULT using the *CURRENT* view and *ALL*
lights, issue the following function call:

(c:scene "N" "DEFAULT")

To create a new scene named DULL using the *CURRENT* view and the default,
“over-the-shoulder” lighting, use the following call:

(c:scene "N" "DULL" T nil)

418 | Externally Defined Commands

To create a new scene named SPECIAL using the named view MY_VIEW and
the SUN, LAMP, and SPOT lights, issue the following function call:

(c:scene "N" "SPECIAL" "MY VIEW" '("SUN" "LAMP "SPOT"))

R—Rename Scene

Renames a scene.

(c:scene "R" old name new_name)

Arguments

old_name A string that specifies the name of the original scene.
new_name A string that specifies the new name for the scene.
Examples

Rename a scene from “SPECIAL” to “BRIGHT”:
(c:scene "R" "SPECIAL" "BRIGHT")

S—Set Scene

Sets the current scene.
(c:scene "S" [name])

Arguments

old_name A string that specifies the name of the scene to make
current.

Return Values

If you omit the name argument, c:scene returns the name of the currently

selected scene.

Examples

Obtain the name of the currently selected scene:

Command: (c:scene "S")
"PLAN"

If there is no current scene, c:scene returns an empty string (").
To make SCENE3 the current scene, issue the following function call:

(c:scene "S" "SCENE3")

scene | 419

setuv

Assigns material mapping coordinates to selected objects. Its function has two modes,
specified by a string argument (Externally-defined: render ARX application)

420

(c:setuv mode options)

The SETUV command lets you assign material mapping coordinates to
selected objects.

Arguments
mode Mode can be one of the following strings:

A Assign UV mapping to the selection set

D Detach UV mapping from the selection set
options Allowable options depend on the mode specified.
A—Assign

The “A” (assign) mode assigns mapping coordinates.

Arguments

Arguments expected by this mode depend on whether you specify projection
or solid mapping. The assign arguments for projection mapping are
described in the following table:

SETUV—“A’” mode arguments for projection mapping

Argument Data type Description Default

ssname PICKSET The selection set that contains the None
entities to which you want to assign
mapping coordinates

mapping type STR Type of projection mapping: None
P—planar
D—cylindrical
F—spherical

Externally Defined Commands

SETUV—“A’” mode arguments for projection mapping (continued)

Argument Data type Description Default

ptl, pt2, pt3 LIST Three points that define the None
mapping geometry:
Planar—lower-left corner, lower-
right corner, upper-left corner
Cylindrical—center bottom, center
top, direction toward the seam
Spherical—center of the sphere,
radius (north), direction toward the
seam

rep INT Tiling: 1
0—no tiling (crop)
1—tile (repeat pattern)

scale LIST The U and V scale factors (1.01.0)
(of reals)

offset LIST The U and V offsets (0.0 0.0)
(of reals)

For solid mapping, the option arguments specify only the mapping points.
These implicitly define the scale in the UVW dimensions. The assign argu-
ments for solid mapping are described in the following table:

SETUV—“A’” mode arguments for solid mapping

Argument Data type Description Default

ssname PICKSET The selection set that contains the None
objects to which you want to assign
mapping coordinates

mapping type STR R—solid None
ptl LIST Point to define the origin None
pt1 LIST Point to define the U axis None
pt1 LIST Point to define the V axis None
pt1 LIST Point to define the W axis None

setuv | 421

Examples

The following function call assigns cylindrical mapping coordinates to an
object the user chooses, using tiling and the default scale and offset:

(c:setuv "A" (ssget) "C" ’(5.0 5.0 5.0) (5.0 5.0 10.0)
’(10.0 0.0 0.0) 1)

D—Detach

The “D” (detach) mode detaches the UV mapping assigned to the objects in
the selection set. These objects will now be mapped with the default map-
ping coordinates until you assign mapping coordinates again.

Arguments

ssname The selection set that contains the objects from which you
want to detach mapping coordinates

Examples

The following call prompts the user for entities that will be detached from
their mapping coordinates:

(c:setuv "D" (ssget))

showmat

Lists the material type and attachment method for a selected object (Externally-defined:
render ARX application)

422

(c:showmat argl)

This function lists the material type and attachment method based on arg1.

Arguments

argl Can be an entity name, an integer representing an ACI
value, or a layer name (a string).

Externally Defined Commands

solprof

Creates profile images of three-dimensional solids (Externally-defined: solids ARX appli-
cation

(c:solprof args ...)

Arguments

args The order, number, and type of arguments are the same as
those specified when issuing SOLPROF at the Command
prompt.

stats

Displays statistics for the last rendering (Externally-defined: render ARX application)

(c:stats [filename |nil])

The STATS command provides information about your last rendering.

Arguments

filename | nil A string specifying the name of the file to save the
rendering information in, or nil to tell RENDER to stop
saving statistics. If you omit the file name, c:stats
displays the Statistics dialog box.

Examples

The following command writes statistics from your last rendering to the fig-
ures.txt file:

(c:stats "figures.txt")
If the file already exists, the statistics are appended.

The following command saves the information associated with the last ren-
dering to the stats.txt file, and also saves the information associated with the
following renderings to this file:

(c:stats "stats.txt")

The following command tells RENDER to stop saving statistics:

(c:stats nil)

solprof | 423

424

3D
distance between points, 52
distance, specifying, 83
Object Snap mode, 137
points, 137
points in user coordinate system, 138
3D points
ActiveX compatible, 252
angles, specifying, 138
distance, specifying, 138
3DSIN command, 372
3DSOUT command, 373

A

absolute values, 9
acad.cfg, 154
AppData section, 81
ActiveX
creating 3D points, 252
creating transformation matrices, 301
getting object properties, 273
adding strings, active dialog box lists, 12
ALIGN command, 374
allocating memory, 14, 71
AND, list of integers, 117
ANGBASE system variable, 159
angles
converting from string to radian, 16
converting to strings, 17
defined by two endpoints, 15
measuring cosine in radians, 40
in radians, 89
measured in radians, 80
sine of, 160
user input, 80
anonymous functions, defining, 110
antilogarithms, and real numbers, 70
appending lists, 18

application objects
creating new instance of, 255
returning running instance of, 272
application-handling functions, ObjectARX
applications, 19
applications
AppData section, 154
connecting with ActiveX, 255, 272
forcing to quit, 143
loading ObjectARX, 20
naming, 148
ObjectARX, listing, 19
quitting, 70
separate-namespace VLX, 201
starting Windows applications, 178
unloading ObjectARX, 21
using extended data, 148
writing data, 154
application-specific data
overwriting in reactor objects, 314
in reactor objects, 313
arctangents, measured in radians, 23
arrays
dimension boundaries of, 297
returning end index of, 297
arrays. See safearrays, 294
ARX applications. See ObjectARX, 19
ASCII character code
converting first character, 22
converting to single characters, 35
keyboard input buffer, 145
in open files, 145
representing characters, 241
ASESQLED command, 375
association lists
returning list entries, 22
searching, 22

425

atoms
defined, 26
and dotted lists, 223
verifying, 26
attributes, retrieving DCL values, 79
AutoCAD commands, built-in command set,
253
AutoCAD documents, function availability, 209
AutoCAD graphics screen, 94
AutoCAD status line,writing text to, 98
AutoLISP
accessing files with, 135
evaluating expressions, 69
memory status, 121
version number, 199
AutoLISP data, displaying as output from prinl,
231
AutoLISP data, displaying as output from princ,
231
automatic loading of AutoLISP files, 28
automatic loading of ObjectARX files, 28

backslash (\), control codes (table), 139
base points, specifying distance, 83
beep sounds, 312
bits, specifying to shift integers, 118
blackboard namespace
returning variable value from, 202
setting variables, 203
block references
attributes, selecting, 128
definition data, 127
selecting, 127
with attributes, changing, 65
with attributes, updating screen image, 65
blocks
inserting in editor reactors, 326
nested, 128
writing to, 352
Boolean, bitwise functions, 29
boundaries, in safearrays, 296
building applications
making application modules
include text files, 222
built-in functions, 42
bytes, for file size, 218

C

calibrations, digitizer coordinates, 185
callback functions
and inactive namespaces, 344
printing arguments in Trace window, 347
replacing, 340

426 | Index

case conversions

lowercase, 181

uppercase, 181
character codes

ASCII, 22

ASCII representation, 241

converting from strings, 240

list, 224

searching for ASCII, 243
characters, quantity in strings, 182
closing applications, forced quit, 70
closing dialog boxes, 54
closing files, 36
collections

applying functions, 287

evaluating, 271
colors

displaying colors, 10

selection dialog box, 10
command events, and editor reactors, 312
command line

printing expressions, 138, 140, 141

printing newlines, 189
command reactor events, (table), 313
commands

3DSIN, 372

3DSOUT, 373

adding to AutoCAD, 253

ALIGN, 374

ASESQLED, 375

English name in AutoCAD, 82

executing in AutoCAD, 206

LIGHT, 376

localized name in AutoCAD, 82

LSEDIT, 385

for menus, 123

MIRROR3D, 391

removing, 292

RENDER, 392

RENDERUPDATE, 396

REPLAY, 397

RPREF, 412

SAVEIMG, 415

SCENE, 416

SETUV, 420

SHOWMAT, 422

SOLPROF, 423
common denominators, finding greatest, 78
comparison function

in lists, 238, 239
complex objects, accessing definition data, 127
concatenating

expressions into lists, 113

lists, 18

multiple strings, 181

conditionally evaluating expressions, 103
converting angles to radians, 16
converting ename to VLA-object, 270
converting expressions, first in list, 144
converting integers

ASCII to single character, 35

to strings, 110
converting numbers, real to smaller, 75
converting strings

integers, 25

real numbers, 24
converting values, units of measurement, 40
converting VLA-object to ename, 307
coordinate systems

transforming, 128

translating points, 193
coordinates, in text boxes, 190
corners, user input for rectangles, 82
cosine, of angles, 40
creating drawing objects (entities), 58
curves

closed, defined, 267

contained in planes, 268

creating inside area, 256

defining parameters, 258

finding nearest point, 257

first derivative, 261

infinite ranges, 267

parameter of endpoints, 260

parameters at specified distance, 262

parameters in World Coordinate System,

263

periodic, 267

projecting onto planes, 258

second derivative, 265

segment length to parameter, 258

segment length to selected point, 260

specifying parameter value, 264

specifying point distance, 263

start parameter, 265

WCS endpoints, 261

World Coordinate System start point, 266

D

data types (list), 195
database reactors, creating, 310
DCL files

loading, 116

unloading, 197
debugging

trace function, 191

untrace function, 197
decrementing numbers, 9
deep cloning, reactor notification, 315
DeepClone reactor events, (table), 315
deepclone reactors, creating, 315

defining functions, 41
as lists, 42
definition data, of complex objects, 127
definitions, retrieving data for objects (entities),
56
defun-q, displaying defined function, 44
deleting entities, 55
deleting files, 216
deleting objects, 55
delimiters, in multiple expressions, 144
dialog boxes
adding, 130
adding strings to active list, 12
attributes with DCL values, 79
closing, 54
color selection, 10
creating images, 179
displaying, 130
displaying error messages, 13
ending active lists, 55
ending creation of images, 55
forcing display of, 104
opening, 179
pop-up lists, 180
processing lists, 180
remaining active, 179
slides, displaying, 161
specifying tiles, 11
terminating, 54
terminating current, 189
tile mode, setting, 126
tile values, setting, 154
unloading DCL files, 197
warning message, 13
dictionaries
accessing objects (entities), 127
adding nongraphical objects, 46
erasing LISP data, 277
finding next item, 47
listing LISP data, 280
named objects, 127
removing entries, 49
renaming entries, 50
retrieving LISP data, 278
searching items, 50
storing LISP data, 281
DIESEL menu expressions, 124
digitizers, setting calibrations, 185
dimensions of arrays, determining, 297
dimensions of safearrays, determining, 296
dimensions, in safearrays, 294
directories
file names, determining, 217
listing all files, 208
paths without file name and extension, 220
using path names, 217

Index | 427

distance, specifying points, 83 entities (continued)

division, determining remainders, 149 extended data, 148
DocManager reactor events, (table), 317 gripping, 175
document reactors, creating, 316 handles, 101
dotted lists identifying symbols, 249
and atoms, 223 in selection sets, 172
constructing, 39 last nondeleted, 57
drawings linking as extended data, 369
last nondeleted object (entity), 57 modifying definition data, 61
paper space layouts, 112 naming, 60
DWG reactor events, (table), 319 nested, 66
dwg reactors, creating, 319 nongraphical, accessing, 127
DXF reactor events, (table), 321 number in selection set, 171
DXF reactors, creating, 320 releasing in drawings, 292
dynamic memory, defined, 121 restoring deleted entities, 55
retrieving definition data, 56
E retrieving LISP data, 278
editor reactor events, (table), 322 returning next drawing entity, 63
editor reactors searching in symbol tables, 188
attaching Xrefs, 355 selecting, 64, 127
changes to system variables, 345 selecting for set, 175
constructing, 322 specifying properties, 290
creating, 330 storing LISP data, 281
inserting blocks, 326 top level in Auto CAD, 271
modifying AutoCAD windows, 354 transforming to VLA-object, 270
modifying Xrefs, 355 transfqnmng VLA-ob]ect to, 307
notifying changes in toolbar bitmaps, 346 TypelLib information, 303
notifying of command events, 312 undeleting, 55
undo events, 350 _updating on screen, 65
writing to blocks, 352 environment variables
elements defined, 84
last in list, 111 returning value of, 84
nth element of lists, 132 spelling requirements, 155
quantity in lists, 112 values, setting, 155
removing from lists, 235 equality .
reversing in lists, 150 between expressions, 4, 66, 67
supplying as arguments for lists, 119 €ITOT messages
end-of-line markers, open files, 146 displaying in dialog boxes, 13
endpoints for quitting applications, 143
equal to start point in curves, 267 user-defined, 68
parameters in curves, 260 error trapping, 203)
endpoints, angle returned from, 15 error-handling, user-defined function, 68
entities €ITOTS)
adding to selection sets, 165 intercepting, 203
assigning handles, 60 VLX applications, 213
complex, 127 evaluatlng expressions
converting to VLA-object, 270 conditionally (if...), 103
converting VLA-object to, 307 no evaluation, 143
creating in drawings, 58 repetition specified, 150
creating new, 60 repetitively, 366
creating new instance, 273 sequentially, 141
creating selection sets, 167 using EVAL function, 69
deleting, 55 evaluating lists, primary condition, 38
deleting from selection sets, 166 events, current within reactor’s callback, 313
determining if readable, 291 executing commands, in AutoCAD, 36
erasing, 270 exponents, specifying power, 72

428 | Index

expressions
concatenating, 113
determining whether equal, 67
determining whether identical, 66
evaluating repetitively, 366
evaluating with if, 103
last evaluated, 141
printing to command line, 138, 140, 141
re-evaluation, specified, 150
writing to files, 138, 140, 141
extended data
functions, 368
naming applications, 148
external subroutines, symbols, 200

F

FAS files, compiling source code, 308
files
acad.cfg, 81, 154
appending between files, 215
closing, 36
copying between files, 215
deleting, 216
end-of-line marker, 146
file names, user input, 85
listing in directories, 208
loading, 114
loading DCL, 116
loading in AutoCAD, 227
naming temporary files, 221
naming with extension only, 220

naming without directory or extension, 219

opening, 135
renaming, 217
searching library paths, 74
size in bytes, 218
time of last modification, 218
writing characters, 366
writing expressions, 138, 140, 141
writing strings, 367
filled rectangles, drawing in dialog box, 72
find. See search
Flip Screen function key, 191
floating point values, converting angles from
strings to, 16
floating point, converting to real values, 53
forcing an application to quit, 143
forcing display of dialog boxes, 104
freeing memory, 78
function calls, keywords, 105
functions
anonymous, defining, 110
applying to objects, 287
AutoLISP 1/O, 135
availability in AutoCAD documents, 209
Boolean, bitwise, 29
built-in, 42

functions (continued)

defining, 41

defining as lists, 42

displaying list structures, 44

error-handling, 68

executing, 19

exported by VLX, 224

extended data-handling, 368

importing applications, 201

importing into VLX namespace, 210

invoking VLX, 214

loading Visual LISP extensions to AutoLISP,
227

setting symbols defined in lists, 44

G

garbage collection, 78
graphics
screen displayed in AutoCAD, 94
vectors in dialog box images, 198
graphics screen
switching to text screen, 191
vectors, drawing, 99

H

handles
creating new objects (entities), 60
naming objects (entities), 101
height of tiles, retrieving in dialog box units, 52
help
invoking, 10, 102
topic requests, 156
user-defined command, 156
help facility. See help

I
images
creating in dialog boxes, 179
displaying slides, 161
ending creation in dialog boxes, 55
updating of screen, 65
vectors in dialog boxes, 198
importing data, from type libraries, 274
importing functions
ADS-DEFUN, 201
from ObjectARX, 201
incrementing numbers, 8
index of list element, determining, 230
infinite ranges, in curves, 267
input devices, reading from AutoCAD, 96
input,restricting users, 105
insert reactor events, (table), 326
integers
converting from real numbers, 75
converting from strings, 25
converting to strings, 110, 151

Index | 429

integers (continued)
largest in list, 120
limits for user input, 87
list using bitwise AND, 117
list using bitwise OR, 117
lists combining characters, 224
quantity of string characters, 182
range of values, 87
shifting by specifying bits, 118
smallest in list, 125
verifying, 134
intercepting errors, 203
intersections, for lines, 109

K

keywords
functions for, 105
methods for abbreviating, 108
user input, 88

L

library paths, searching for files, 74

LIGHT command, 376

lines, angle of in radians, 15

lines, determining intersections, 109

linker reactor events, (table), 328

linker reactors, creating, 328

LISP reactor events, (table), 329

LISP reactors, creating, 329

lists
adding first element, 39
appending to, 18
comparison function, 238, 239
concatenating, 18, 113
constructing, 18, 223
constructing dotted lists, 39
deleting beginning and end characters, 247
deleting end characters, 244
deleting leading characters, 241
determining index of item, 230
element index values, 239
eliminating duplicate elements, 238, 239
evaluating primary conditions, 38
first element, excluding, 34
first element, obtaining, 33
first expression, converting, 144
item position in, 230
last element, 111
length, determining, 225
linking objects as extended data, 369
nth element, 132
passing to functions, 19
quantity of elements, 112
quantity of supplied arguments, 119
remainder, obtaining, 122
removing elements, 235

430 | Index

lists (continued)
replacing old items, 183
reversing elements, 150
searching for remainder, 122
second element, obtaining Y coordinate, 32
substituting new items, 183
testing elements, 236
testing elements in, 212, 228, 229
third element, obtaining Z coordinate, 32
using OR, 136
valid list definitions, 208
verifying, 113
loading. See also unloading
loading extended Visual LISP functions, 227
loading files
in Auto CAD, 227
DCL files, 116
for AutoLISP commands, 28
for ObjectARX commands, 28
recursion, 114
loading menugroups, 125
loading Visual Basic projects, 250
logical bitwise AND, 117
logical bitwise OR, 117
logical OR of expression, 136
logs, natural logs of numbers, 116
lowercase characters, converting, 181
LSEDIT command, 385

M

macros, running Visual Basic, 251
mathematical functions
addition, 2
AND, 14
bitwise NOT, 8
division, 4, 149
equality checking, 4, 66, 67
exponentiation, 72
greater than, 7
less than or equal to, 6
multiplication, 3
not equal to, 5
subtraction, 3
MCS. See Model Coordinate System
measurements, converting values, 40
memory
allocating, 71
dynamic, defined, 121
freeing unused, 78
setting segment size, 14
status in AutoLISP, 121
menu commands, displaying menus, 123
menugroups, loading, 125
menus
DIESEL expressions, 124
item status, 123

methods
calling ActiveX, 276
converting transformation matrix for, 301
objects supported by, 288
MIRROR3D command, 391
miscellaneous reactor events, (table), 331
Model Coordinate System (MCS), 128
Model to World Transformation Matrix, 128
modifying strings, active dialog box lists, 12
mouse reactor events, (table), 332
mouse reactors, creating, 331
multiple vectors, on graphics screen, 99

N

names

objects, 57, 63

of entities in selections sets, 172
namespace

importing functions, 210

setting variable values, 211

variable values, 211

variables in open documents, 232
naming

commands in AutoCAD, 82

with file dialog box in AutoCAD, 85

temporary files, 221

valid characters for symbols, 162
naming objects (entities), 60

returning drawing objects, 63
negative numbers, verifying, 126
nested entities, 66
newlines, printing to command line, 189
nil

checking variable for, 131, 133

testing list elements for, 229

testing lists in functions for, 237
non-graphical objects, adding to dictionaries, 46
numbers

absolute values, 9

checking equality of, 4

common denominators, 78

converting to real numbers, 76

decrementing, 9

evaluating to zero, 370

incrementing, 8

negative, verifying, 126

o
Object Coordinate System (OCS), 193
object events, (table), 334
object reactors
adding to list of owners, 335
creating, 333
owners of, 337
removing from list of owners, 336

Object Snap mode, 64
specifying points, 137

ObjectARX
current applications list, 19
listing loaded applications, 19
loading application, 20
loading associated files, 28
reactor notification and, 328
undefining symbols, 200
unloading application, 21

objects
adding to selection sets, 165
assigning handles, 60
changing in drawing database, 310
complex, 127
converting ename to VLA-object, 270
converting VLA-object to ename, 307
creating in drawings, 58
creating new, 60
creating new instance, 273
creating selection sets, 167
deleting, 55
deleting from selection sets, 166
determining if readable, 291
erasing, 270
extended data, 148
extended object data, functions, 368
gripping, 175
handles, 101
identifying symbols, 249
last nondeleted, 57
linking as extended data, 369
methods applicable to,listing, 268
methods supported by, 288
modifying definition data, 61
modifying in AutoCAD drawings, 308
naming, 57, 60, 63
nested, 66
nongraphical, accessing, 127
number in selection set, 171
properties of, 273
properties of,listing, 268
releasing, 288
releasing in drawings, 292
restoring deleted objects, 55
retrieving definition data, 56
retrieving LISP data, 278
returning next drawing object, 63
searching symbol tables for, 188
selecting, 64, 127
selecting for set, 175
setting properties in ActiveX, 291
specifying properties, 290
storing LISP data, 281
top level in AutoCAD, 271
transforming ename to VLA-object, 270
transforming VLA-object to ename, 307

Index | 431

objects (continued)
transforming VLA-object to entity name,
307
TypeLib information, 303
undeleting, 55
updating on screen, 65
updating screen image, 65
opening files, 135
output. See writing

P

paper space, current layouts, 112
patterns
matching with wild cards, 363
replacing in strings, 245
searching in strings, 244
periodic curves, 267
persistent reactors, declaring, 337
planes
containing curves, 268
nearest point on projected curve, 258
points
3D, 137
specifying, 91
transforming coordinate systems, 128
translating between coordinate systems,
193
Y coordinate, 32
Z coordinate, 32
polylines
definition data, 127
selecting, 127
updating screen image, 65
pop-up lists, processing in dialog boxes, 180
properties
setting in ActiveX, 291
specifying in objects (entities), 290

Q

quit/exit abort error message, AutoLISP, 70
quitting applications, forcing, 143

R

radians

of angles, 80

arctangents measured in, 23

converting to strings, 17
reactor events, (table), 310
reactor objects. See reactors, 310
reactor type, determining, 348
reactor types, listing, 349
reactors

application-specific data, 313

constructing, 310

data associated with, 313

determining if enabled, 311

432 | Index

reactors (continued)
determining if persistent, 338
disabling, 342
disabling specified type, 343
enabling, 311
executing callback functions, 344
for drawing document events, 316
for notifying of ObjectARX applications,
328
inactive namespace and, 332
list of existing, 341
list of pairs, 341
list of persistent reactors, 338
making persistent, 337
making transient, 339
miscellaneous editor types, 330
notifying of deep cloning, 315
notifying of drawing events, 319
notifying of events in DXF files, 320
notifying of LISP events, 329
notifying of mouse events, 331
object reactors,constructing, 333
overwriting application-specific data, 314
replacing callback functions, 340
testing if enabled, 311
reactors, callback conditions, 339
reactors, determining type of, 348
reading, AutoCAD input devices, 96
real numbers
converting from floating point, 53
converting from numbers, 76
converting from strings, 24
converting to smaller integers, 75
converting to strings, 151
largest in list, 120
and natural logs, 116
smallest in list, 125
specifying, 92
square roots, 164
verifying, 134
real values, converting angles from radians to, 16

rectangles
corners, user input, 82
filled, 72

in dialog box image tiles, 73
recursion, in loading files, 114
REGEN command, 66
registry keys, creating in Windows, 235
registry path, in AutoCAD, 289
remainders, in division, 149
renaming

dictionary entries, 50

files, 217
RENDER command, 392
RENDERUPDATE command, 396
REPLAY command, 397
RPREF command, 412

S

safearrays
adding elements, 298
creating, 282
data types, 299
dimension boundaries of, 294, 296, 297
displaying as lists, 300
lower boundaries, 296
number of dimensions, 294
returning start index of, 296
specifying indexes of elements, 295
storing data in elements, 293
upper boundaries, 297
SAVEIMG command, 415
saving data, in session boundaries, 282
SCENE command, 416
screen images, updating, 65
screen menus, entering text in, 98
screens
displaying messages, 142
dual-screen display, 142
Flip Screen function key, 191
graphics for AutoCAD, 94
switching graphics screen to text screen,
191
updating object image, 65
writing characters, 366
writing strings, 367
SCRIPT command, 37
searching files, end-of-line markers, 146
searching lists
association lists, 22
for old items, 183
for remainder, 122
segments
setting size of, 14
selecting objects, 64, 127
selection sets
adding new objects (entities), 165
analyzing creation of, 173
creating, 165
deleting objects (entities), 166
members, determining, 171
number of objects (entities) in, 171
object selection methods (list), 167
point descriptor IDs (table), 174
returning entity names, 172
selection method IDs (table), 174
separate-namespace VLX, determining if
loaded, 251
session boundaries, saving data, 282
setting symbols to values, 158
setting system variables, 159
setting variables to values, 158
SETUV command, 420
SHOWMAT command, 422
sine of angle, 160

SKETCH command, 37
slides, displaying in dialog boxes, 161
SNAPANG system variable, 159
SOLPROF command, 423
sorting
alphabetizing strings, 11
lists, 239
source code, compiling into FAS files, 308
square roots, as real numbers, 164
status line,writing text to, 98
status of menu items, 123
strings
alphabetizing list of, 11
concatenating multiple strings, 181
longest common prefix, 242
replacing patterns, 245
searching for ASCII code, 243
searching for patterns, 244
specifying, 92
substituting characters, 246
substrings, 184
subkeys, in Windows registry, 233
subroutines, external, 200
substrings. See strings
symbol tables
finding next item, 186
searching for object (entity) names, 188
searching for symbol names, 188
symbols
current bound values, 248
defining current atoms list, 27
determining if nil, 131, 133
external subroutines, 200
indentifying for objects (entities), 249
invalid characters (table), 163
naming in uppercase, 247
naming with valid characters, 162
searching for names in symbol tables, 188
setting as functions, 44
setting values, 153, 158
undefining for ObjectARX, 200
value bound to, 31
system variables
in AutoCAD
environment variable names, 84
values, setting, 159
See also environment variables

T

temporary files, naming, 221
terminating dialog boxes, 54, 189
test function for lists, 236
text

in screen menus, 98

on Autocad status line, 98
text boxes, diagonal coordinates, 190
text objects, measuring, 190

Index | 433

text screens, switching from graphics screen, 191 variables (continued)

tiles setting values in namespace, 211
creating images in dialog boxes, 179 valid list definitions, 208
managing data in dialog boxes, 35 values from namespace, 211
mode for dialog boxes, 126 variants
retrieving heights, 52 changing data types, 303
retrieving widths, 51 creating, 284
selecting in dialog boxes, 11 determining data type, 305
setting value in dialog boxes, 154 determining values, 307

trace flag, clearing, 197 vectors

trace function, debugging, 191 in dialog box images, 198

Trace window, callback arguments, 347 drawing in viewports, 95

transformation matrix drawing on graphics screen, 99
vectors, 99 verifying lists, 113
VLA methods, 301 version, of current AutoLISP, 199

truncating numbers, 75 VIEWPORT entity type

.txt files, in VLX, 222 changing, 62

type function, data types (list), 195 creating, 59

type libraries, importing data from, 274 viewports

TypeLib information, 303 clearing current, 94

current configurations, 362

S drawing vectors, 99

UCS. See user coordinate system list of descriptors, 362

undeleting objects, 55 redrawing current viewport, 147

unloading redrawing objects (entities), 147
DCL files, 197 specifying views, 160
VLX applications, 249 ~ vectors, drawing, 95
See also loading Visual Basic) .

untrace function, debugging, 197 loading projects with AutoLISP, 250

uppercase characters, converting, 181 ~ running macros with AutoLISP, 251

user coordinate system, 3D points, 138 Visual LISP, loading AutoLISP entensions, 227

user input VLA-objects, getting properties, 273
angles, 89 VLX . .
help file commands, 156 exporting functions, 224
integers, 87 1nvo}<1ng from another namespace, 214
keyboard input buffer, 145 VLX applications
keywords, 88 and current dpcument, 226
keywords for function calls, 105 determining if loaded, 251
opening dialog boxes, 179 error handlers, 213
points, 91 unloading, 249
real numbers, 92 VLX, with .txt resource files, 222
restricting type of, 105
selecting objects without user input, 129 w
selecting tiles, 11 warning message, in dialog boxes, 13
strings, 92 WCS. See World Coordinate System
terminating dialog boxes, 189 width of tiles, retrieving in dialog box units, 51

wild cards, pattern match, 363

\" Windows applications, starting, 178

values, bound to symbols, 31 Windows registry

variables creating keys, 235
in blackboard namespace, 202, 203 deleting keys, 232
copying values, 232 stored data for keys, 234
determining if numeric, 134 _ subkeys, 233 o
setting values, 158 Windows, starting applications, 178

434 | Index

World Coordinate System
endpoints in curves, 261
start point in curves, 266
writing
characters, 366
expressions to files, 138, 140, 141
strings, 367

Y
Y coordinate, obtaining, 32

z

Z coordinate, obtaining, 32
zero, testing number for, 370

Index | 435

436

	AutoLISP Functions
	+ (add)
	– (subtract)
	* (multiply)
	/ (divide)
	= (equal to)
	/= (not equal to)
	< (less than)
	<= (less than or equal to)
	> (greater than)
	>= (greater than or equal to)
	~ (bitwise NOT)
	1+ (increment)
	1– (decrement)
	abs
	acad_colordlg
	acad_helpdlg
	acad_strlsort
	action_tile
	add_list
	alert
	alloc
	and
	angle
	angtof
	angtos
	append
	apply
	arx
	arxload
	arxunload
	ascii
	assoc
	atan
	atof
	atoi
	atom
	atoms-family
	autoarxload
	autoload
	Boole
	boundp
	caddr
	cadr
	car
	cdr
	chr
	client_data_tile
	close
	command
	cond
	cons
	cos
	cvunit
	defun
	defun-q
	defun-q-list-ref
	defun-q-list-set
	dictadd
	dictnext
	dictremove
	dictrename
	dictsearch
	dimx_tile
	dimy_tile
	distance
	distof
	done_dialog
	end_image
	end_list
	entdel
	entget
	entlast
	entmake
	entmakex
	entmod
	entnext
	entsel
	entupd
	eq
	equal
	error
	eval
	exit
	exp
	expand
	expt
	fill_image
	findfile
	fix
	float
	foreach
	function
	gc
	gcd
	get_attr
	get_tile
	getangle
	getcfg
	getcname
	getcorner
	getdist
	getenv
	getfiled
	getint
	getkword
	getorient
	getpoint
	getreal
	getstring
	getvar
	graphscr
	grclear
	grdraw
	grread
	grtext
	grvecs
	handent
	help
	if
	initdia
	initget
	inters
	itoa
	lambda
	last
	layoutlist
	length
	list
	listp
	load
	load_dialog
	log
	logand
	logior
	lsh
	mapcar
	max
	mem
	member
	menucmd
	menugroup
	min
	minusp
	mode_tile
	namedobjdict
	nentsel
	nentselp
	new_dialog
	not
	nth
	null
	numberp
	open
	or
	osnap
	polar
	prin1
	princ
	print
	progn
	prompt
	quit
	quote
	read
	read-char
	read-line
	redraw
	regapp
	rem
	repeat
	reverse
	rtos
	set
	set_tile
	setcfg
	setenv
	setfunhelp
	setq
	setvar
	setview
	sin
	slide_image
	snvalid
	sqrt
	ssadd
	ssdel
	ssget
	ssgetfirst
	sslength
	ssmemb
	ssname
	ssnamex
	sssetfirst
	startapp
	start_dialog
	start_image
	start_list
	strcase
	strcat
	strlen
	subst
	substr
	tablet
	tblnext
	tblobjname
	tblsearch
	term_dialog
	terpri
	textbox
	textpage
	textscr
	trace
	trans
	type
	unload_dialog
	untrace
	vector_image
	ver
	vl-acad-defun
	vl-acad-undefun
	vl-arx-import
	vl-bb-ref
	vl-bb-set
	vl-catch-all-apply
	vl-catch-all-error-message
	vl-catch-all-error-p
	vl-cmdf
	vl-consp
	vl-directory-files
	vl-doc-export
	vl-doc-import
	vl-doc-ref
	vl-doc-set
	vl-every
	vl-exit-with-error
	vl-exit-with-value
	vl-file-copy
	vl-file-delete
	vl-file-directory-p
	vl-file-rename
	vl-file-size
	vl-file-systime
	vl-filename-base
	vl-filename-directory
	vl-filename-extension
	vl-filename-mktemp
	vl-get-resource
	vl-list*
	vl-list->string
	vl-list-exported-functions
	vl-list-length
	vl-list-loaded-vlx
	vl-load-all
	vl-load-com
	vl-load-reactors
	vl-member-if
	vl-member-if-not
	vl-position
	vl-prin1-to-string
	vl-princ-to-string
	vl-propagate
	vl-registry-delete
	vl-registry-descendents
	vl-registry-read
	vl-registry-write
	vl-remove
	vl-remove-if
	vl-remove-if-not
	vl-some
	vl-sort
	vl-sort-i
	vl-string->list
	vl-string-elt
	vl-string-left-trim
	vl-string-mismatch
	vl-string-position
	vl-string-right-trim
	vl-string-search
	vl-string-subst
	vl-string-translate
	vl-string-trim
	vl-symbol-name
	vl-symbol-value
	vl-symbolp
	vl-unload-vlx
	vl-vbaload
	vl-vbarun
	vl-vlx-loaded-p
	vlax-3D-point
	vlax-add-cmd
	vlax-create-object
	vlax-curve-getArea
	vlax-curve-getClosestPointTo
	vlax-curve-getClosestPointToProjection
	vlax-curve-getDistAtParam
	vlax-curve-getDistAtPoint
	vlax-curve-getEndParam
	vlax-curve-getEndPoint
	vlax-curve-getFirstDeriv
	vlax-curve-getParamAtDist
	vlax-curve-getParamAtPoint
	vlax-curve-getPointAtDist
	vlax-curve-getPointAtParam
	vlax-curve-getSecondDeriv
	vlax-curve-getStartParam
	vlax-curve-getStartPoint
	vlax-curve-isClosed
	vlax-curve-isPeriodic
	vlax-curve-isPlanar
	vlax-dump-object
	vlax-ename->vla-object
	vlax-erased-p
	vlax-for
	vlax-get-acad-object
	vlax-get-object
	vlax-get-or-create-object
	vlax-get-property
	vlax-import-type-library
	vlax-invoke-method
	vlax-ldata-delete
	vlax-ldata-get
	vlax-ldata-list
	vlax-ldata-put
	vlax-ldata-test
	vlax-make-safearray
	vlax-make-variant
	vlax-map-collection
	vlax-method-applicable-p
	vlax-object-released-p
	vlax-product-key
	vlax-property-available-p
	vlax-put-property
	vlax-read-enabled-p
	vlax-release-object
	vlax-remove-cmd
	vlax-safearray-fill
	vlax-safearray-get-dim
	vlax-safearray-get-element
	vlax-safearray-get-l-bound
	vlax-safearray-get-u-bound
	vlax-safearray-put-element
	vlax-safearray-type
	vlax-safearray->list
	vlax-tmatrix
	vlax-typeinfo-available-p
	vlax-variant-change-type
	vlax-variant-type
	vlax-variant-value
	vlax-vla-object->ename
	vlax-write-enabled-p
	vlisp-compile
	vlr-acdb-reactor
	vlr-add
	vlr-added-p
	vlr-beep-reaction
	vlr-command-reactor
	vlr-current-reaction-name
	vlr-data
	vlr-data-set
	vlr-deepclone-reactor
	vlr-docmanager-reactor
	vlr-dwg-reactor
	vlr-dxf-reactor
	vlr-editor-reactor
	vlr-insert-reactor
	vlr-linker-reactor
	vlr-lisp-reactor
	vlr-miscellaneous-reactor
	vlr-mouse-reactor
	vlr-notification
	vlr-object-reactor
	vlr-owner-add
	vlr-owner-remove
	vlr-owners
	vlr-pers
	vlr-pers-list
	vlr-pers-p
	vlr-pers-release
	vlr-reaction-name
	vlr-reaction-set
	vlr-reactions
	vlr-reactors
	vlr-remove
	vlr-remove-all
	vlr-set-notification
	vlr-sysvar-reactor
	vlr-toolbar-reactor
	vlr-trace-reaction
	vlr-type
	vlr-types
	vlr-undo-reactor
	vlr-wblock-reactor
	vlr-window-reactor
	vlr-xref-reactor
	vports
	wcmatch
	while
	write-char
	write-line
	xdroom
	xdsize
	zerop

	Externally Defined Commands
	3dsin
	3dsout
	align
	cal
	fog
	light
	lsedit
	lslib
	lsnew
	matlib
	mirror3d
	render
	renderupdate
	replay
	rmat
	rotate3d
	rpref
	saveimg
	scene
	setuv
	showmat
	solprof
	stats

	Index

