
AutoCAD 2013

AutoLISP Developer's Guide

January 2012

© 2012 Autodesk, Inc. All Rights Reserved. Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not
be reproduced in any form, by any method, for any purpose.

Certain materials included in this publication are reprinted with the permission of the copyright holder.

Trademarks

The following are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and other countries:
123D, 3ds Max, Algor, Alias, Alias (swirl design/logo), AliasStudio, ATC, AUGI, AutoCAD, AutoCAD Learning Assistance, AutoCAD LT, AutoCAD
Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface, Autodesk, Autodesk Homestyler, Autodesk Intent, Autodesk Inventor, Autodesk
MapGuide, Autodesk Streamline, AutoLISP, AutoSketch, AutoSnap, AutoTrack, Backburner, Backdraft, Beast, Beast (design/logo) Built with
ObjectARX (design/logo), Burn, Buzzsaw, CAiCE, CFdesign, Civil 3D, Cleaner, Cleaner Central, ClearScale, Colour Warper, Combustion,
Communication Specification, Constructware, Content Explorer, Creative Bridge, Dancing Baby (image), DesignCenter, Design Doctor, Designer's
Toolkit, DesignKids, DesignProf, DesignServer, DesignStudio, Design Web Format, Discreet, DWF, DWG, DWG (design/logo), DWG Extreme,
DWG TrueConvert, DWG TrueView, DWFX, DXF, Ecotect, Evolver, Exposure, Extending the Design Team, Face Robot, FBX, Fempro, Fire, Flame,
Flare, Flint, FMDesktop, Freewheel, GDX Driver, Green Building Studio, Heads-up Design, Heidi, Homestyler, HumanIK, IDEA Server, i-drop,
Illuminate Labs AB (design/logo), ImageModeler, iMOUT, Incinerator, Inferno, Instructables, Instructables (stylized robot design/logo),Inventor,
Inventor LT, Kynapse, Kynogon, LandXplorer, LiquidLight, LiquidLight (design/logo), Lustre, MatchMover, Maya, Mechanical Desktop, Moldflow,
Moldflow Plastics Advisers, Moldflow Plastics Insight, Moldflow Plastics Xpert, Moondust, MotionBuilder, Movimento, MPA, MPA (design/logo),
MPI, MPI (design/logo), MPX, MPX (design/logo), Mudbox, Multi-Master Editing, Navisworks, ObjectARX, ObjectDBX, Opticore, Pipeplus, Pixlr,
Pixlr-o-matic, PolarSnap, PortfolioWall, Powered with Autodesk Technology, Productstream, ProMaterials, RasterDWG, RealDWG, Real-time
Roto, Recognize, Render Queue, Retimer, Reveal, Revit, RiverCAD, Robot, Scaleform, Scaleform GFx, Showcase, Show Me, ShowMotion,
SketchBook, Smoke, Softimage, Softimage|XSI (design/logo), Sparks, SteeringWheels, Stitcher, Stone, StormNET, Tinkerbox, ToolClip, Topobase,
Toxik, TrustedDWG, U-Vis, ViewCube, Visual, Visual LISP, Voice Reality, Volo, Vtour, WaterNetworks, Wire, Wiretap, WiretapCentral, XSI.

All other brand names, product names or trademarks belong to their respective holders.

Disclaimer

THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLE BY AUTODESK, INC. "AS IS." AUTODESK, INC. DISCLAIMS
ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS.

Contents

Chapter 1 Introduction . 1
Introduction . 1

AutoLISP . 1
About Related AutoLISP Documents 2

Chapter 2 Using the AutoLISP Language 3
AutoLISP Basics . 3

AutoLISP Expressions . 3
AutoLISP Function Syntax 5

AutoLISP Data Types . 6
Integers . 6
Rea l s . 7
Str ings . 8
Lists . 8
Selection Sets . 8
Entity Names . 8
File Descriptors . 9
Symbols and Variables . 10

AutoLISP Program Files . 11
Formatting AutoLISP Code 11
Comments in AutoLISP Program Files 11

AutoLISP Variables . 12
Displaying the Value of a Variable 13

iii

Nil Variables . 13
Predefined Variables . 13

Number Handling . 14
String Handling . 14
Basic Output Functions . 16

Displaying Messages . 17
Control Characters in Strings 18
Wild-Card Matching . 20

Equality and Conditional . 21
List Handling . 21

Point Lists . 23
Dotted Pairs . 26

Symbol and Function Handling 28
Using defun to Define a Function 28
C:XXX Functions . 30
Local Variables in Functions 34
Functions with Arguments 36

Error Handling in AutoLISP . 38
Using the *error* Function 39
Catching Errors and Continuing Program Execution 41

Using AutoLISP to Communicate with AutoCAD 42
Accessing Commands and Services 42

Command Submission . 43
System and Environment Variables 47
Configuration Control . 47

Display Control . 47
Control of Graphics and Text Windows 48
Control of Low-Level Graphics 48

Getting User Input . 49
The getxxx Functions . 49
Control of User-Input Function Conditions 52

Geometric Utilities . 55
Object Snap . 56
Text Extents . 56

Conversions . 61
String Conversions . 61
Angular Conversion . 64
ASCII Code Conversion . 65
Unit Conversion . 67
Coordinate System Transformations 70

File Handling . 72
File Search . 73

Device Access and Control . 74
Accessing User Input . 74

Using AutoLISP to Manipulate AutoCAD Objects 74
Selection Set Handling . 75

iv | Contents

Selection Set Filter Lists . 77
Passing Selection Sets between AutoLISP and ObjectARX

Applications . 85
Object Handling . 86

Entity Name Functions . 86
Entity Data Functions . 92
Entity Data Functions and the Graphics Screen 102
Old-Style Polylines and Lightweight Polylines 103
Non-Graphic Object Handling 104

Extended Data - xdata . 106
Organization of Extended Data 107
Registration of an Application 109
Retrieval of Extended Data 110
Attachment of Extended Data to an Entity 111
Management of Extended Data Memory Use 112
Handles in Extended Data 112

Xrecord Objects . 113
Symbol Table and Dictionary Access 114

Symbol Tables . 114
Dictionary Entries . 116

Chapter 3 Appendixes . 119
AutoLISP Function Synopsis . 119

Category Summary . 119
Basic Functions . 121

Application-Handling Functions 121
Arithmetic Functions . 122
Equality and Conditional Functions 125
Error-Handling Functions 126
Function-Handling Functions 127
List Manipulation Functions 128
String-Handling Functions 131
Symbol-Handling Functions 133

Utility Functions . 134
Conversion Functions . 134
Device Access Functions 135
Display Control Functions 136
File-Handling Functions 137
Geometric Functions . 139
Query and Command Functions 139
User Input Functions . 141

Selection Set, Object, and Symbol Table Functions 142
Extended Data-Handling Functions 143
Object-Handling Functions 143
Selection Set Manipulation Functions 145
Symbol Table and Dictionary-Handling Functions 146

Contents | v

Memory Management Functions 147
VLX Namespace Functions . 147
Namespace Communication Functions 148
Property List (Plist) Functions 149

AutoLISP Error Codes . 149
Error Codes . 149

Index . 157

vi | Contents

Introduction

Introduction
For years, AutoLISP

®
 has set the standard for customizing AutoCAD® on

Windows®. AutoCAD also supports AutoLISP, but does not support many of
the Visual LISP functions or the Microsoft ActiveX

®
 Automation interface.

AutoCAD does not have an integrated development environment like AutoCAD
on Windows does, so the creation and editing of LSP files must be done with
text editor such as TextEdit.

AutoLISP

AutoLISP is a programming language designed for extending and customizing
the functionality of AutoCAD. It is based on the LISP programming language,
whose origins date back to the late 1950s. LISP was originally designed for use
in Artificial Intelligence (AI) applications, and is still the basis for many AI
applications.

AutoLISP was introduced as an application programming interface (API) in
AutoCAD Release 2.1, in the mid-1980s. LISP was chosen as the initial AutoCAD
API because it was uniquely suited for the unstructured design process of
AutoCAD projects, which involved repeatedly trying different solutions to design
problems.

Developing AutoLISP programs for AutoCAD is done by writing code in a text
editor, then loading the code into AutoCAD and running it. Debugging your
program is handled by adding statements to print the contents of variables at
strategic points in your program. You must figure out where in your program
to do this, and what variables you need to look at. If you discover you do not
have enough information to determine the error, you must go back and change

1

1

the code by adding more debugging points. And finally, when you get the
program to work correctly, you need to either comment out or remove the
debugging code you added.

About Related AutoLISP Documents

In addition to the AutoLISP Reference, several other AutoCAD publications may
be required by users building applications with AutoLISP:
■ AutoCADCustomization Guide contains basic information on creating

customized AutoCAD applications. For example, it includes information
on creating customized user interface elements, linetypes, and hatch
patterns. The Customization Guide is available through the AutoCAD and
Help menu on the Mac OS menu bar.

■ The DXF Reference describes drawing interchange format (DXFTM) and the
DXF group codes that identify attributes of AutoCAD objects.

The DXF Reference is not included when you install AutoCAD. To obtain
the manual, download the DXF Reference from www.autodesk.com.

■ The ObjectARX Reference contains information on using ObjectARX
®
 to

develop customized AutoCAD applications. AutoCAD reactor functionality
is implemented through ObjectARX. If you develop AutoLISP applications
that implement reactor functions, you may want to refer to this manual.

The ObjectARX Reference is not included when you install AutoCAD. To
obtain the manual, download the ObjectARX SDK (Software Development
Kit) from www.autodesk.com.

2 | Chapter 1 Introduction

Using the AutoLISP Lan-
guage

AutoLISP Basics
You can use number, string, and list-handling functions to customize AutoCAD.

This chapter introduces the basic concepts of the AutoLISP
®
 programming

language. It describes the core components and data types used in AutoLISP,
and presents examples of simple number-, string-, output-, and list-handling
functions.

AutoLISP code does not need to be compiled, so you can enter the code at a
Command line and immediately see the results.

AutoLISP Expressions

An AutoLISP program consists of a series of expressions. AutoLISP expressions
have the following form:

(function
arguments
)

Each expression begins with an open (left) parenthesis and consists of a function
name and optional arguments to that function. Each argument can also be an
expression. The expression ends with a right parenthesis. Every expression
returns a value that can be used by a surrounding expression. The value of the
last interpreted expression is returned to the calling expression.

For example, the following code example involves three functions:

2

3

(fun1 (fun2
arguments)(fun3
arguments)
)

If you enter this code at the AutoCAD Command prompt, the AutoCAD
AutoLISP interpreter processes the code. The first function, fun1, has two
arguments, and the other functions, fun2 and fun3, each have one argument.
The functions fun2 and fun3 are surrounded by function fun1, so their return
values are passed to fun1 as arguments. Function fun1 evaluates the two
arguments and returns the value to the window from which you entered the
code.

The following example shows the use of the * (multiplication) function, which
accepts one or more numbers as arguments:

(* 2 27)

54

Because this code example has no surrounding expression, AutoLISP returns
the result to the window from which you entered the code.

Expressions nested within other expressions return their result to the
surrounding expression. The following example uses the result from the +
(addition) function as one of the arguments for the * (multiplication) function.

(* 2 (+ 5 10))

30

If you enter the incorrect number of close (right) parentheses, AutoLISP displays
the following prompt:

(_>

The number of open parentheses in this prompt indicates how many levels
of open parentheses remain unclosed. If this prompt appears, you must enter
the required number of close parentheses for the expression to be evaluated.

(* 2 (+ 5 10

((_>

))

30

4 | Chapter 2 Using the AutoLISP Language

A common mistake is to omit the closing quotation mark (") in a text string,
in which case the close parentheses are interpreted as part of the string and
have no effect in resolving the open parentheses. To correct this condition,
press Shift+Esc to cancel the function, then re-enter it correctly.

AutoLISP Function Syntax

In this guide, the following conventions describe the syntax for AutoLISP
functions:

In this example, the foo function has one required argument, string, and one
optional argument, number. Additional number arguments can be provided.
Frequently, the name of the argument indicates the expected data type. The
examples in the following table show both valid and invalid calls to the foo

function.

Valid and invalid function call examples

Invalid callsValid calls

(foo 44 13)(foo "catch")

(foo "fi" "foe" 44 13)(foo "catch" 22)

(foo)(foo "catch" 22 31)

AutoLISP Basics | 5

AutoLISP Data Types

AutoLISP expressions are processed according to the order and data type of
the code within the parentheses. Before you can fully utilize AutoLISP, you
must understand the differences among the data types and how to use them.

Integers

Integers are whole numbers that do not contain a decimal point. AutoLISP
integers are 32-bit signed numbers with values ranging from +2,147,483,647
to -2,147,483,648. (Note, however, that the getint function only accepts 16-bit
numbers ranging from +32767 to -32678.) When you explicitly use an integer
in an AutoLISP expression, that value is known as a constant. Numbers such
as 2, -56, and 1,200,196 are valid AutoLISP integers.

If you enter a number that is greater than the maximum integer allowed
(resulting in integer overflow), AutoLISP converts the integer to a real number.
However, if you perform an arithmetic operation on two valid integers, and
the result is greater than the maximum allowable integer, the resulting number
will be invalid. The following examples illustrate how AutoLISP handles integer
overflow.

The largest positive integer value retains its specified value:

2147483647

2147483647

If you enter an integer that is greater than the largest allowable value, AutoLISP
returns the value as a real:

2147483648

2.14748e+009

An arithmetic operation involving two valid integers, but resulting in integer
overflow, produces an invalid result:

(+ 2147483646 3)

-2147483647

6 | Chapter 2 Using the AutoLISP Language

In this example the result is clearly invalid, as the addition of two positive
numbers results in a negative number. But note how the following operation
produces a valid result:

(+ 2147483648 2)

2.14748e+009

In this instance, AutoLISP converts 2147483648 to a valid real before adding
2 to the number. The result is a valid real.

The largest negative integer value retains its specified value:

-2147483647

-2147483647

If you enter a negative integer larger than the greatest allowable negative
value, AutoLISP returns the value as a real:

-2147483648

-2.14748e+009

The following operation concludes successfully, because AutoLISP first converts
the overflow negative integer to a valid real:

(- -2147483648 1)

-2.14748e+009

Reals

A real is a number containing a decimal point. Numbers between -1 and 1
must contain a leading zero. Real numbers are stored in double-precision
floating-point format, providing at least 14 significant digits of precision.

Reals can be expressed in scientific notation, which has an optional e or E
followed by the exponent of the number (for example, 0.0000041 is the same
as 4.1e-6). Numbers such as 3.1, 0.23, -56.123, and 21,000,000.0 are valid
AutoLISP reals.

AutoLISP Basics | 7

Strings

A string is a group of characters surrounded by quotation marks. Within quoted
strings the backslash (\) character allows control characters (or escape codes)
to be included. When you explicitly use a quoted string in an AutoLISP
expression, that value is known as a literal string or a string constant.

Examples of valid strings are “string 1” and “\nEnter first point:”.

Lists

An AutoLISP list is a group of related values separated by spaces and enclosed
in parentheses. Lists provide an efficient method of storing numerous related
values. AutoCAD expresses 3D points as a list of three real numbers.

Examples of lists are (1.0 1.0 0.0), (“this” “that” “the other”), and (1 “ONE”).

Selection Sets

Selection sets are groups of one or more objects (entities). You can interactively
add objects to, or remove objects from, selection sets with AutoLISP routines.

The following example uses the ssget function to return a selection set
containing all the objects in a drawing.

(ssget "X")

<Selection set: 1>

Entity Names

An entity name is a numeric label assigned to objects in a drawing. It is actually
a pointer into a file maintained by AutoCAD, and can be used to find the
object's database record and its vectors (if they are displayed). This label can
be referenced by AutoLISP functions to allow selection of objects for processing
in various ways. Internally, AutoCAD refers to objects as entities.

The following example uses the entlast function to get the name of the last
object entered into the drawing.

8 | Chapter 2 Using the AutoLISP Language

(entlast)

<Entity name: 27f0540>

Entity names assigned to objects in a drawing are only in effect during the
current editing session. The next time you open the drawing, AutoCAD assigns
new entity names to the objects. You can use an object's handle to refer to it
from one editing session to another; see Entity Handles and Their Uses (page
87) for information on using handles.

File Descriptors

A file descriptor is a pointer to a file opened by the AutoLISP open function.
The open function returns this pointer as an alphanumeric label. You supply
the file descriptor as an argument to other AutoLISP functions that read or
write to the file.

The following example opens the myinfo.dat file for reading. The open function
returns the file descriptor:

(setq file1 (open "/myinfo.dat" "r"))

#<file "/myinfo.dat">

In this example, the file descriptor is stored in the file1variable.

Files remain open until you explicitly close them in your AutoLISP program.
The close function closes a file. The following code closes the file whose file
descriptor is stored in the file1 variable:

(close file1)

nil

AutoLISP Basics | 9

Symbols and Variables

AutoLISP uses symbols to refer to data. Symbol names are not case sensitive
and may consist of any sequence of alphanumeric and notation characters,
except the following:

Characters restricted from symbol names

(Open Parenthesis)(

(Close Parenthesis))

(Period).

(Apostrophe)'

(Quote Symbol)"

(Semicolon);

A symbol name cannot consist only of numeric characters.

Technically, AutoLISP applications consist of either symbols or constant values,
such as strings, reals, and integers. For the sake of clarity, this guide uses the
term symbol to refer to a symbol name that stores static data, such as built-in
and user-defined functions. The term variable is used to refer to a symbol name
that stores program data. The following example uses the setq function to
assign the string value "this is a string" to the str1 variable:

(setq str1 "this is a string")

"this is a string"

Help yourself and others who need to read your code. Choose meaningful
names for your program symbols and variables.

10 | Chapter 2 Using the AutoLISP Language

AutoLISP Program Files

Although you can enter AutoLISP code at the AutoCAD Command prompt,
testing and debugging a series of instructions are considerably easier when
you save AutoLISP code in a file rather than re-entering it each time you make
a refinement. AutoLISP source code is usually stored in ASCII text files with
an .lsp extension. However, you can load AutoLISP code from any ASCII text
file.

Formatting AutoLISP Code

The extensive use of parentheses in AutoLISP code can make it difficult to
read. The traditional technique for combatting this confusion is indentation.
The more deeply nested a line of code is, the farther to the right you position
the line.

Spaces in AutoLISP Code

In AutoLISP, multiple spaces between variable names, constants, and function
names are equivalent to a single space. The end of a line is also treated as a
single space.

The following two expressions produce the same result:

(setq test1 123 test2 456)
(setq

test1 123
test2 456

)

Comments in AutoLISP Program Files

It is good practice to include comments in AutoLISP program files. Comments
are useful to both the programmer and future users who may need to revise
a program to suit their needs. Use comments to do the following:
■ Give a title, authorship, and creation date

■ Provide instructions on using a routine

■ Make explanatory notes throughout the body of a routine

AutoLISP Basics | 11

■ Make notes to yourself during debugging

Comments begin with one or more semicolons (;) and continue through the
end of the line.

; This entire line is a comment
(setq area (* pi r r)) ; Compute area of circle

Any text within ;| ... |; is ignored. Therefore, comments can be included
within a line of code or extend for multiple lines. This type of comment is
known as an in-line comment.

(setq tmode ;|some note here|; (getvar "tilemode"))

The following example shows a comment that continues for multiple lines:

(setvar "orthomode" 1) ;|comment starts here
and continues to this line,
but ends way down here|; (princ "\nORTHOMODE set On.")

It is recommended that you use comments liberally when writing AutoLISP
programs.

AutoLISP Variables

An AutoLISP variable assumes the data type of the value assigned to it. Until
they are assigned new values, variables retain their original values. You use
the AutoLISP setq function to assign values to variables.

(setq
variable_name1 value1 [variable_name2 value2 ...]

)

The setq function assigns the specified value to the variable name given. It
returns the value as its function result.

(setq val 3 abc 3.875)

3.875

(setq layr "EXTERIOR-WALLS")

"EXTERIOR-WALLS"

12 | Chapter 2 Using the AutoLISP Language

Displaying the Value of a Variable

To display the value of a variable from the AutoCAD Command prompt, you
must precede the variable name with an exclamation point (!). For example:

!abc

3.875

Nil Variables

An AutoLISP variable that has not been assigned a value is said to be nil. This
is different from blank, which is considered a character string, and different
from 0, which is a number. So, in addition to checking a variable for its current
value, you can test to determine if the variable has been assigned a value.

Each variable consumes a small amount of memory, so it is good programming
practice to reuse variable names or set variables to nil when their values are
no longer needed. Setting a variable to nil releases the memory used to store
that variable's value. If you no longer need the val variable, you can release
its value from memory with the following expression:

(setq val nil)

nil

Another efficient programming practice is to use local variables whenever
possible. See Local Variables in Functions (page 34) on this topic.

Predefined Variables

The following predefined variables are commonly used in AutoLISP
applications:

PAUSE Defined as a string consisting of a double backslash (\\) character. This
variable is used with the command function to pause for user input.

PI Defined as the constant p (pi). It evaluates to approximately 3.14159.

T Defined as the constant T. This is used as a non-nil value.

AutoLISP Basics | 13

NOTE You can change the value of these variables with the setq function. However,
other applications might rely on their values being consistent; therefore, it is
recommended that you do not modify these variables.

Number Handling

AutoLISP provides functions for working with integers and real numbers. In
addition to performing complex mathematical computations in applications,
you can use the number-handling functions to help you in your daily use of
AutoCAD. If you are drawing a steel connection detail that uses a 2.5" bolt
that is 0.5" in diameter, how many threads are there if the bolt has 13 threads
per inch?

(* 2.5 13)

32.5

The arithmetic functions that have a number argument (as opposed to num or
angle, for example) return different values if you provide integers or reals as
arguments. If all arguments are integers, the value returned is an integer.
However, if one or all the arguments are reals, the value returned is a real. To
ensure your application passes real values, be certain at least one argument is
a real.

(/ 12 5)

2

(/ 12.0 5)

2.4

A complete list of number-handling functions is in AutoLISP Function Synopsis,
(page 119) under the heading Arithmetic Functions. (page 122) These functions
are described in the AutoLISP Reference.

String Handling

AutoLISP provides functions for working with string values. For example, the
strcase function returns the conversion of all alphabetic characters in a string
to uppercase or lowercase. It accepts two arguments: a string and an optional

14 | Chapter 2 Using the AutoLISP Language

argument that specifies the case in which the characters are returned. If the
optional second argument is omitted, it evaluates to nil and strcase returns
the characters converted to uppercase.

(strcase "This is a TEST.")

"THIS IS A TEST."

If you provide a second argument of T, the characters are returned as lowercase.
AutoLISP provides the predefined variable T to use in similar situations where
a non-nil value is used as a type of true/false toggle.

(strcase "This is a TEST." T)

"this is a test."

The strcat function combines multiple strings into a single string value. This
is useful for placing a variable string within a constant string. The following
code sets a variable to a string value and then uses strcat to insert that string
into the middle of another string.

(setq str "BIG") (setq bigstr (strcat "This is a " str " test."))

"This is a BIG test."

If the variable bigstr is set to the preceding string value, you can use the
strlen function to find out the number of characters (including spaces) in that
string.

(strlen bigstr)

19

The substr function returns a substring of a string. It has two required
arguments and one optional argument. The first required argument is the
string. The second argument is a positive integer that specifies the first
character of the string you want to include in the substring. If the third
argument is provided, it specifies the number of characters to include in the
substring. If the third argument is not provided, substr returns all characters
including and following the specified start character.

As an example, you can use the substr function to strip off the three-letter
extension from a file name (note that you can actually use the vl-filename-base

function to do this). First, set a variable to a file name.

AutoLISP Basics | 15

(setq filnam "bigfile.txt")

"bigfile.txt"

You need to get a string that contains all characters except the last four (the
period and the three-letter extension). Use strlen to get the length of the string
and subtract 4 from that value. Then use substr to specify the first character
of the substring and its length.

(setq newlen (- (strlen filnam) 4))

7

(substr filnam 1 newlen)

"bigfile"

If your application has no need for the value of newlen, you can combine
these two lines of code into one.

(substr filnam 1 (- (strlen filnam) 4))

"bigfile"

Additional string-handling functions are listed in AutoLISP Function Synopsis,
(page 119) under the heading String-Handling Functions. (page 131) These
functions are described in the AutoLISP Reference.

AutoLISP also provides a number of functions that convert string values into
numeric values and numeric values into string values. These functions are
discussed in Conversions (page 61).

Basic Output Functions

AutoLISP includes functions for controlling the AutoCAD display, including
both text and graphics windows. The major text display functions are:
■ prin1

■ princ

■ print

■ prompt

16 | Chapter 2 Using the AutoLISP Language

These functions are discussed in the following sections. The remaining display
functions are covered in Using AutoLISP to Communicate with AutoCAD
(page 42), beginning with the Display Control (page 47) topic.

Displaying Messages

The princ, prin1, and print functions all display an expression (not necessarily
a string) in the AutoCAD Command window. Optionally, these functions can
send output to a file. The differences are as follows:
■ princ displays strings without the enclosing quotation marks.

■ prin1 displays strings enclosed in quotation marks.

■ print displays strings enclosed in quotation marks but places a blank line
before the expression and a space afterward.

The following examples demonstrate the differences between the four basic
output functions and how they handle the same string of text. See Control
Characters in Strings (page 18) for an explanation of the control characters
used in the example.

(setq str "The \"allowable\" tolerance is \261 \274\"")
(prompt str)
printsThe "allowable" tolerance is 1/4"and returns nil

(princ str)
printsThe "allowable" tolerance is 1/4"and returns "The
\"allowable\" tolerance is 1/4\""

(prin1 str)
prints"The \"allowable\" tolerance is 1/4""and returns "The
\"allowable\" tolerance is 1/4\""

(print str)
prints<blank line>"The \"allowable\" tolerance is
1/4""<space>and returns "The \"allowable\" tolerance is
1/4\""

Note that the write-char and write-line functions can also display output to
a Command window. Refer to the AutoLISP Reference for information on these
functions.

AutoLISP Basics | 17

Exiting Quietly

If you invoke the princ function without passing an expression to it, it displays
nothing and has no value to return. So if you write an AutoLISP expression
that ends with a call to princ without any arguments, the ending nil is
suppressed (because it has nothing to return). This practice is called exiting
quietly.

Control Characters in Strings

Within quoted strings, the backslash (\) character allows control characters
(or escape codes) to be included. The following table shows the currently
recognized control characters:

AutoLISP control characters

DescriptionCode

\ character\\

" character\"

Escape character\e

Newline character\n

Return character\r

Tab character\t

Character whose octal code is nnn\nnn

The prompt and princ functions expand the control characters in a string
and display the expanded string in the AutoCAD Command window.

If you need to use the backslash character (\) or quotation mark (") within a
quoted string, it must be preceded by the backslash character (\). For example,
if you enter

18 | Chapter 2 Using the AutoLISP Language

(princ "The \"filename\" is: /ACAD/TEST.TXT.")

the following text is displayed in the AutoCAD Command window:

The "filename" is: /ACAD/TEST.TXT

You will also see this output in the VLISP Console window, along with the
return value from the princ function (which is your original input, with the
unexpanded control characters).

To force a line break at a specific location in a string, use the newline character
(\n).

(prompt "An example of the \nnewline character. ")

An example of the
newline character.

You can also use the terpri function to cause a line break.

The return character (\r) returns to the beginning of the current line. This is
useful for displaying incremental information (for example, a counter showing
the number of objects processed during a loop).

The Tab character (\t) can be used in strings to indent or to provide alignment
with other tabbed text strings. In this example, note the use of the princ

function to suppress the ending nil.

(prompt "\nName\tOffice\n- - - - -\t- - - - -
(_>
\nSue\t101\nJoe\t102\nSam\t103\n") (princ)

OfficeName

- - - - -- - - - -

101Sue

102Joe

103Sam

AutoLISP Basics | 19

Wild-Card Matching

The wcmatch function enables applications to compare a string to a wild-card
pattern. You can use this facility when you build a selection set (in conjunction
with ssget) and when you retrieve extended entity data by application name
(in conjunction with entget).

The wcmatch function compares a single string to a pattern. The function
returns T if the string matches the pattern, and nil if it does not. The wild-card
patterns are similar to the regular expressions used by many system and
application programs. In the pattern, alphabetic characters and numerals are
treated literally; brackets can be used to specify optional characters or a range
of letters or digits; a question mark (?) matches a single character; an asterisk
(*) matches a sequence of characters; and, certain other special characters
have special meanings within the pattern. When you use the * character at
the beginning and end of the search pattern, you can locate the desired portion
anywhere in the string.

In the following examples, a string variable called matchme has been declared
and initialized:

(setq matchme "this is a string - test1 test2 the end")

"this is a string - test1 test2 the end"

The following code checks whether or not matchme begins with the four
characters "this":

(wcmatch matchme "this*")

T

The following code illustrates the use of brackets in the pattern. In this case,
wcmatch returns T if matchme contains "test4", "test5", "test6" (4-6), or
"test9" (note the use of the * character):

(wcmatch matchme "*test[4-69]*")

nil

In this case, wcmatch returns nil because matchme does not contain any of
the strings indicated by the pattern.

However,

20 | Chapter 2 Using the AutoLISP Language

(wcmatch matchme "*test[4-61]*")

T

returns true because the string contains "test1".

The pattern string can specify multiple patterns, separated by commas. The
following code returns T if matchme equals "ABC", or if it begins with "XYZ",
or if it ends with "end".

(wcmatch matchme "ABC,XYZ*,*end")

T

Equality and Conditional

AutoLISP includes functions that provide equality verification as well as
conditional branching and looping. The equality and conditional functions
are listed in AutoLISP Function Synopsis, (page 119) under the heading Equality
and Conditional Functions. (page 125) These functions are described in the
AutoLISP Reference.

When writing code that checks string and symbol table names, keep in mind
that AutoLISP automatically converts symbol table names to upper case in
some instances. When testing symbol names for equality, you need to make
the comparison insensitive to the case of the names. Use the strcase function
to convert strings to the same case before testing them for equality.

List Handling

AutoLISP provides functions for working with lists. This section provides
examples of the append, assoc, car, cons, list, nth, and subst functions. A
summary of all list-handling functions is in AutoLISP Function Synopsis, (page
119) under the heading List Manipulation Functions. (page 128) Each
list-handling function is described in the AutoLISP Reference.

Lists provide an efficient and powerful method of storing numerous related
values. After all, LISP is so-named because it is the LISt Processing language.
Once you understand the power of lists, you'll find that you can create more
powerful and flexible applications.

AutoLISP Basics | 21

Several AutoLISP functions provide a basis for programming two-dimensional
and three-dimensional graphics applications. These functions return point
values in the form of a list.

The list function provides a simple method of grouping related items. These
items do not need to be of similar data types. The following code groups three
related items as a list:

(setq lst1 (list 1.0 "One" 1))

(1.0 "One" 1)

You can retrieve a specific item from the list in the lst1 variable with the nth

function. This function accepts two arguments. The first argument is an integer
that specifies which item to return. A 0 specifies the first item in a list, 1
specifies the second item, and so on. The second argument is the list itself.
The following code returns the second item in lst1.

(nth 1 lst1)

"One"

The cdr function returns all elements, except the first, from a list. For example:

(cdr lst1)

("One" 1)

The car function provides another way to extract items from a list. For more
examples using car and cdr, and combinations of the two, see Point Lists
(page 23).

Three functions let you modify an existing list. The append function returns
a list with new items added to the end of it, and the cons function returns a
list with new items added to the beginning of the list. The subst function
returns a list with a new item substituted for every occurrence of an old item.
These functions do not modify the original list; they return a modified list.
To modify the original list, you must explicitly replace the old list with the
new list.

The append function takes any number of lists and runs them together as one
list. Therefore, all arguments to this function must be lists. The following code
adds another "One" to the list lst1. Note the use of the quote (or ') function
as an easy way to make the string "One" into a list.

22 | Chapter 2 Using the AutoLISP Language

(setq lst2 (append lst1 '("One")))

(1.0 "One" 1 "One")

The cons function combines a single element with a list. You can add another
string "One" to the beginning of this new list, lst2, with the cons function.

(setq lst3 (cons "One" lst2))

("One" 1.0 "One" 1 "One")

You can substitute all occurrences of an item in a list with a new item with
the subst function. The following code replaces all strings "One" with the
string "one".

(setq lst4 (subst "one" "One" lst3))

("one" 1.0 "one" 1 "one")

Point Lists

AutoLISP observes the following conventions for handling graphics
coordinates. Points are expressed as lists of two or three numbers surrounded
by parentheses.

2D points Expressed as lists of two real numbers (X and Y, respectively), as
in

(3.4 7.52)

3D points Expressed as lists of three real numbers (X, Y, and Z, respectively),
as in

(3.4 7.52 1.0)

You can use the list function to form point lists, as shown in the following
examples:

(list 3.875 1.23)

(3.875 1.23)

(list 88.0 14.77 3.14)

(88.0 14.77 3.14)

AutoLISP Basics | 23

To assign particular coordinates to a point variable, you can use one of the
following expressions:

(setq pt1 (list 3.875 1.23))

(3.875 1.23)

(setq pt2 (list 88.0 14.77 3.14))

(88.0 14.77 3.14)

(setq abc 3.45)

3.45

(setq pt3 (list abc 1.23))

(3.45 1.23)

The latter uses the value of variable abc as the X component of the point.

If all members of a list are constant values, you can use the quote function to
explicitly define the list, rather than the list function. The quote function
returns an expression without evaluation, as follows:

(setq pt1 (quote (4.5 7.5)))

(4.5 7.5)

The single quotation mark (') can be used as shorthand for the quote function.
The following code produces the same result as the preceding code.

(setq pt1 '(4.5 7.5))

(4.5 7.5)

You can refer to X, Y, and Z components of a point individually, using three
additional built-in functions called car, cadr, and caddr. The following
examples show how to extract the X, Y, and Z coordinates from a 3D point
list. The pt variable is set to the point (1.5 3.2 2.0):

(setq pt '(1.5 3.2 2.0))

(1.5 3.2 2.0)

24 | Chapter 2 Using the AutoLISP Language

The car function returns the first member of a list. In this example it returns
the X value of point pt to the x_val variable.

(setq x_val (car pt))

1.5

The cadr function returns the second member of a list. In this example it
returns the Y value of the pt point to the y_val variable.

(setq y_val (cadr pt))

3.2

The caddr function returns the third member of a list. In this example it
returns the Z value of point pt to the variable z_val.

(setq z_val (caddr pt))

2.0

You can use the following code to define the lower-left and upper-right (pt1
and pt2) corners of a rectangle, as follows:

(setq pt1 '(1.0 2.0) pt2 ' (3.0 4.0))

(3.0 4.0)

You can use the car and cadr functions to set the pt3 variable to the upper-left
corner of the rectangle, by extracting the X component of pt1 and the Y
component of pt2, as follows:

(setq pt3 (list (car pt1) (cadr pt2)))

(1.0 4.0)

The preceding expression sets pt3 equal to point (1.0,4.0).

AutoLISP supports concatenations of car and cdr up to four levels deep. The
following are valid functions:

cddaarcdaaarcadaarcaaaar

cddadrcdaadrcadadrcaaadr

AutoLISP Basics | 25

cddarcdaarcadarcaaar

cdddarcdadarcaddarcaadar

cddddrcdaddrcadddrcaaddr

cdddrcdadrcaddrcaadr

cddrcdarcadrcaar

These concatenations are the equivalent of nested calls to car and cdr. Each
a represents a call to car, and each d represents a call to cdr. For example:

(caar x)
is equivalent to (car (car x))

(cdar x)
is equivalent to (cdr (car x))

(cadar x)
is equivalent to (car (cdr (car x)))

(cadr x)
is equivalent to (car (cdr x))

(cddr x)
is equivalent to (cdr (cdr x))

(caddr x)
is equivalent to (car (cdr (cdr x)))

Dotted Pairs

Another way AutoLISP uses lists to organize data is with a special type of list
called a dotted pair. This list must always contain two members. When
representing a dotted pair, AutoLISP separates the members of the list with a
period (.). Most list-handling functions will not accept a dotted pair as an
argument, so you should be sure you are passing the right kind of list to a
function.

26 | Chapter 2 Using the AutoLISP Language

Dotted pairs are an example of an "improper list." An improper list is one in
which the last cdr is not nil. In addition to adding an item to the beginning
of a list, the cons function can create a dotted pair. If the second argument
to the cons function is anything other than another list or nil, it creates a
dotted pair.

(setq sublist (cons 'lyr "WALLS"))

(LYR . "WALLS")

The car, cdr, and assoc functions are useful for handling dotted pairs. The
following code creates an association list, which is a list of lists, and is the
method AutoLISP uses to maintain entity definition data. (Entity definition
data is discussed in Using AutoLISP to Manipulate AutoCAD Objects. (page
74)) The following code creates an association list of dotted pairs:

(setq wallinfo (list sublist(cons 'len 240.0) (cons 'hgt 96.0)))

((LYR . "WALLS") (LEN . 240.0) (HGT . 96.0))

The assoc function returns a specified list from within an association list
regardless of the specified list's location within the association list. The assoc

function searches for a specified key element in the lists, as follows:

(assoc 'len wallinfo)

(LEN . 240.0)

(cdr (assoc 'lyr wallinfo))

"WALLS"

(nth 1 wallinfo)

(LEN . 240.0)

(car (nth 1 wallinfo))

LEN

AutoLISP Basics | 27

Symbol and Function Handling

AutoLISP provides a number of functions for handling symbols and variables.
The symbol-handling functions are listed in AutoLISP Function Synopsis,
(page 119) under the heading Symbol-Handling Functions (page 133) Each
symbol-handling function is described in the AutoLISP Reference.

AutoLISP provides functions for handling one or more groups of functions.
This section provides examples of the defun function. The remaining
function-handling functions are listed in AutoLISP Function Synopsis, (page
119) under the heading Symbol-Handling Functions (page 133) The functions
are described in the AutoLISP Reference.

Using defun to Define a Function

With AutoLISP, you can define your own functions. Once defined, these
functions can be used at the AutoCAD Command prompt, the Visual LISP
Console prompt, or within other AutoLISP expressions, just as you use the
standard functions. You can also create your own AutoCAD commands,
because commands are just a special type of function.

The defun function combines a group of expressions into a function or
command. This function requires at least three arguments, the first of which
is the name of the function (symbol name) to define. The second argument
is the argument list (a list of arguments and local variables used by the
function). The argument list can be nil or an empty list (). Argument lists
are discussed in greater detail in Functions with Arguments (page 36). If local
variables are provided, they are separated from the arguments by a slash (/).
Local variables are discussed in Local Variables in Functions (page 34).
Following these arguments are the expressions that make up the function;
there must be at least one expression in a function definition.

(defun symbol_name (args / local_variables) expressions)

The following code defines a simple function that accepts no arguments and
displays “bye” in the AutoCAD Command window. Note that the argument
list is defined as an empty list (()):

(defun DONE () (prompt "\nbye! "))

DONE

28 | Chapter 2 Using the AutoLISP Language

Now that the DONE function is defined, you can use it as you would any other
function. For example, the following code prints a message, then says “bye”
in the AutoCAD Command window:

(prompt "The value is 127.") (DONE) (princ)

The value is 127 bye!

Note how the previous example invokes the princ function without any
arguments. This suppresses an ending nil and achieves a quiet exit.

Functions that accept no arguments may seem useless. However, you might
use this type of function to query the state of certain system variables or
conditions and to return a value that indicates those values.

AutoCAD can automatically load your functions each time you start a new
AutoCAD session or open a new AutoCAD drawing file.

Any code in an AutoLISP program file that is not part of a defun statement is
executed when that file is loaded. You can use this to set up certain parameters
or to perform any other initialization procedures in addition to displaying
textual information, such as how to invoke the loaded function.

Compatibility of defun with Previous Versions of
AutoCAD

The internal implementation of defun changed in AutoCAD 2000. This change
will be transparent to the great majority of AutoLISP users upgrading from
earlier versions of AutoCAD. The change only affects AutoLISP code that
manipulated defun definitions as a list structure, such as by appending one
function to another, as in the following code:

(append s::startup (cdr mystartup))

For situations like this, you can use defun-q to define your functions. An
attempt to use a defun function as a list results in an error. The following
example illustrates the error:

(defun foo (x) 4)

foo

(append foo '(3 4))

AutoLISP Basics | 29

; error: Invalid attempt to access a compiled function
definition.
You may want to define it using defun-q: #<SUBR @024bda3c
FOO>

The error message alerts you to the possibility of using defun-q instead of
defun.

The defun-q function is provided strictly for backward compatibility with
previous versions of AutoLISP and should not be used for other purposes. For
more information on using defun-q, and the related defun-q-list-set and
defun-q-list-ref functions, see the AutoLISP Reference.

C:XXX Functions

If an AutoLISP function is defined with a name of the form C:xxx, it can be
issued at the AutoCAD Command prompt in the same manner as a built-in
AutoCAD command. You can use this feature to add new commands to
AutoCAD or to redefine existing commands.

To use functions as AutoCAD commands, be sure they adhere to the following
rules:
■ The function name must use the form C:XXX (upper- or lowercase

characters). The C: portion of the name must always be present; the XXX

portion is a command name of your choice. C:XXX functions can be used
to override built-in AutoCAD commands. (See Redefining AutoCAD
Commands (page 32).)

■ The function must be defined with no arguments. However, local variables
are permitted and it is a good programming practice to use them.

A function defined in this manner can be issued transparently from within
any prompt of any built-in AutoCAD command, provided the function issued
transparently does not call the command function. (This is the AutoLISP
function you use to issue AutoCAD commands; see the entry on command
in the AutoLISP Reference.) When issuing a C:XXX defined command
transparently, you must precede the XXX portion with a single quotation mark
(').

You can issue a built-in command transparently while a C:XXX command is
active by preceding it with a single quotation mark ('), as you would with all

30 | Chapter 2 Using the AutoLISP Language

commands that are issued transparently. However, you cannot issue a
C:XXXcommand transparently while a C:XXX command is active.

NOTE When calling a function defined as a command from the code of another
AutoLISP function, you must use the whole name, including the parentheses; for
example, (C:HELLO). You also must use the whole name and the parentheses
when you invoke the function from the VLISP Console prompt.

Adding Commands

Using the C:XXX feature, you can define a command that displays a simple
message.

(defun C:HELLO () (princ "Hello world. \n") (princ))

C:HELLO

HELLO is now defined as a command, in addition to being an AutoLISP function.
This means you can issue the command from the AutoCAD Command prompt.
Command: hello
Hello world.

This new command can be issued transparently because it does not call the
command function itself. At the AutoCAD Command prompt, you could do
the following:
Command: line
From point: 'hello
Hello world.
From point:

If you follow your function definition with a call to the setfunhelp function,
you can associate a Help file and topic with a user-defined command. When
help is requested during execution of the user-defined command, the topic
specified by setfunhelp displays. See the AutoLISP Reference for more
information on using setfunhelp.

You cannot usually use an AutoLISP statement to respond to prompts from
an AutoLISP-implemented command. However, if your AutoLISP routine
makes use of the initget function, you can use arbitrary keyboard input with
certain functions. This allows an AutoLISP-implemented command to accept
an AutoLISP statement as a response. Also, the values returned by a DIESEL
expression can perform some evaluation of the current drawing and return

AutoLISP Basics | 31

these values to AutoLISP. See Keyword Options (page 53) for more information
on using initget, and refer to the AutoCADCustomization Guide for information
on the DIESEL string expression language.

Redefining AutoCAD Commands

Using AutoLISP, external commands, and the alias feature, you can define
your own AutoCAD commands. You can use the UNDEFINE command to
redefine a built-in AutoCAD command with a user-defined command of the
same name. To restore the built-in definition of a command, use the REDEFINE
command. The UNDEFINE command is in effect for the current editing session
only.

You can always activate an undefined command by specifying its true name,
which is the command name prefixed by a period. For example, if you undefine
QUIT, you can still access the command by entering .quit at the AutoCAD
Command prompt. This is also the syntax that should be used within the
AutoLISP command function.

Consider the following example. Whenever you use the LINE command, you
want AutoCAD to remind you about using the PLINE command. You can
define the AutoLISP function C:LINE to substitute for the normalLINEcommand
as follows:

(defun C:LINE ()
(_>

(princ "Shouldn't you be using PLINE?\n")
(_>

(command ".LINE") (princ))
C:LINE

In this example, the function C:LINE is designed to issue its message and then
to execute the normal LINE command (using its true name, .LINE). Before
AutoCAD will use your new definition for the LINE command, you must
undefine the built-in LINE command. Enter the following to undefine the
built-in LINE command:

(command "undefine" "line")

Now, if you enter line at the AutoCAD Command prompt, AutoCAD uses
the C:LINE AutoLISP function:

32 | Chapter 2 Using the AutoLISP Language

Command: line
Shouldn't you be using PLINE?
.LINE Specify first point: Specify first point:

The previous code example assumes the CMDECHO system variable is set to
1 (On). If CMDECHO is set to 0 (Off), AutoCAD does not echo prompts during
a command function call. The following code uses the CMDECHO system
variable to prevent the LINE command prompt from repeating:

(defun C:LINE (/ cmdsave)
(_>

(setq cmdsave (getvar "cmdecho"))
(_>

(setvar "cmdecho" 0)
(_>

(princ "Shouldn't you be using PLINE?\n")
(_>

(command ".LINE")
(_>

(setvar "cmdecho" cmdsave)
(_>

(princ))
C:LINE

Now if you enter line at the AutoCAD Command prompt, the following text
is displayed:
Shouldn't you be using PLINE?
Specify first point:

You can use this feature in a drawing management system, for example. You
can redefine the NEW, OPEN, and QUIT commands to write billing information
to a log file before you terminate the editing session.

It is recommended that you protect your menus, scripts, and AutoLISP
programs by using the period-prefixed forms of all commands. This ensures
that your applications use the built-in command definitions rather than a
redefined command.

AutoLISP Basics | 33

See the Overview of File Organization topic in the AutoCADCustomization
Guide for a description of the steps AutoCAD takes to evaluate command
names.

Local Variables in Functions

AutoLISP provides a method for defining a list of symbols (variables) that are
available only to your function. These are known as local variables.

Local Variables versus Global Variables

The use of local variables ensures that the variables in your functions are
unaffected by the surrounding application and that your variables do not
remain available after the calling function has completed its task.

Many user-defined functions are used as utility functions within larger
applications. User-defined functions also typically contain a number of
variables whose values and use are specific to that function.

The danger in using global variables, instead of local variables, is you may
inadvertently modify them outside of the function they were declared in and
intended for. This can lead to unpredictable behavior, and it can be very
difficult to identify the source of this type of problem.

Another advantage of using local variables is that AutoCAD can recycle the
memory space used by these variables, whereas global variables keep
accumulating within AutoCAD memory space.

There are some legitimate uses for global variables, but these should be kept
to a minimum. It is also a good practice to indicate that you intend a variable
to be global. A common way of doing this is to add an opening and closing
asterisk to the variable name, for example, *default-layer*.

Example Using Local Variables

The following example shows the use of local variables in a user-defined
function (be certain there is at least one space between the slash and the local
variables).

(defun LOCAL (/ aaa bbb)
(_>

34 | Chapter 2 Using the AutoLISP Language

(setq aaa "A" bbb "B")
(_>

(princ (strcat "\naaa has the value " aaa))
(_>

(princ (strcat "\nbbb has the value " bbb))
(_>

(princ))
LOCAL

Before you test the new function, assign variables aaa and bbb to values other
than those used in the LOCAL function.

(setq aaa 1 bbb 2)

2

You can verify that the variables aaa and bbb are actually set to those values.

aaa

1

bbb

2

Now test the LOCAL function.

(local)

aaa has the value A
bbb has the value B

You will notice the function used the values for aaa and bbb that are local to
the function. You can verify that the current values for aaa and bbb are still
set to their nonlocal values.

aaa

1

AutoLISP Basics | 35

bbb

2

In addition to ensuring that variables are local to a particular function, this
technique also ensures the memory used for those variables is available for
other functions.

Functions with Arguments

With AutoLISP, you can define functions that accept arguments. Unlike many
of the standard AutoLISP functions, user-defined functions cannot have
optional arguments. When you call a user-defined function that accepts
arguments, you must provide values for all the arguments.

The symbols to use as arguments are defined in the argument list before the
local variables. Arguments are treated as a special type of local variable;
argument variables are not available outside the function. You cannot define
a function with multiple arguments of the same name.

The following code defines a function that accepts two string arguments,
combines them with another string, and returns the resulting string.

(defun ARGTEST (arg1 arg2 / ccc)
(_>

(setq ccc "Constant string")
(_>

(strcat ccc ", " arg1 ", " arg2))

ARGTEST

The ARGTEST function returns the desired value because AutoLISP always
returns the results of the last expression it evaluates. The last line in ARGTEST

uses strcat to concatenate the strings, and the resulting value is returned. This
is one example where you should not use the princ function to suppress the
return value from your program.

This type of function can be used a number of times within an application to
combine two variable strings with one constant string in a specific order.
Because it returns a value, you can save the value to a variable for use later in
the application.

36 | Chapter 2 Using the AutoLISP Language

(setq newstr (ARGTEST "String 1" "String 2"))

"Constant string, String 1, String 2"

The newstr variable is now set to the value of the three strings combined.

Note that the ccc variable was defined locally within the ARGTEST function.
Once the function runs to completion, AutoLISP recycles the variable,
recapturing the memory allocated to it. To prove this, check from the VLISP
Console window to see if there is still a value assigned to ccc.

ccc

nil

Special Forms

Certain AutoLISP functions are considered special forms because they evaluate
arguments in a different manner than most AutoLISP function calls. A typical
function evaluates all arguments passed to it before acting on those arguments.
Special forms either do not evaluate all their arguments, or only evaluate some
arguments under certain conditions.

The following AutoLISP functions are considered special forms:
■ AND

■ COMMAND

■ COND

■ DEFUN

■ DEFUN-Q

■ FOREACH

■ FUNCTION

■ IF

■ LAMBDA

■ OR

■ PROGN

■ QUOTE

■ REPEAT

AutoLISP Basics | 37

■ SETQ

■ TRACE

■ UNTRACE

■ VLAX-FOR

■ WHILE

You can read about each of these functions in the AutoLISP Reference.

Error Handling in AutoLISP

The AutoLISP language provides several functions for error handling. You can
use these functions to do the following:
■ Provide information to users when an error occurs during the execution

of a program.

■ Restore the AutoCAD environment to a known state.

■ Intercept errors and continue program execution.

The complete list of error-handling functions is in AutoLISP Function Synopsis,
(page 119) under the heading Error-Handling Functions. (page 126) Each
error-handling function is described in the AutoLISP Reference.

If your program contains more than one error in the same expression, you
cannot depend on the order in which AutoLISP detects the errors. For example,
the inters function requires several arguments, each of which must be either
a 2D or 3D point list. A call to inters like the following:

(inters 'a)

is an error on two counts: too few arguments and invalid argument type. You
will receive either of the following error messages:

; *** ERROR: too few arguments
; *** ERROR: bad argument type: 2D/3D point

Your program should be designed to handle either error.

Note also that in AutoCAD, AutoLISP evaluates all arguments before checking
the argument types. In previous releases of AutoCAD, AutoLISP evaluated and
checked the type of each argument sequentially. To see the difference, look
at the following code examples:

38 | Chapter 2 Using the AutoLISP Language

(defun foo ()
(print "Evaluating foo")
'(1 2))

(defun bar ()
(print "Evaluating bar")
'b)

(defun baz ()
(print "Evaluating baz")
'c)

Observe how an expression using the inters function is evaluated in AutoCAD:
Command: (inters (foo) (bar) (baz))
"Evaluating foo"
"Evaluating bar"
"Evaluating baz"
; *** ERROR: too few arguments

Each argument was evaluated successfully before AutoLISP passed the results
to inters and discovered that too few arguments were specified.

In AutoCAD R14 or earlier, the same expression evaluated as follows:
Command: (inters (foo) (bar) (baz))
"Evaluating foo"
"Evaluating bar" error: bad argument type

AutoLISP evaluated (foo), then passed the result to inters. Since the result was
a valid 2D point list, AutoLISP proceeds to evaluate (bar), where it determines
that the evaluated result is a string, an invalid argument type for inters.

Using the *error* Function

Proper use of the *error* function can ensure that AutoCAD returns to a
particular state after an error occurs. Through this user-definable function you
can assess the error condition and return an appropriate message to the user.
If AutoCAD encounters an error during evaluation, it prints a message in the
following form:
Error: text

In this message, text describes the error. However, if the *error* function is
defined (that is, if it is not nil), AutoLISP executes *error* instead of printing
the message. The *error* function receives text as its single argument.

AutoLISP Basics | 39

If *error* is not defined or is nil, AutoLISP evaluation stops and displays a
traceback of the calling function and its callers. It is beneficial to leave this
error handler in effect while you debug your program.

A code for the last error is saved in the AutoCAD system variable ERRNO,
where you can retrieve it by using the getvar function. See Error Handling in
AutoLISP (page 38) for a list of error codes and their meaning.

Before defining your own *error* function, save the current contents of *error*

so that the previous error handler can be restored upon exit. When an error
condition exists, AutoCAD calls the currently defined *error* function and
passes it one argument, which is a text string describing the nature of the
error. Your *error* function should be designed to exit quietly after an ESC
(cancel) or an exit function call. The standard way to accomplish this is to
include the following statements in your error-handling routine.

(if
(or
(= msg "Function cancelled")
(= msg "quit / exit abort")

)
(princ)
(princ (strcat "\nError: " msg))

)

This code examines the error message passed to it and ensures that the user
is informed of the nature of the error. If the user cancels the routine while it
is running, nothing is returned from this code. Likewise, if an error condition
is programmed into your code and the exit function is called, nothing is
returned. It is presumed you have already explained the nature of the error
by using print statements. Remember to include a terminating call to princ

if you don't want a return value printed at the end of an error routine.

The main caveat about error-handling routines is they are normal AutoLISP
functions that can be canceled by the user. Keep them as short and as fast as
possible. This will increase the likelihood that an entire routine will execute
if called.

You can also warn the user about error conditions by displaying an alert box,
which is a small dialog box containing a message supplied by your program.
To display an alert box, call the alert function.

The following call to alert displays an alert box:

(alert "File not found")

40 | Chapter 2 Using the AutoLISP Language

Catching Errors and Continuing Program Execution

Your program can intercept and attempt to process errors instead of allowing
control to pass to *error*. The vl-catch-all-apply function is designed to invoke
any function, return a value from the function, and trap any error that may
occur. The function requires two arguments: a symbol identifying a function
or lambda expression, and a list of arguments to be passed to the called
function. The following example uses vl-catch-all-apply to divide two numbers:

(setq catchit (vl-catch-all-apply '/ '(50 5)))

10

The result from this example is the same as if you had used apply to perform
the division.

The value of vl-catch-all-apply is in catching errors and allowing your program
to continue execution.

To catch errors with vl-catch-all-apply

1 The following code defines a function named catch-me-if-you-can.

(defun catch-me-if-you-can (dividend divisor / errobj)

(setq errobj (vl-catch-all-apply '/ (list dividend
divisor)))
(if (vl-catch-all-error-p errobj)
(progn
(print (strcat "An error occurred: "

(vl-catch-all-error-message
errobj)

)
)
(prompt "Do you want to continue? (Y/N) -> ")
(setq ans (getstring))
(if (equal (strcase ans) "Y")
(print "Okay, I'll keep going")

)
)
(print errobj)

)
(princ)

)

AutoLISP Basics | 41

This function accepts two number arguments and uses vl-catch-all-apply

to divide the first number by the second number. The vl-catch-all-error-p

function determines whether the return value from vl-catch-all-apply

is an error object. If the return value is an error object,
catch-me-if-you-can invokes vl-catch-all-error-message to obtain the
message from the error object.

2 Load the function.

3 Invoke the function with the following command:

(catch-me-if-you-can 50 2)

The function should return 25.

4 Intentionally cause an error condition by invoking the function with
the following command:

(catch-me-if-you-can 50 0)

The function should issue the following prompt:

"An error occurred: divide by zero" Do you want to
continue? (Y/N) ->

If you enter y, catch-me-if-you-can indicates that it will continue
processing.

Try modifying this example by changing vl-catch-all-apply to apply.
Load and run the example with a divide by zero again. When apply

results in an error, execution immediately halts and *error* is called,
resulting in an error message.

Using AutoLISP to Communicate with AutoCAD
AutoLISP

®
 provides various functions for examining the contents of the

currently loaded drawing. This chapter introduces these functions and describes
how to use them in conjunction with other functions.

Accessing Commands and Services

The query and command functions described in this section provide direct
access to AutoCAD

®
 commands and drawing services. Their behavior depends

on the current state of the AutoCAD system and environment variables, and

42 | Chapter 2 Using the AutoLISP Language

on the drawing that is currently loaded. See ##xref here - Query and Command
Functions (app A Utility functions) in AutoLISP Function Synopsis, (page 119)
for a complete list of query and command functions.

Command Submission

The command function sends an AutoCAD command directly to the AutoCAD
Command prompt. The command function has a variable-length argument
list. These arguments must correspond to the types and values expected by
that command's prompt sequence; these may be strings, real values, integers,
points, entity names, or selection set names. Data such as angles, distances,
and points can be passed either as strings or as the values themselves (as integer
or real values, or as point lists). An empty string ("") is equivalent to pressing
the Spacebar or Enter on the keyboard.

There are some restrictions on the commands that you can use with the
command function. See the AutoLISP Reference definition of this function for
information on these restrictions.

The following code fragment shows representative calls to command.

(command "circle" "0,0" "3,3")
(command "thickness" 1)
(setq p1 '(1.0 1.0 3.0))
(setq rad 4.5)
(command "circle" p1 rad)

If AutoCAD is at the Command prompt when these functions are called,
AutoCAD performs the following actions:

1 The first call to command passes points to the CIRCLE command as
strings (draws a circle centered at 0.0,0.0 and passes through 3.0,3.0).

2 The second call passes an integer to the THICKNESS system variable
(changes the current thickness to 1.0).

3 The last call uses a 3D point and a real (floating-point) value, both of
which are stored as variables and passed by reference to the CIRCLE
command. This draws an extruded circle centered at (1.0,1.0,3.0) with
a radius of 4.5.

Using AutoLISP to Communicate with AutoCAD | 43

Foreign Language Support

If you develop AutoLISP programs that can be used with a foreign language
version of AutoCAD, the standard AutoCAD commands and keywords are
automatically translated if you precede each command or keyword with an
underscore (_).

(command "_line" pt1 pt2 pt3 "_c")

If you are using the dot prefix (to avoid using redefined commands), you can
place the dot and underscore in either order. Both "._line" and "_.line" are
valid.

Pausing for User Input

If an AutoCAD command is in progress and the predefined symbol PAUSE is
encountered as an argument to command, the command is suspended to
allow direct user input (usually point selection or dragging). This is similar to
the backslash pause mechanism provided for menus.

The PAUSE symbol is defined as a string consisting of a single backslash. When
you use a backslash (\) in a string, you must precede it by another backslash
(\\).

Menu input is not suspended by an AutoLISP pause. If a menu item is active
when the command function pauses for input, that input request can be
satisfied by the menu. If you want the menu item to be suspended as well,
you must provide a backslash in the menu item. When valid input is found,
both the command function and the menu item resume.

NOTE You can use a backslash instead of the PAUSE symbol. However, it is
recommended that you always use the PAUSE symbol rather than an explicit
backslash. Also, if the command function is invoked from a menu item, the
backslash suspends the reading of the menu item, which results in partial evaluation
of the AutoLISP expression.

If you issue a transparent command while a command function is suspended,
the command function remains suspended. Therefore, users can 'ZOOM and
'PAN while at a command pause. The pause remains in effect until AutoCAD
gets valid input, and no transparent command is in progress. For example,
the following code begins the CIRCLE command, sets the center point at (5,5),
and then pauses to let the user drag the circle's radius. When the user specifies

44 | Chapter 2 Using the AutoLISP Language

the desired point (or types in the desired radius), the function resumes, drawing
a line from (5,5) to (7,5), as follows:

(command "circle" "5,5" pause "line" "5,5" "7,5" "")

If PAUSE is encountered when a command is expecting input of a text string
or an attribute value, AutoCAD pauses for input only if the TEXTEVAL system
variable is nonzero. Otherwise, AutoCAD does not pause for user input but
uses the value of the PAUSE symbol (a single backslash) text.

When the command function pauses for user input, the function is considered
active, so the user cannot enter another AutoLISP expression to be evaluated.

The following is an example of using the PAUSE symbol (the layer NEW_LAY
and the block MY_BLOCK must exist in the drawing prior to testing this code):

(setq blk "MY_BLOCK")
(setq old_lay (getvar "clayer"))
(command "layer" "set" "NEW_LAY" "")
(command "insert" blk pause "" "" pause)
(command "layer" "set" old_lay "")

The preceding code fragment sets the current layer to NEW_LAY, pauses for
user selection of an insertion point for the block MY_BLOCK (which is inserted
with X and Y scale factors of 1), and pauses again for user selection of a rotation
angle. The current layer is then reset to the original layer.

If the command function specifies a PAUSE to the SELECT command and a
PICKFIRST set is active, the SELECT command obtains the PICKFIRST set
without pausing for the user.

WARNING The Radius and Diameter subcommands of the Dim prompt issue
additional prompts in some situations. This can cause a failure of AutoLISP programs
written prior to Release 11 that use these commands.

Passing Pick Points to AutoCAD Commands

Some AutoCAD commands (such as TRIM, EXTEND, and FILLET) require the
user to specify a pick point as well as the object itself. To pass such pairs of
object and point data by means of the command function without the use of
a PAUSE, you must first store them as variables. Points can be passed as strings
within the command function or can be defined outside the function and
passed as variables, as shown in the following example. This code fragment

Using AutoLISP to Communicate with AutoCAD | 45

shows one method of passing an entity name and a pick point to the command

function.

(command "circle" "5,5" "2")
Draws circle

(command "line" "3,5" "7,5" "")
Draws line

(setq el (entlast))
Gets last entity name

(setq pt '(5 7))
Sets point pt

(command "trim" el "" pt "")
Performs trim

If AutoCAD is at the Command prompt when these functions are called,
AutoCAD performs the following actions:

1 Draws a circle centered at (5,5) with a radius of 2.

2 Draws a line from (3,5) to (7,5).

3 Creates a variable el that is the name of the last object added to the
database. (See Using AutoLISP to Manipulate AutoCAD Objects (page
74) for more discussion of objects and object-handling functions.)

4 Creates a pt variable that is a point on the circle. (This point selects the
portion of the circle to be trimmed.)

5 Performs the TRIM command by selecting the el object and by selecting
the point specified by pt.

Undoing Commands Issued with the command Func-
tion

An UNDO group is explicitly created around each command used with the
command function. If a user enters U (or UNDO) after running an AutoLISP
routine, only the last command will be undone. Additional entries of UNDO
will step backward through the commands used in that routine. If you want
a group of commands to be considered a group (or the entire routine), use the
UNDO Begin and UNDO End options.

46 | Chapter 2 Using the AutoLISP Language

System and Environment Variables

With the getvar and setvar functions, AutoLISP applications can inspect and
change the value of AutoCAD system variables. These functions use a string
to specify the variable name. The setvar function specifies a value of the type
that the system variable expects. AutoCAD system variables come in various
types: integers, real values, strings, 2D points, and 3D points. Values supplied
as arguments to setvar must be of the expected type. If an invalid type is
supplied, an AutoLISP error is generated.

The following code fragment ensures that subsequent FILLET commands use
a radius of at least 1:

(if (< (getvar "filletrad") 1)
(setvar "filletrad" 1)

)

See the Command Reference for a list of AutoCAD system variables and their
descriptions.

An additional function, getenv, provides AutoLISP routines with access to the
currently defined operating system environment variables.

Configuration Control

AutoCAD uses the acadxx.cfg file to store configuration information (the xx
in the file name refers to the AutoCAD release number). The AppData section
of this file is provided for users and developers to store configuration
information pertaining to their applications. The getcfg and setcfg functions
allow AutoLISP applications to inspect and change the value of parameters in
the AppData section.

Display Control

AutoLISP includes functions for controlling the AutoCAD display in both text
and graphics windows. Some functions prompt for, or depend on, input from
the AutoCAD user.

The prompt, princ, prin1, and print functions are the primary text output
functions. These functions were described in the AutoLISP Basics (page 3)
chapter, under the heading, Basic Output Functions. (page 16)

Using AutoLISP to Communicate with AutoCAD | 47

See Display Control Functions (page 136) in AutoLISP Function Synopsis, (page
119) for a complete list of display control functions.

Control of Graphics and Text Windows

You can control the display of the Command Window from an AutoLISP
application. A call to textscr or textpage expands the Command Window.

The redraw function is similar to the AutoCAD REDRAW command but
provides more control over what is displayed. It not only redraws the entire
graphics area but can also specify a single object to be redrawn or undrawn
(that is, blanked out). If the object is a complex object such as an old-style
polyline or a block, redraw can draw (or undraw) either the entire object or
its header. The redraw function can also highlight and unhighlight specified
objects.

.

Control of Low-Level Graphics

AutoLISP provides functions that control the low-level graphics and allow
direct access to the AutoCAD graphics screen and input devices.

The grtext function displays text directly in the status or menu areas, with
or without highlighting. The grdraw function draws a vector in the current
viewport with control over color and highlighting. The grvecs function draws
multiple vectors.

NOTE Because these functions depend on code in AutoCAD, their operation can
be expected to change from release to release. There is no guarantee that
applications calling these functions will be upward compatible. Also, they depend
on current hardware configurations. In particular, applications that call grtext are
not likely to work the same on all configurations unless the developer is very careful
to use them as described (see the Customization Guide) and to avoid
hardware-specific features. Finally, because they are low-level functions, they do
almost no error reporting and can alter the graphics screen display unexpectedly
(see the following example for a way to fix this).

The following sequence restores the default graphics window display caused
by incorrect calls to grtext, grdraw, or grvecs:

48 | Chapter 2 Using the AutoLISP Language

(grtext)

Restores standard text

(redraw)

Getting User Input

Several functions enable an AutoLISP application to prompt the user for input
of data. See User Input Functions (page 141) in AutoLISP Function Synopsis,
(page 119) for a complete list of user input functions.

The getxxx Functions

Each user-input getxxx function pauses for data entry of the indicated type
and returns the value entered. The application specifies an optional prompt
to display before the function pauses. The following table lists the getxxx

functions and the type of user input requested.

Allowable input to the getxxx user-input functions

Type of user inputFunction name

An integer value on the command linegetint

A real or integer value on the command linegetreal

A string on the command linegetstring

A point value on the command line or selected from the screengetpoint

A point value (the opposite corner of a box) on the command line or
selected from the screen

getcorner

A real or integer value (of distance) on the command line or determ-
ined by selecting points on the screen

getdist

Using AutoLISP to Communicate with AutoCAD | 49

Allowable input to the getxxx user-input functions

Type of user inputFunction name

An angle value (in the current angle format) on the command line or
based on selected points on the screen

getangle

An angle value (in the current angle format) on the command line or
based on selected points on the screen

getorient

A predefined keyword or its abbreviation on the command linegetkword

NOTE Although the getvar, getcfg, and getenv functions begin with the letters
g, e, and t, they are not user-input functions. They are discussed in Accessing
Commands and Services (page 42).

The functions getint, getreal, and getstring pause for user input on the
AutoCAD command line. They return a value only of the same type as that
requested.

The getpoint, getcorner, and getdist functions pause for user input on the
command line or from points selected on the graphics screen. The getpoint

and getcorner functions return 3D point values, and getdist returns a real
value.

Both getangle and getorient pause for input of an angle value on the
command line or as defined by points selected on the graphics screen. For the
getorient function, the 0 angle is always to the right: “East” or “3 o'clock.”
For getangle, the 0 angle is the value of ANGBASE, which can be set to any
angle. Both getangle and getorient return an angle value (a real) in radians
measured counterclockwise from a base (0 angle), for getangle equal to
ANGBASE, and for getorient to the right.

For example, ANGBASE is set to 90 degrees (north), and ANGDIR is set to 1
(clockwise direction for increasing angles). The following table shows what

50 | Chapter 2 Using the AutoLISP Language

getangle and getorient return (in radians) for representative input values (in
degrees).

Possible return values from getangle and getorient

getorientgetangleInput
(degrees)

1.57080.00

3.141591.5708-90

4.712393.14159180

0.04.7123990

The getangle function honors the settings of ANGDIR and ANGBASE when
accepting input. You can use getangle to obtain a rotation amount for a block
insertion, because input of 0 degrees always returns 0 radians. The getorient

function honors only ANGDIR. You use getorient to obtain angles such as
the baseline angle for a text object. For example, given the preceding settings
of ANGBASE and ANGDIR, for a line of text created at an angle of 0, getorient

returns an angle value of 90.

The user-input functions take advantage of the error-checking capability of
AutoCAD. Trivial errors are trapped by AutoCAD and are not returned by the
user-input function. A prior call to initget provides additional filtering
capabilities, lessening the need for error-checking.

Using AutoLISP to Communicate with AutoCAD | 51

The getkword function pauses for the input of a keyword or its abbreviation.
Keywords must be defined with the initget function before the call to
getkword. All user-input functions (except getstring) can accept keyword
values in addition to the values they normally return, provided that initget

has been called to define the keywords.

All user-input functions allow for an optional prompt argument. It is
recommended you use this argument rather than a prior call to the prompt

or princ functions. If a prompt argument is supplied with the call to the
user-input function, that prompt is reissued in the case of invalid user input.
If no prompt argument is supplied and the user enters incorrect information,
the following message appears at the AutoCAD prompt line:
Try again:

This can be confusing, because the original prompt may have scrolled out of
the Command prompt area.

The AutoCAD user cannot typically respond to a user-input function by
entering an AutoLISP expression. If your AutoLISP routine makes use of the
initget function, arbitrary keyboard input is permitted to certain functions
that can allow an AutoLISP statement as response to a command implemented
in AutoLISP. This is discussed in Arbitrary Keyboard Input (page 54).

Control of User-Input Function Conditions

The initget function provides a level of control over the next user-input
function call. The initget function establishes various options for use by the
next entsel, nentsel, nentselp, or getxxx function (except getstring, getvar,
and getenv). This function accepts two arguments, bits and string, both of
which are optional. The bits argument specifies one or more control bits that
enable or disable certain input values to the next user-input function call. The
string argument can specify keywords that the next user-input function call
will recognize.

The control bits and keywords established by initget apply only to the next
user-input function call. They are discarded after that call. The application
doesn't have to call initget a second time to clear special conditions.

52 | Chapter 2 Using the AutoLISP Language

Input Options for User-Input Functions

The value of the bits argument restricts the types of user input to the next
user-input function call. This reduces error-checking. These are some of the
available bit values: 1 disallows null input, 2 disallows input of 0 (zero), and
4 disallows negative input. If these values are used with a following call to the
getint function, the user is forced to enter an integer value greater than 0.

To set more than one condition at a time, add the values together (in any
combination) to create a bits value between 0 and 255. If bits is not included
or is set to 0, none of the control conditions applies to the next user-input
function call. (For a complete listing of initget bit settings, see initget in the
AutoLISP Reference.)

(initget (+ 1 2 4))
(getint "\nHow old are you? ")

This sequence requests the user's age. AutoCAD displays an error message and
repeats the prompt if the user attempts to enter a negative or zero value, or if
the user only presses Enter, or enters a string (the getint function rejects
attempts to enter a value that is not an integer).

Keyword Options

The optional string argument specifies a list of keywords recognized by the
next user-input function call.

The initget function allows keyword abbreviations to be recognized in addition
to the full keywords. The user-input function returns a predefined keyword
if the input from the user matches the spelling of a keyword (not case
sensitive), or if the user enters the abbreviation of a keyword. There are two
methods for abbreviating keywords; both are discussed in the initget topic in
the AutoLISP Reference.

The following user-defined function shows a call to getreal, preceded by a
call to initget, that specifies two keywords. The application checks for these
keywords and sets the input value accordingly.

(defun C:GETNUM (/ num)
(initget 1 "Pi Two-pi")
(setq num (getreal "Pi/Two-pi/<number>: "))
(cond
((eq num "Pi") pi)

Using AutoLISP to Communicate with AutoCAD | 53

((eq num "Two-pi") (* 2.0 pi))
(T num)

)
)

This initget call inhibits null input (bits = 1) and establishes a list of two
keywords, "Pi" and "Two-pi". The getreal function is then used to obtain a
real number, issuing the following prompt:
Pi/Two-pi/<number>:

The result is placed in local symbol num. If the user enters a number, that
number is returned by C:GETNUM. However, if the user enters the keyword
Pi (or simply P), getreal returns the keyword Pi. The cond function detects
this and returns the value of p in this case. The Two-pi keyword is handled
similarly.

NOTE You can also use initget to enable entsel, nentsel, and nentselp to accept
keyword input. For more information on these functions, see Object Handling
(page 86) and the entsel, nentsel and nentselp function definitions in the
AutoLISP Reference.

Arbitrary Keyboard Input

The initget function also allows arbitrary keyboard input to most getxxx

functions. This input is passed back to the application as a string. An
application using this facility can be written to permit the user to call an
AutoLISP function at a getxxx function prompt.

These functions show a method for allowing AutoLISP response to a getxxx

function call:

(defun C:ARBENTRY (/ pt1)
(initget 128) ; Sets arbitrary entry
bit
(setq pt1 (getpoint "\nPoint: ")) ; Gets value from user.

(if (= 'STR (type pt1)) ; If it's a string,
convert it

(setq pt1 (eval (read pt1))) ; to a symbol, try
evaluating

; it as a function;
otherwise,

54 | Chapter 2 Using the AutoLISP Language

pt1 ; just return the value.

)
)

(defun REF ()
(setvar "LASTPOINT" (getpoint "\nReference point: "))
(getpoint "\nNext point: " (getvar "LASTPOINT"))

)

If both the C:ARBENTRY and REF functions are loaded into the drawing, the
following command sequence is acceptable.
Command: arbentry
Point: (ref)
Reference point: Select a point
Next point: @1,1,0

Input Validation

You should protect your code from unintentional user errors. The AutoLISP
user input getxxx functions do much of this for you. However, it's dangerous
to forget to check for adherence to other program requirements that the getxxx

functions do not check for. If you neglect to check input validity, the program's
integrity can be seriously affected.

Geometric Utilities

A group of functions allows applications to obtain pure geometric information
and geometric data from the drawing. See Geometric Functions (page 139) in
AutoLISP Function Synopsis, (page 119) for a complete list of geometric utility
functions.

The angle function finds the angle in radians between a line and the X axis
(of the current UCS), distance finds the distance between two points, and
polar finds a point by means of polar coordinates (relative to an initial point).
The inters function finds the intersection of two lines. The osnap and textbox

functions are described separately.

The following code fragment shows calls to the geometric utility functions:

Using AutoLISP to Communicate with AutoCAD | 55

(setq pt1 '(3.0 6.0 0.0))
(setq pt2 '(5.0 2.0 0.0))
(setq base '(1.0 7.0 0.0))
(setq rads (angle pt1 pt2)) ; Angle in XY plane of
current UCS

; (value is returned in
radians)
(setq len (distance pt1 pt2)) ; Distance in 3D space
(setq endpt (polar base rads len))

The call to polar sets endpt to a point that is the same distance from (1,7) as
pt1 is from pt2, and at the same angle from the X axis as the angle between
pt1 and pt2.

Object Snap

The osnap function can find a point by using one of the AutoCAD Object
Snap modes. The Snap modes are specified in a string argument.

The following call to osnap looks for the midpoint of an object near pt1:

(setq pt2 (osnap pt1 "midp"))

The following call looks for the midpoint, the endpoint, or the center of an
object nearest pt1:

(setq pt2 (osnap pt1 "midp,endp,center"))

In both examples, pt2 is set to the snap point if one is found that fulfills the
osnap requirements. If more than one snap point fulfills the requirements,
the point is selected based on the setting of the SORTENTS system variable.
Otherwise, pt2 is set to nil.

NOTE The APERTURE system variable determines the allowable proximity of a
selected point to an object when you use Object Snap.

Text Extents

The textbox function returns the diagonal coordinates of a box that encloses
a text object. It takes an entity definition list of the type returned by entget

(an association list of group codes and values) as its single argument. This list

56 | Chapter 2 Using the AutoLISP Language

can contain a complete association list description of the text object or just a
list describing the text string.

The points returned by textbox describe the bounding box (an imaginary box
that encloses the text object) of the text object, as if its insertion point were
located at (0,0,0) and its rotation angle were 0. The first list returned is the
point (0.0 0.0 0.0), unless the text object is oblique or vertical or it contains
letters with descenders (such as g and p). The value of the first point list
specifies the offset distance from the text insertion point to the lower-left
corner of the smallest rectangle enclosing the text. The second point list
specifies the upper-right corner of that box. The returned point lists always
describe the bottom-left and upper-right corners of this bounding box,
regardless of the orientation of the text being measured.

The following example shows the minimum allowable entity definition list
that textbox accepts. Because no additional information is provided, textbox

uses the current defaults for text style and height.
Command: (textbox '((1 . "Hello world")))
((0.0 0.0 0.0) (2.80952 1.0 0.0))

The actual values returned by textbox will vary depending on the current text
style.

The following example demonstrates one method of providing the textbox

function with an entity definition list.
Command: dtext
Justify/Style/<Start point>: 1,1
Height <1.0000>: Enter
Rotation angle <0>: Enter
Text: test
Text: Enter
Command: (setq e (entget (entlast)))
((-1 . <Entity name: 1ba3568>) (0 . "TEXT") (330 . <Entity
name: 1ba34f8>) (5 .
"2D") (100 . "AcDbEntity") (67 . 0) (410 . "Model") (8 . "0")
(100 .
"AcDbText") (10 1.0 1.0 0.0) (40 . 1.0) (1 . "test") (50 .
0.0) (41 . 1.0) (51
. 0.0) (7 . "Standard") (71 . 0) (72 . 0) (11 0.0 0.0 0.0)
(210 0.0 0.0 1.0)
(100 . "AcDbText") (73 . 0))
Command: (textbox e)
((0.0 0.0 0.0) (0.8 0.2 0.0))

Using AutoLISP to Communicate with AutoCAD | 57

The following figure shows the results of applying textbox to a text object
with a height of 1.0. The figure also shows the baseline and insertion point
of the text.

If the text is vertical or rotated, pt1 is still the bottom-left corner and pt2 is
the upper-right corner; the bottom-left point may have negative offsets if
necessary.

The following figure shows the point values (pt1 and pt2) that textbox returns
for samples of vertical and aligned text. In both samples, the height of the
letters is 1.0. (For the aligned text, the height is adjusted to fit the alignment
points.)

When using vertical text styles, the points are still returned in left-to-right,
bottom-to-top order as they are for horizontal styles, so that the first point
list will contain negative offsets from the text insertion point.

58 | Chapter 2 Using the AutoLISP Language

Regardless of the text orientation or style, the points returned by textbox are
such that the text insertion point (group code 10) directly translates to the
origin point of the object coordinate system (OCS) for the associated text
object. This point can be referenced when translating the coordinates returned
from textbox into points that define the actual extent of the text. The two
sample routines that follow use textbox to place a box around selected text
regardless of its orientation.

The first routine uses the textbox function to draw a box around a selected
text object:

(defun C:TBOX (/ textent tb ll ur ul lr)
(setq textent (car (entsel "\nSelect text: ")))
(command "ucs" "Object" textent)
(setq tb (textbox (list (cons -1 textent)))

ll (car tb)
ur (cadr tb)
ul (list (car ll) (cadr ur))
lr (list (car ur) (cadr ll))

)
(command "pline" ll lr ur ul "Close")
(command "ucs" "p")
(princ)

)

The second routine, which follows, accomplishes the same task as the first
routine by performing the geometric calculations with the sin and cos AutoLISP

Using AutoLISP to Communicate with AutoCAD | 59

functions. The result is correct only if the current UCS is parallel to the plane
of the text object.

(defun C:TBOX2 (/ textent ang sinrot cosrot
t1 t2 p0 p1 p2 p3 p4)

(setq textent (entget (car (entsel "\nSelect text: "))))

(setq p0 (cdr (assoc 10 textent))
ang (cdr (assoc 50 textent))
sinrot (sin ang)
cosrot (cos ang)
t1 (car (textbox textent))
t2 (cadr (textbox textent))
p1 (list
(+ (car p0)
(- (* (car t1) cosrot)(* (cadr t1) sinrot))

)
(+ (cadr p0)
(+ (* (car t1) sinrot)(* (cadr t1) cosrot))

)
)
p2 (list
(+ (car p0)
(- (* (car t2) cosrot)(* (cadr t1) sinrot))

)
(+ (cadr p0)
(+ (* (car t2) sinrot)(* (cadr t1) cosrot))

)
)
p3 (list
(+ (car p0)
(- (* (car t2) cosrot)(* (cadr t2) sinrot))

)
(+ (cadr p0)
(+ (* (car t2) sinrot)(* (cadr t2) cosrot))

)
)
p4 (list
(+ (car p0)
(- (* (car t1) cosrot)(* (cadr t2) sinrot))

)
(+ (cadr p0)
(+ (* (car t1) sinrot)(* (cadr t2) cosrot))

)

60 | Chapter 2 Using the AutoLISP Language

)
)
(command "pline" p1 p2 p3 p4 "c")
(princ)

)

Conversions

The functions described in this section are utilities for converting data types
and units. See in AutoLISP Function Synopsis, (page 119) for a complete list of
conversion functions.

String Conversions

The functions rtos (real to string) and angtos (angle to string) convert numeric
values used in AutoCAD to string values that can be used in output or as
textual data. The rtos function converts a real value, and angtos converts an
angle. The format of the result string is controlled by the value of AutoCAD
system variables: the units and precision are specified by LUNITS and LUPREC
for real (linear) values and by AUNITS and AUPREC for angular values. For
both functions, the dimensioning variable DIMZIN controls how leading and
trailing zeros are written to the result string.

The following code fragments show calls to rtos and the values returned
(assuming the DIMZIN system variable equals 0). Precision (the third argument
to rtos) is set to 4 places in the first call and 2 places in the others.

(setq x 17.5)
(setq str "\nValue formatted as ")
(setq fmtval (rtos x 1 4)) ; Mode 1 = scientific
(princ (strcat str fmtval)) ;

displays
Value formatted as 1.7500E+01

(setq fmtval (rtos x 2 2)) ; Mode 2 = decimal
(princ (strcat str fmtval)) ;

displays
Value formatted as 17.50

Using AutoLISP to Communicate with AutoCAD | 61

(setq fmtval (rtos x 3 2)) ; Mode 3 = engineering
(princ (strcat str fmtval)) ;

displays
Value formatted as 1'-5.50"

(setq fmtval (rtos x 4 2)) ; Mode 4 = architectural
(princ (strcat str fmtval)) ;

displays
Value formatted as 1'-5 1/2"

(setq fmtval (rtos x 5 2)) ; Mode 5 = fractional
(princ (strcat str fmtval)) ;

displays
Value formatted as 17 1/2

When the UNITMODE system variable is set to 1, specifying that units are
displayed as entered, the string returned by rtos differs for engineering (mode
equals 3), architectural (mode equals 4), and fractional (mode equals 5) units.
For example, the first two lines of the preceding sample output would be the
same, but the last three lines would appear as follows:
Value formatted as 1'5.50"
Value formatted as 1'5-1/2"
Value formatted as 17-1/2''

Because the angtos function takes the ANGBASE system variable into account,
the following code always returns "0":

(angtos (getvar "angbase"))

There is no AutoLISP function that returns a string version (in the current
mode/precision) of either the amount of rotation of ANGBASE from true zero
(East) or an arbitrary angle in radians.

To find the amount of rotation of ANGBASE from AutoCAD zero (East) or the
size of an arbitrary angle, you can do one of the following:
■ Add the desired angle to the current ANGBASE, and then check to see if

the absolute value of the result is greater than 2pi; (2 * pi). If so, subtract
2pi;; if the result is negative, add 2pi;, then use the angtos function on
the result.

■ Store the value of ANGBASE in a temporary variable, set ANGBASE to 0,
evaluate the angtos function, then set ANGBASE to its original value.

62 | Chapter 2 Using the AutoLISP Language

Subtracting the result of (atof (angtos 0)) from 360 degrees (2pi; radians or
400 grads) also yields the rotation of ANGBASE from 0.

The distof (distance to floating point) function is the complement of rtos.
Therefore, the following calls, which use the strings generated in the previous
examples, all return the same value: 17.5. (Note the use of the backslash (\)
with modes 3 and 4.)

(distof "1.7500E+01" 1) ; Mode 1 = scientific
(distof "17.50" 2) ; Mode 2 = decimal
(distof "1'-5.50\"" 3) ; Mode 3 = engineering
(distof "1'-5 1/2\"" 4) ; Mode 4 = architectural
(distof "17 1/2" 5) ; Mode 5 = fractional

The following code fragments show similar calls to angtos and the values
returned (still assuming that DIMZIN equals 0). Precision (the third argument
to angtos) is set to 0 places in the first call, 4 places in the next three calls,
and 2 places in the last.

(setq ang 3.14159 str2 "\nAngle formatted as ")
(setq fmtval (angtos ang 0 0)) ; Mode 0 = degrees
(princ (strcat str2 fmtval)) ;

displays
Angle formatted as 180

(setq fmtval (angtos ang 1 4)) ; Mode 1 = deg/min/sec
(princ (strcat str2 fmtval)) ;

displays
Angle formatted as 180d0'0"

(setq fmtval (angtos ang 2 4)) ; Mode 2 = grads
(princ (strcat str2 fmtval)) ;

displays
Angle formatted as 200.0000g

(setq fmtval (angtos ang 3 4)) ; Mode 3 = radians
(princ (strcat str2 fmtval)) ;

displays
Angle formatted as 3.1416r

(setq fmtval (angtos ang 4 2)) ; Mode 4 = surveyor's

Using AutoLISP to Communicate with AutoCAD | 63

(princ (strcat str2 fmtval)) ;

displays
Angle formatted as W

The UNITMODE system variable also affects strings returned by angtos when
it returns a string in surveyor's units (mode equals 4). If UNITMODE equals 0, the
string returned can include spaces (for example, "N 45d E"); if UNITMODE equals
1, the string contains no spaces (for example, "N45dE").

The angtof function complements angtos, so all of the following calls return
the same value: 3.14159.

(angtof "180" 0) ; Mode 0 = degrees
(angtof "180d0'0\"" 1) ; Mode 1 = deg/min/sec
(angtof "200.0000g" 2) ; Mode 2 = grads
(angtof "3.14159r" 3) ; Mode 3 = radians
(angtof "W" 4) ; Mode 4 = surveyor's

When you have a string specifying a distance in feet and inches, or an angle
in degrees, minutes, and seconds, you must precede the quotation mark with
a backslash (\") so it doesn't look like the end of the string. The preceding
examples of angtof and distof demonstrate this action.

Angular Conversion

If your application needs to convert angular values from radians to degrees,
you can use the angtos function, which returns a string, and then convert
that string into a floating point value with atof.

(setq pt1 '(1 1) pt2 '(1 2))
(setq rad (angle pt1 pt2))
(setq deg (atof (angtos rad 0 2)))

returns
90.0

However, a more efficient method might be to include a Radian->Degrees

function in your application. The following code shows this:

; Convert value in radians to degrees
(defun Radian->Degrees (nbrOfRadians)
(* 180.0 (/ nbrOfRadians pi))

)

64 | Chapter 2 Using the AutoLISP Language

After this function is defined, you can use the Radian->Degrees function
throughout your application, as in

(setq degrees (Radian->Degrees rad))

returns
90.0

You may also need to convert from degrees to radians. The following code
shows this:

; Convert value in degrees to radians
(defun Degrees->Radians (numberOfDegrees)
(* pi (/ numberOfDegrees 180.0))

) ;_ end of defun

ASCII Code Conversion

AutoLISP provides the ascii and chr functions that handle decimal ASCII
codes. The ascii function returns the ASCII decimal value associated with a
string, and chr returns the character associated with an ASCII decimal value.

To see your system's characters with their codes in decimal, octal, and
hexadecimal form, save the following AutoLISP code to a file named ascii.lsp.
Then load the file and enter the new ASCII command at the AutoCAD
Command prompt. This command prints the ASCII codes to the screen and
to a file called ascii.txt. The C:ASCII function makes use of the BASE function.
You may find this conversion utility useful in other applications.

; BASE converts from a decimal integer to a string in
another base.
(defun BASE (bas int / ret yyy zot)
(defun zot (i1 i2 / xxx)
(if (> (setq xxx (rem i2 i1)) 9)
(chr (+ 55 xxx))
(itoa xxx)

)
)
(setq ret (zot bas int) yyy (/ int bas))
(while (>= yyy bas)
(setq ret (strcat (zot bas yyy) ret))
(setq yyy (/ yyy bas))

)
(strcat (zot bas yyy) ret)

Using AutoLISP to Communicate with AutoCAD | 65

)

(defun C:ASCII (/ chk out ct code dec oct hex)
(initget "Yes")
(setq chk (getkword "\nWriting to ASCII.TXT, continue?

<Y>: "))
(if (or (= chk "Yes")(= chk nil)) (progn

(setq out (open "ascii.txt" "w") chk 1 code 0 ct 0)
(princ "\n \n CHAR DEC OCT HEX \n")
(princ "\n \n CHAR DEC OCT HEX \n" out)
(while chk
(setq dec (strcat " " (itoa code))
oct (base 8 code) hex (base 16 code))

(setq dec (substr dec (- (strlen dec) 2) 3))
(if (< (strlen oct) 3)(setq oct (strcat "0" oct)))

(princ (strcat "\n " (chr code) " " dec " "
oct " " hex))

(princ (strcat "\n " (chr code) " " dec " "
oct " " hex) out)

(cond
((= code 255)(setq chk nil))
((= ct 20)
(setq xxx (getstring

"\n \nPress 'X' to eXit or any key to
continue: "))

(if (= (strcase xxx) "X")
(setq chk nil)
(progn
(setq ct 0)
(princ "\n \n CHAR DEC OCT HEX \n")

)
)

)
)
(setq ct (1+ ct) code (1+ code))

)
(close out)
(setq out nil)

)
)
(princ)

)

66 | Chapter 2 Using the AutoLISP Language

Unit Conversion

The acad.unt file defines various conversions between real-world units such
as miles to kilometers, Fahrenheit to Celsius, and so on. The function cvunit

takes a value expressed in one system of units and returns the equivalent value
in another system. The two systems of units are specified by strings containing
expressions of units defined in acad.unt.

The cvunit function does not convert incompatible dimensions. For example,
it does not convert inches into grams.

The first time cvunit converts to or from a unit during a drawing editor session,
it must look up the string that specifies the unit in acad.unt. If your application
has many values to convert from one system of units to another, it is more
efficient to convert the value 1.0 by a single call to cvunit and then use the
returned value as a scale factor in subsequent conversions. This works for all
units defined in acad.unt, except temperature scales, which involve an offset
as well as a scale factor.

Converting from Inches to Meters

If the current drawing units are engineering or architectural (feet and inches),
the following routine converts a user-specified distance of inches into meters:

(defun C:I2M (/ eng_len metric_len eng metric)
(princ "\nConverting inches to meters. ")
(setq eng_len
(getdist "\nEnter a distance in inches: "))

(setq metric_len (cvunit eng_len "inches" "meters"))
(setq eng (rtos eng_len 2 4)

metric (rtos metric_len 2 4))
(princ
(strcat "\n\t" eng " inches = " metric " meters."))

(princ)
)

The Unit Definition File

With the AutoCAD unit definition file acad.unt, you can define factors to
convert data in one set of units to another set of units. The definitions in

Using AutoLISP to Communicate with AutoCAD | 67

acad.unt are in ASCII format and are used by the unit-conversion function
cvunit.

You can make new units available by using a text editor to add their definitions
to acad.unt. A definition consists of two lines in the file—the unit name and
the unit definition. The first line must have an asterisk (*) in the first column,
followed by the name of the unit. A unit name can have several abbreviations
or alternate spellings, separated by commas. If a unit name has singular and
plural forms, you can specify these using the following format:

*[[common] [([singular.] plural)]]...

You can specify multiple expressions (singular and plural). They don't have
to be located at the end of the word, and a plural form isn't required. The
following are examples of valid unit name definitions:

*inch(es)
*milleni(um.a)
*f(oot.eet) or (foot.feet)

The line following the *unit name line defines the unit as either fundamental
or derived.

Fundamental Units

A fundamental unit is an expression in constants. If the line following the
*unit name line begins with something other than an equal sign (=), it defines
fundamental units. Fundamental units consist of five integers and two real
numbers in the following form:

c, e, h, k, m, r1, r2

The five integers correspond to the exponents of these five constants:

c Velocity of light in a vacuum

e Electron charge

h Planck's constant

k Boltzman's constant

m Electron rest mass

As a group, these exponents define the dimensionality of the unit: length,
mass, time, volume, and so on.

The first real number (r1) is a multiplier, and the second (r2) is an additive
offset (used only for temperature conversions). The fundamental unit definition
allows for different spellings of the unit (for example, meter and metre); the

68 | Chapter 2 Using the AutoLISP Language

case of the unit is ignored. An example of a fundamental unit definition is as
follows:

*meter(s),metre(s),m
-1,0,1,0,-1,4.1214856408e11,0

In this example, the constants that make one meter are as follows:

Derived Units

A derived unit is defined in terms of other units. If the line following the *unit
name line begins with an equal sign (=), it defines derived units. Valid operators
in these definitions are * (multiplication), / (division), + (addition), -
(subtraction), and ^ (exponentiation). You can specify a predefined unit by
naming it, and you can use abbreviations (if provided). The items in a formula
are multiplied together unless some other arithmetic operator is specified. For
example, the units database defines the dimensionless multiple and
submultiple names, so you can specify a unit such as micro-inches by entering
micro inch. The following are examples of derived unit definitions.

; Units of area
*township(s)
=93239571.456 meter^2

The definition of a township is given as 93,239,571.456 square meters.

; Electromagnetic units
*volt(s),v
=watt/ampere

In this example, a volt is defined as a watt divided by an ampere. In the
acad.unt, both watts and amperes are defined in terms of fundamental units.

User Comments

To include comments, begin the line with a semicolon. The comment
continues to the end of the line.

; This entire line is a comment.

List the acad.unt file itself for more information and examples.

Using AutoLISP to Communicate with AutoCAD | 69

Coordinate System Transformations

The trans function translates a point or a displacement from one coordinate
system into another. It takes a point argument, pt, that can be interpreted as
either a 3D point or a 3D displacement vector, distinguished by a displacement
argument called disp. The disp argument must be nonzero if pt is to be treated
as a displacement vector; otherwise, pt is treated as a point. A from argument
specifies the coordinate system in which pt is expressed, and a to argument
specifies the desired coordinate system. The following is the syntax for the
trans function:

(trans pt from to [disp])

The following AutoCAD coordinate systems can be specified by the from and
to arguments:

WCS World coordinate system—the reference coordinate system. All other
coordinate systems are defined relative to the WCS, which never changes.
Values measured relative to the WCS are stable across changes to other
coordinate systems.

UCS User coordinate system—the working coordinate system. The user specifies
a UCS to make drawing tasks easier. All points passed to AutoCAD commands,
including those returned from AutoLISP routines and external functions, are
points in the current UCS (unless the user precedes them with a * at the
Command prompt). If you want your application to send coordinates in the
WCS, OCS, or DCS to AutoCAD commands, you must first convert them to
the UCS by calling the trans function.

OCS Object coordinate system—point values returned by entget are expressed
in this coordinate system, relative to the object itself. These points are usually
converted into the WCS, current UCS, or current DCS, according to the
intended use of the object. Conversely, points must be translated into an OCS
before they are written to the database by means of the entmod or entmake

functions. This is also known as the entity coordinate system.

DCS Display coordinate system—the coordinate system into which objects
are transformed before they are displayed. The origin of the DCS is the point
stored in the AutoCAD system variable TARGET, and its Z axis is the viewing
direction. In other words, a viewport is always a plan view of its DCS. These
coordinates can be used to determine where something will be displayed to
the AutoCAD user.

70 | Chapter 2 Using the AutoLISP Language

When the from and to integer codes are 2 and 3, in either order, 2 indicates
the DCS for the current model space viewport and 3 indicates the DCS for
paper space (PSDCS). When the 2 code is used with an integer code other than
3 (or another means of specifying the coordinate system), it is assumed to
indicate the DCS of the current space, whether paper space or model space.
The other argument is also assumed to indicate a coordinate system in the
current space.

PSDCS Paper space DCS—this coordinate system can be transformed only to
or from the DCS of the currently active model space viewport. This is essentially
a 2D transformation, where the X and Y coordinates are always scaled and are
offset if the disp argument is 0. The Z coordinate is scaled but is never
translated. Therefore, it can be used to find the scale factor between the two
coordinate systems. The PSDCS (integer code 2) can be transformed only into
the current model space viewport. If the from argument equals 3, the to
argument must equal 2, and vice versa.

Both the from and to arguments can specify a coordinate system in any of the
following ways:
■ As an integer code that specifies the WCS, current UCS, or current DCS

(of either the current viewport or paper space).

■ As an entity name returned by one of the entity name or selection set
functions described in Using AutoLISP to Manipulate AutoCAD Objects.
(page 74) This specifies the OCS of the named object. For planar objects,
the OCS can differ from the WCS, as described in the AutoCADUser's Guide.
If the OCS does not differ, conversion between OCS and WCS is an identity
operation.

■ As a 3D extrusion vector. Extrusion vectors are always represented in World
coordinates; an extrusion vector of (0,0,1) specifies the WCS itself.

The following table lists the valid integer codes that can be used as the to and
from arguments:

Coordinate system codes

Coordinate systemCode

World (WCS)0

User (current UCS)1

Using AutoLISP to Communicate with AutoCAD | 71

Coordinate system codes

Coordinate systemCode

Display; DCS of current viewport when used with code 0 or 1, DCS
of current model space viewport when used with code 3

2

Paper space DCS, PSDCS (used only with code 2)3

The following example translates a point from the WCS into the current UCS.

(setq pt '(1.0 2.0 3.0))
(setq cs_from 0) ; WCS
(setq cs_to 1) ; UCS
(trans pt cs_from cs_to 0) ;

disp = 0 indicates that pt is a point

If the current UCS is rotated 90 degrees counterclockwise around the World
Z axis, the call to trans returns a point (2.0,-1.0,3.0). However, if you swap
the to and from values, the result differs as shown in the following code:

(trans pt cs_to cs_from 0) ;

the result is (-2.0,1.0,3.0)

Point Transformations

If you are doing point transformations with the trans function and you need
to make that part of a program run faster, you can construct your own
transformation matrix on the AutoLISP side by using trans once to transform
each of the basis vectors (0 0 0), (1 0 0), (0 1 0), and (0 0 1). Writing matrix
multiplication functions in AutoLISP can be difficult, so it may not be
worthwhile unless your program is doing a lot of transformations.

File Handling

AutoLISP provides functions for handling files and data I/O. See File-Handling
Functions (page 137) in AutoLISP Function Synopsis, (page 119) for a complete
list of file-handling functions.

72 | Chapter 2 Using the AutoLISP Language

File Search

An application can use the findfile function to search for a particular file
name. The application can specify the directory to search, or it can use the
current AutoCAD library path.

In the following code fragment, findfile searches for the requested file name
according to the AutoCAD library path:

(setq refname "refc.dwg")
(setq fil (findfile refname))
(if fil
(setq refname fil)
(princ (strcat "\nCould not find file " refname ". "))

)

If the call to findfile is successful, the variable refname is set to a fully qualified
path name string, as follows:

"/home/work/ref/refc.dwg"

The getfiled function displays a dialog box containing a list of available files
of a specified extension type in the specified directory. This gives AutoLISP
routines access to the AutoCAD Get File dialog box.

A call to getfiled takes four arguments that determine the appearance and
functionality of the dialog box. The application must specify the following
string values, each of which can be nil: a title, placed at the top of the dialog
box; a default file name, displayed in the edit box at the bottom of the dialog
box; and an extension type, which determines the initial files provided for
selection in the list box. The final argument is an integer value that specifies
how the dialog box interacts with selected files.

This simple routine uses getfiled to let you view your directory structure and
select a file:

(defun C:DDIR ()
(setq dfil (getfiled "Directory Listing" "" "" 2))
(princ (strcat "\nVariable 'dfil' set to selected file

" dfil))
(princ)

)

This is a useful utility command. The dfil variable is set to the file you select,
which can then be used by other AutoLISP functions or as a response to a

Using AutoLISP to Communicate with AutoCAD | 73

command line prompt for a file name. To use this variable in response to a
command line prompt, enter !dfil.

NOTE You cannot use !dfil in a dialog box. It is valid only at the command line.

For more information, see getfiled in the AutoLISP Reference.

Device Access and Control

AutoLISP provides the grread and tablet functions for accessing data from
the various input devices.

Note that the read-char and read-line file-handling functions can also read
input from the keyboard input buffer. See the AutoLISP Reference for more
information on these functions.

Accessing User Input

The grread function returns raw user input, whether from the keyboard or
from the pointing device (mouse or digitizer). If the call to grread enables
tracking, the function returns a digitized coordinate that can be used for things
such as dragging.

NOTE There is no guarantee that applications calling grread will be upward
compatible. Because it depends on the current hardware configuration, applications
that call grread are not likely to work in the same way on all configurations.

Using AutoLISP to Manipulate AutoCAD Objects
Most AutoLISP

®
 functions that handle selection sets and objects identify a set

or an object by the entity name. For selection sets, which are valid only in
the current session, the volatility of names poses no problem, but it does for
objects because they are saved in the drawing database. An application that
must refer to the same objects in the same drawing (or drawings) at different
times can use the objects' handles.

AutoLISP uses symbol tables to maintain lists of graphic and non-graphic data
related to a drawing, such as the layers, linetypes, and block definitions. Each
symbol table entry has a related entity name and handle and can be

74 | Chapter 2 Using the AutoLISP Language

manipulated in a manner similar to the way other AutoCAD
®
 entities are

manipulated.

Selection Set Handling

AutoLISP provides a number of functions for handling selection sets. For a
complete list of selection set functions, see Selection Set Manipulation Func-
tions (page 145) in AutoLISP Function Synopsis, (page 119)

The ssget function provides the most general means of creating a selection
set. It can create a selection set in one of the following ways:
■ Explicitly specifying the objects to select, using the Last, Previous, Window,

Implied, WPolygon, Crossing, CPolygon, or Fence options

■ Specifying a single point

■ Selecting the entire database

■ Prompting the user to select objects

With any option, you can use filtering to specify a list of attributes and
conditions that the selected objects must match.

NOTE Selection set and entity names are volatile. That is, they apply only to the
current drawing session.

The first argument to ssget is a string that describes which selection option
to use. The next two arguments, pt1 and pt2, specify point values for the
relevant options (they should be left out if they don't apply). A point list,
pt-list, must be provided as an argument to the selection methods that allow
selection by polygons (that is, Fence, Crossing Polygon, and Window Polygon).
The last argument, filter-list, is optional. If filter-list is supplied, it specifies the
list of entity field values used in filtering. For example, you can obtain a
selection set that includes all objects of a given type, on a given layer, or of a
given color. Selection filters are described in more detail in Selection Set Filter
Lists (page 77).

See the ssget entry in the AutoLISP Reference for a list of the available selection
methods and the arguments used with each.

Using AutoLISP to Manipulate AutoCAD Objects | 75

The following table shows examples of calls to ssget:

SSGET Examples

EffectFunction call

Sets pt1, pt2, pt3, and pt4 to point
values

(setq pt1 '(0.0 0.0 0.0)

pt2 '(5.0 5.0 0.0)

pt3 '(4.0 1.0 0.0)

pt4 '(2.0 6.0 0.0))

Asks the user for a general object selec-
tion and places those items in a selec-
tion set

(setq ss1 (ssget))

Creates a selection set from the most
recently created selection set

(setq ss1 (ssget "P"))

Creates a selection set of the last object
added to the database that is visible
on the screen

(setq ss1 (ssget "L"))

Creates a selection set of an object
passing through point (5,5)

(setq ss1 (ssget pt2))

Creates a selection set of the objects
inside the window from (0,0) to (5,5)

(setq ss1 (ssget "W" pt1 pt2))

Creates a selection set of the objects
crossing the fence and defined by the
points (5,5), (4,1), and (2,6)

(setq ss1 (ssget "F"

(list pt2 pt3 pt4)))

Creates a selection set of the objects
inside the polygon defined by the
points (0,0), (5,5), and (4,1)

(setq ss1 (ssget "WP"

(list pt1 pt2 pt3)))

Creates a selection set of all objects in
the database

(setq ss1 (ssget "X"))

76 | Chapter 2 Using the AutoLISP Language

When an application has finished using a selection set, it is important to
release it from memory. You can do this by setting it to nil:

(setq ss1 nil)

Attempting to manage a large number of selection sets simultaneously is not
recommended. An AutoLISP application cannot have more than 128 selection
sets open at once. (The limit may be lower on your system.) When the limit
is reached, AutoCAD will not create more selection sets. Keep a minimum
number of sets open at a time, and set unneeded selection sets to nil as soon
as possible. If the maximum number of selection sets is reached, you must
call the gc function to free unused memory before another ssget will work.

Selection Set Filter Lists

An entity filter list is an association list that uses DXF group codes in the same
format as a list returned by entget. (See the DXF Reference for a list of group
codes.) The ssget function recognizes all group codes except entity names
(group -1), handles (group 5), and xdata codes (groups greater than 1000). If
an invalid group code is used in a filter-list, it is ignored by ssget. To search for
objects with xdata, use the -3 code as described in Filtering for Extended Data
(page 80).

When a filter-list is provided as the last argument to ssget, the function scans
the selected objects and creates a selection set containing the names of all
main entities matching the specified criteria. For example, you can obtain a
selection set that includes all objects of a given type, on a given layer, or of a
given color.

The filter-list specifies which property (or properties) of the entities are to be
checked and which values constitute a match.

The following examples demonstrate methods of using a filter-list with various
object selection options.

SSGET examples using filter lists

EffectFunction call

Prompts for general object selection but
adds only text objects to the selection
set.

(setq ss1 (ssget '((0 . "TEXT")))

)

Using AutoLISP to Manipulate AutoCAD Objects | 77

SSGET examples using filter lists

EffectFunction call

Creates a selection set containing all line
objects from the last selection set cre-
ated.

(setq ss1 (ssget "P"

'((0 . "LINE")))

)

Creates a selection set of all objects in-
side the window that are also on layer
FLOOR9.

(setq ss1 (ssget "W" pt1 pt2

'((8 . "FLOOR9")))

)

Creates a selection set of all objects in
the database that are Circle objects.

(setq ss1 (ssget "X"

'((0 . "CIRCLE")))

)

Creates a selection set of all blue Line
objects that are part of the Implied selec-

(ssget "I" '((0 . "LINE")

(62 . 5)))
tion set (those objects selected while
PICKFIRST is in effect).
Note that this filter picks up lines that
have been assigned color 5 (blue), but
not blue lines that have had their color
applied by the ByLayer or ByBlock prop-
erties.

If both the code and the desired value are known, the list may be quoted as
shown previously. If either is specified by a variable, the list must be
constructed using the list and cons function. For example, the following code
creates a selection set of all objects in the database that are on layer FLOOR3:

(setq lay_name "FLOOR3")
(setq ss1
(ssget "X"
(list (cons 8 lay_name))

)
)

If the filter-list specifies more than one property, an entity is included in the
selection set only if it matches all specified conditions, as in the following
example:

78 | Chapter 2 Using the AutoLISP Language

(ssget "X" (list (cons 0 "CIRCLE")(cons 8 lay_name)(cons
62 1)))

This code selects only Circle objects on layer FLOOR3 that are colored red.
This type of test performs a Boolean “AND” operation. Additional tests for
object properties are described in Logical Grouping of Filter Tests (page 82).

The ssget function filters a drawing by scanning the selected entities and
comparing the fields of each main entity against the specified filtering list. If
an entity's properties match all specified fields in the filtering list, it is included
in the returned selection set. Otherwise, the entity is not included in the
selection set. The ssget function returns nil if no entities from those selected
match the specified filtering criteria.

NOTE The meaning of certain group codes can differ from entity to entity, and
not all group codes are present in all entities. If a particular group code is specified
in a filter, entities not containing that group code are excluded from the selection
set that ssget returns.

When ssget filters a drawing, the selection set it retrieves might include entities
from both paper space and model space. However, when the selection set is
passed to an AutoCAD command, only entities from the space that is currently
in effect are used. (The space to which an entity belongs is specified by the
value of its 67 group. Refer to the Customization Guide for further information.)

Wild-Card Patterns in Filter Lists

Symbol names specified in filtering lists can include wild-card patterns. The
wild-card patterns recognized by ssget are the same as those recognized by
the wcmatch function, and are described in Wild-Card Matching (page 20),
and under wcmatch in the AutoLISP Reference.

When filtering for anonymous blocks, you must precede the * character with
a reverse single quotation mark (`), also known as an escape character, because
the * is read by ssget as a wild-card character. For example, you can retrieve
an anonymous block named *U2 with the following:

(ssget "X" '((2 . "`*U2")))

Using AutoLISP to Manipulate AutoCAD Objects | 79

Filtering for Extended Data

Using the ssgetfilter-list, you can select all entities containing extended data
for a particular application. (See Extended Data—xdata (page 106).) To do this,
use the -3 group code, as shown in the following example:

(ssget "X" '((0 . "CIRCLE") (-3 ("APPNAME"))))

This code will select all circles that include extended data for the "APPNAME"
application. If more than one application name is included in the -3 group's
list, an AND operation is implied and the entity must contain extended data
for all of the specified applications. So, the following statement would select
all circles with extended data for both the "APP1" and "APP2" applications:

(ssget "X" '((0 . "CIRCLE") (-3 ("APP1")("APP2"))))

Wild-card matching is permitted, so either of the following statements will
select all circles with extended data for either or both of these applications.

(ssget "X" '((0 . "CIRCLE") (-3 ("APP[12]"))))
(ssget "X" '((0 . "CIRCLE") (-3 ("APP1,APP2"))))

Relational Tests

Unless otherwise specified, an equivalency is implied for each item in the
filter-list. For numeric groups (integers, reals, points, and vectors), you can
specify other relations by including a special -4 group code that specifies a
relational operator. The value of a -4 group is a string indicating the test
operator to be applied to the next group in the filter-list.

The following selects all circles with a radius (group code 40) greater than or
equal to 2.0:

(ssget "X" '((0 . "CIRCLE") (-4 . ">=") (40 . 2.0)))

The possible relational operators are shown in the following table:

Relational operators for selection set filter lists

DescriptionOperator

Anything goes (always true)"*"

Equals"="

80 | Chapter 2 Using the AutoLISP Language

Relational operators for selection set filter lists

DescriptionOperator

Not equal to"!="

Not equal to"/="

Not equal to"<>"

Less than"<"

Less than or equal to"<="

Greater than">"

Greater than or equal to">="

Bitwise AND (integer groups only)"&"

Bitwise masked equals (integer groups only)"&="

The use of relational operators depends on the kind of group you are testing:
■ All relational operators except for the bitwise operators ("&" and "&=") are

valid for both real- and integer-valued groups.

■ The bitwise operators "&" and "&=" are valid only for integer-valued groups.
The bitwise AND, "&", is true if ((integer_group & filter) /= 0)—that is, if any
of the bits set in the mask are also set in the integer group. The bitwise
masked equals, "&=", is true if ((integer_group & filter) = filter)—that is, if all
bits set in the mask are also set in the integer_group (other bits might be set
in the integer_group but are not checked).

■ For point groups, the X, Y, and Z tests can be combined into a single string,
with each operator separated by commas (for example, ">,>,*"). If an
operator is omitted from the string (for example, "=,<>" leaves out the Z
test), then the “anything goes” operator, "*", is assumed.

■ Direction vectors (group type 210) can be compared only with the operators
"*", "=", and "!=" (or one of the equivalent “not equal” strings).

Using AutoLISP to Manipulate AutoCAD Objects | 81

■ You cannot use the relational operators with string groups; use wild-card
tests instead.

Logical Grouping of Filter Tests

You can also test groups by creating nested Boolean expressions that use the
logical grouping operators shown in the following table:

Grouping operators for selection set filter lists

Ending
operator

EnclosesStarting
operator

"AND>"One or more operands"<AND"

"OR>"One or more operands"<OR"

"XOR>"Two operands"<XOR"

"NOT>"One operand"<NOT"

The grouping operators are specified by -4 groups, like the relational operators.
They are paired and must be balanced correctly in the filter list or the ssget

call will fail. An example of grouping operators in a filter list follows:

(ssget "X"
'(

(-4 . "<OR")
(-4 . "<AND")
(0 . "CIRCLE")
(40 . 1.0)

(-4 . "AND>")
(-4 . "<AND")
(0 . "LINE")
(8 . "ABC")

(-4 . "AND>")
(-4 . "OR>")

)
)

82 | Chapter 2 Using the AutoLISP Language

This code selects all circles with a radius of 1.0 plus all lines on layer "ABC".
The grouping operators are not case-sensitive; for example, you can specify
"and>", "<or", instead of "AND>", "<OR".

Grouping operators are not allowed within the -3 group. Multiple application
names specified in a -3 group use an implied AND operator. If you want to
test for extended data using other grouping operators, specify separate -3
groups and group them as desired. To select all circles having extended data
for either application "APP1" or "APP2" but not both, enter the following:

(ssget "X"
'((0 . "CIRCLE")

(-4 . "<XOR")
(-3 ("APP1"))
(-3 ("APP2"))

(-4 . "XOR>")
)

)

You can simplify the coding of frequently used grouping operators by setting
them equal to a symbol. The previous example could be rewritten as follows
(notice that in this example you must explicitly quote each list):

(setq <xor '(-4 . "<XOR")
xor> '(-4 . "XOR>"))

(ssget "X"
(list
'(0 . "CIRCLE")
<xor
'(-3 ("APP1"))
'(-3 ("APP2"))

xor>
)

)

As you can see, this method may not be sensible for short pieces of code but
can be beneficial in larger applications.

Selection Set Manipulation

Once a selection set has been created, you can add entities to it or remove
entities from it with the functions ssadd and ssdel. You can use the ssadd

function to create a new selection set, as shown in the following example.
The following code fragment creates a selection set that includes the first and

Using AutoLISP to Manipulate AutoCAD Objects | 83

last entities in the current drawing (entnext and entlast are described later
in this chapter).

(setq fname (entnext)) ; Gets first entity in
the

; drawing.
(setq lname (entlast)) ; Gets last entity in the

; drawing.
(if (not fname)
(princ "\nNo entities in drawing. ")
(progn
(setq ourset (ssadd fname)) ; Creates a selection set

of the
; first entity.

(ssadd lname ourset) ; Adds the last entity to
the

; selection set.
)

)

The example runs correctly even if only one entity is in the database (in which
case both entnext and entlast set their arguments to the same entity name).
If ssadd is passed the name of an entity already in the selection set, it ignores
the request and does not report an error. The following function removes the
first entity from the selection set created in the previous example:

(ssdel fname ourset)

If there is more than one entity in the drawing (that is, if fname and lname are
not equal), then the selection set ourset contains only lname, the last entity
in the drawing.

The function sslength returns the number of entities in a selection set, and
ssmemb tests whether a particular entity is a member of a selection set. Finally,
the function ssname returns the name of a particular entity in a selection set,
using an index to the set (entities in a selection set are numbered from 0).

The following code shows calls to ssname:

(setq sset (ssget)) ; Prompts the user to create
a

; selection set.
(setq ent1 (ssname sset 0)) ; Gets the name of the first

; entity in sset.

84 | Chapter 2 Using the AutoLISP Language

(setq ent4 (ssname sset 3)) ; Gets the name of the fourth

; entity in sset.
(if (not ent4)
(princ "\nNeed to select at least four entities. ")

)
(setq ilast (sslength sset)) ; Finds index of the last
entity

; in sset.
; Gets the name of the
; last entity in sset.

(setq lastent (ssname sset (1- ilast)))

Regardless of how entities are added to a selection set, the set never contains
duplicate entities. If the same entity is added more than once, the later
additions are ignored. Therefore, sslength accurately returns the number of
distinct entities in the specified selection set.

Passing Selection Sets between AutoLISP and Ob-
jectARX Applications

When passing selection sets between AutoLISP and ObjectARX applications,
the following should be observed:

If a selection set is created in AutoLISP and stored in an AutoLISP variable,
then overwritten by a value returned from an ObjectARX application, the
original selection set is eligible for garbage collection (it is freed at the next
automatic or explicit garbage collection).

This is true even if the value returned from the ObjectARX application was
the original selection set. In the following example, if the adsfunc ObjectARX
function returns the same selection set it was fed as an argument, then this
selection set will be eligible for garbage collection even though it is still
assigned to the same variable.

(setq var1 (ssget))
(setq var1 (adsfunc var1))

If you want the original selection set to be protected from garbage collection,
then you must not assign the return value of the ObjectARX application to
the AutoLISP variable that already references the selection set. Changing the
previous example prevents the selection set referenced by var1 from being
eligible for garbage collection.

Using AutoLISP to Manipulate AutoCAD Objects | 85

(setq var1 (ssget))
(setq var2 (adsfunc var1))

Object Handling

AutoLISP provides functions for handling objects. The object-handling
functions are organized into two categories: functions that retrieve the entity
name of a particular object, and functions that retrieve or modify entity data.
See Object-Handling Functions (page 143) in AutoLISP Function Synopsis, (page
119) for a complete list of the object-handling functions.

Entity Name Functions

To operate on an object, an AutoLISP application must obtain its entity name
for use in subsequent calls to the entity data or selection set functions. Two
functions described in this section, entsel and nentsel, return not only the
entity's name but additional information for the application's use.

Both functions require the AutoCAD user to select an object interactively by
picking a point on the graphics screen. All the other entity name functions
can retrieve an entity even if it is not visible on the screen or if it is on a frozen
layer. The entsel function prompts the user to select an object by picking a
point on the graphics screen, and entsel returns both the entity name and
the value of the point selected. Some entity operations require knowledge of
the point by which the object was selected. Examples from the set of existing
AutoCAD commands include: BREAK, TRIM, and EXTEND. The nentsel

function is described in detail in Entity Context and Coordinate Transform
Data (page 88). These functions accept keywords if they are preceded by a call
to initget.

The entnext function retrieves entity names sequentially. If entnext is called
with no arguments, it returns the name of the first entity in the drawing
database. If its argument is the name of an entity in the current drawing,
entnext returns the name of the succeeding entity.

The following code fragment illustrates how ssadd can be used in conjunction
with entnext to create selection sets and add members to an existing set.

(setq e1 (entnext))
(if (not e1) ; Sets e1 to name of first
entity.

86 | Chapter 2 Using the AutoLISP Language

(princ "\nNo entities in drawing. ")
(progn
(setq ss (ssadd)) ; Sets ss to a null selection

set.
(ssadd e1 ss) ; Returns selection set ss

with
; e1 added.

(setq e2 (entnext e1)) ; Gets entity following e1.
(ssadd e2 ss) ; Adds e2 to selection set

ss.
)

)

The entlast function retrieves the name of the last entity in the database. The
last entity is the most recently created main entity, so entlast can be called
to obtain the name of an entity that has just been created with a call to
command.

You can set the entity name returned by entnext to the same variable name
passed to this function. This “walks” a single entity name variable through
the database, as shown in the following example:

(setq one_ent (entnext)) ; Gets name of first
entity.
(while one_ent
.
. ; Processes new entity.

.
(setq one_ent (entnext one_ent))

) ; Value of one_ent is
now nil.

Entity Handles and Their Uses

The handent function retrieves the name of an entity with a specific handle.
As with entity names, handles are unique within a drawing. However, an
entity's handle is constant throughout its life. AutoLISP applications that
manipulate a specific database can use handent to obtain the current name
of an entity they must use. You can use the LIST command to get the handle
of a selected object.

Using AutoLISP to Manipulate AutoCAD Objects | 87

The following code fragment uses handent to obtain and display an entity
name.

(if (not (setq e1 (handent "5a2")))
(princ "\nNo entity with that handle exists. ")
(princ e1)

)

In one particular editing session, this code fragment might display the
following:
<Entity name: 60004722>

In another editing session with the same drawing, the fragment might display
an entirely different number. But in both cases the code would be accessing
the same entity.

The handent function has an additional use. Entities can be deleted from the
database with entdel (see Entity Context and Coordinate Transform Data
(page 88)). The entities are not purged until the current drawing ends. This
means that handent can recover the names of deleted entities, which can
then be restored to the drawing by a second call to entdel.

NOTE Handles are provided for block definitions, including subentities.

Entities in drawings that are cross-referenced by way of XREF Attach are not
actually part of the current drawing; their handles are unchanged but cannot
be accessed by handent. However, when drawings are combined by means of
INSERT, INSERT *, XREF Bind (XBIND), or partial DXFIN, the handles of
entities in the incoming drawing are lost, and incoming entities are assigned
new handle values to ensure each handle in the current drawing remains
unique.

Entity Context and Coordinate Transform Data

The nentsel and nentselp functions are similar to entsel, except they return
two additional values to handle entities nested within block references.

Another difference between these functions is that when the user responds
to a nentsel call by selecting a complex entity or a complex entity is selected
by nentselp, these functions return the entity name of the selected subentity
and not the complex entity's header, as entsel does.

88 | Chapter 2 Using the AutoLISP Language

For example, when the user selects a 3D polyline, nentsel returns a vertex
subentity instead of the polyline header. To retrieve the polyline header, the
application must use entnext to step forward to the seqend subentity, and
then obtain the name of the header from the seqend subentity's -2 group. The
same applies when the user selects attributes in a nested block reference.

Selecting an attribute within a block reference returns the name of the attribute
and the pick point. When the selected object is a component of a block
reference other than an attribute, nentsel returns a list containing the following
elements:
■ The selected entity's name.

■ A list containing the coordinates of the point used to pick the object.

■ The Model to World Transformation Matrix. This is a list consisting of
four sublists, each of which contains a set of coordinates. This matrix can
be used to transform the entity definition data points from an internal
coordinate system called the model coordinate system (MCS), to the World
Coordinate System (WCS). The insertion point of the block that contains
the selected entity defines the origin of the MCS. The orientation of the
UCS when the block is created determines the direction of the MCS axes.

■ A list containing the entity name of the block that contains the selected
object. If the selected object is in a nested block (a block within a block),
the list also contains the entity names of all blocks in which the selected
object is nested, starting with the innermost block and continuing outward
until the name of the block that was inserted in the drawing is reported.

The list returned from selecting a block with nentsel is summarized as follows:

(<Entity Name: ename1> ; Name of entity.
(Px Py Pz) ; Pick point.
((X0 Y0 Z0) ; Model to World Transformation
Matrix.

(X1 Y1 Z1)
(X2 Y2 Z2)
(X3 Y3 Z3)

)
(<Entity name: ename2> ; Name of most deeply nested

block
. ; containing selected object.
.
.

<Entity name: enamen>) ; Name of outermost block
) ; containing selected object.

Using AutoLISP to Manipulate AutoCAD Objects | 89

In the following example, create a block to use with the nentsel function.
Command: line
Specify first point: 1,1
Specify next point or [Undo]: 3,1
Specify next point or [Undo]: 3,3
Specify next point or [Close/Undo]: 1,3
Specify next point or [Close/Undo]: c
Command: -block
Enter block name or [?]: square
Specify insertion base point: 2,2
Select objects: Select the four lines you just drew
Select objects: Enter

Then, insert the block in a UCS rotated 45 degrees about the Z axis:
Command: ucs
Current ucs name: *WORLD*
Enter
option[New/Move/orthoGraphic/Prev/Restore/Save/Del/Apply/?/World]
<World>: z
Specify rotation angle about Z axis <0>: 45
Command: -insert
Enter block name or [?]: square
Specify insertion point or
[Scale/X/Y/Z/Rotate/PScale/PX/PY/PZ/PRotate]:7,0
Enter X scale factor, specify opposite corner, or [Corner/XYZ]
<1>: Enter
Enter Y scale factor <use X scale factor>: Enter
Specify rotation angle <0>: Enter

Use nentsel to select the lower-left side of the square.

(setq ndata (nentsel))

This code sets ndata equal to a list similar to the following:

(<Entity Name: 400000a0> ; Entity name.
(6.46616 -1.0606 0.0) ; Pick point.
((0.707107 0.707107 0.0) ; Model to World
(-0.707107 0.707107 0.0) ; Transformation Matrix.
(0.0 -0.0 1.0)
(4.94975 4.94975 0.0)
)
(<Entity name:6000001c>) ; Name of block containing

90 | Chapter 2 Using the AutoLISP Language

; selected object.
)

Once you obtain the entity name and the Model to World Transformation
Matrix, you can transform the entity definition data points from the MCS to
the WCS. Use entget and assoc on the entity name to obtain the definition
points expressed in MCS coordinates. The Model to World Transformation
Matrix returned by nentsel is a 4×3 matrix—passed as an array of four
points—that uses the convention that a point is a row rather than a column.
The transformation is described by the following matrix multiplication:

So the equations for deriving the new coordinates are as follows:

The Mij, where 0 le; i, j le; 2, are the Model to World Transformation Matrix
coordinates; X, Y, Z is the entity definition data point expressed in MCS
coordinates, and X', Y', Z' is the resulting entity definition data point expressed
in WCS coordinates.

To transform a vector rather than a point, do not add the translation vector
(M30 M31 M32 from the fourth column of the transformation matrix).

NOTE This is the only AutoLISP function that uses a matrix of this type. The
nentselp function is preferred to nentsel because it returns a matrix similar to
those used by other AutoLISP and ObjectARX functions .

Using the entity name previously obtained with nentsel, the following example
illustrates how to obtain the MCS start point of a line (group code 10)
contained in a block definition:
Command: (setq edata (assoc 10 (entget (car ndata))))

Using AutoLISP to Manipulate AutoCAD Objects | 91

(10 -1.0 1.0 0.0)

The following statement stores the Model to World Transformation Matrix
sublist in the symbolmatrix.
Command: (setq matrix (caddr ndata))

((0.707107 0.707107 0.0) ; X transformation
(-0.707107 0.707107 0.0) ; Y transformation
(0.0 -0.0 1.0) ; Z transformation
(4.94975 4.94975 0.0) ; Displacement from WCS origin

)

The following command applies the transformation formula forX ' to change
the X coordinate of the start point of the line from an MCS coordinate to a
WCS coordinate:

(setq answer
(+ ; add:
(* (car (nth 0 matrix))(cadr edata)) ; M00 * X
(* (car (nth 1 matrix))(caddr edata)) ; M10 * Y
(* (car (nth 2 matrix))(cadddr edata)) ; M20 * Z
(car (nth 3 matrix)) ; M30

)
)

This statement returns 3.53553, the WCSX coordinate of the start point of
the selected line.

Entity Access Functions

The entity access functions are relatively slow. It is best to get the contents of
a particular entity (or symbol table entry) once and keep that information
stored in memory, rather than repeatedly ask AutoCAD for the same data. Be
sure the data remains valid. If the user has an opportunity to alter the entity
or symbol table entry, you should reissue the entity access function to ensure
the validity of the data.

Entity Data Functions

The functions described in this section operate on entity data and can be used
to modify the current drawing database.

92 | Chapter 2 Using the AutoLISP Language

Deleting an Entity

The entdel function deletes a specified entity. The entity is not purged from
the database until the end of the current drawing session, so if the application
calls entdel a second time during that session and specifies the same entity,
the entity is undeleted.

Attributes and old-style polyline vertices cannot be deleted independently of
their parent entities. The entdel function operates only on main entities. If
you need to delete an attribute or vertex, you can use command to invoke
the AutoCAD ATTEDIT or PEDIT commands.

Obtaining Entity Information

The entget function returns the definition data of a specified entity. The data
is returned as a list. Each item in the list is specified by a DXF group code. The
first item in the list contains the entity's current name.

In this example, the following (default) conditions apply to the current
drawing:
■ Layer is 0

■ Linetype is CONTINUOUS

■ Elevation is 0

The user has drawn a line with the following sequence of commands:
Command: line
From point: 1,2
To point: 6,6
To point: Enter

An AutoLISP application can retrieve and print the definition data for the line
by using the following AutoLISP function:

(defun C:PRINTDXF ()
(setq ent (entlast)) ; Set ent to last entity.
(setq entl (entget ent)) ; Set entl to association list
of

; last entity.
(setq ct 0) ; Set ct (a counter) to 0.
(textpage) ; Switch to the text screen.
(princ "\nentget of last entity:")

Using AutoLISP to Manipulate AutoCAD Objects | 93

(repeat (length entl) ; Repeat for number of members
in list:

(print (nth ct entl)) ; Print a newline, then each
list

; member.
(setq ct (1+ ct)) ; Increments the counter by one.

)
(princ) ; Exit quietly.

)

This would print the following:
entget of last entity:
(-1 . <Entity name: 1bbd1c8>)
(0 . "LINE")
(330 . <Entity name: 1bbd0c8>)
(5 . "69")
(100 . "AcDbEntity")
(67 . 0)
(410 . "Model")
(8 . "0")
(100 . "AcDbLine")
(10 1.0 2.0 0.0)
(11 6.0 6.0 0.0)
(210 0.0 0.0 1.0)

The -1 item at the start of the list contains the name of the entity. The entmod

function, which is described in this section, uses the name to identify the
entity to be modified. The individual dotted pairs that represent the values
can be extracted by using assoc with the cdr function.

Sublists for points are not represented as dotted pairs like the rest of the values
returned. The convention is that the cdr of the sublist is the group's value.
Because a point is a list of two or three reals, the entire group is a three- (or
four-) element list. The cdr of the group is the list representing the point, so
the convention that cdr always returns the value is preserved.

The codes for the components of the entity are those used by DXF. As with
DXF, the entity header items (color, linetype, thickness, the attributes-follow
flag, and the entity handle) are returned only if they have values other than
the default. Unlike DXF, optional entity definition fields are returned whether
or not they equal their defaults and whether or not associated X, Y, and Z
coordinates are returned as a single point variable, rather than as separate X
(10), Y (20), and Z (30) groups.

94 | Chapter 2 Using the AutoLISP Language

All points associated with an object are expressed in terms of that object's
object coordinate system (OCS). For point, line, 3D line, 3D face, 3D polyline,
3D mesh, and dimension objects, the OCS is equivalent to the WCS (the object
points are World points). For all other objects, the OCS can be derived from
the WCS and the object's extrusion direction (its 210 group). When working
with objects that are drawn using coordinate systems other than the WCS,
you may need to convert the points to the WCS or to the current UCS by
using the trans function.

When writing functions to process entity lists, make sure the function logic
is independent of the order of the sublists; use assoc to guarantee this. The
assoc function searches a list for a group of a specified type. The following
code returns the object type "LINE" (0) from the list entl.

(cdr (assoc 0 entl))

If the DXF group code specified is not present in the list (or if it is not a valid
DXF group), assoc returns nil.

WARNING Before performing an entget on vertex entities, you should read or
write the polyline entity's header. If the most recently processed polyline entity is
different from the one to which the vertex belongs, width information (the 40
and 41 groups) can be lost.

Modifying an Entity

The entmod function modifies an entity. It passes a list that has the same
format as a list returned by entget but with some of the entity group values
(presumably) modified by the application. This function complements entget.
The primary mechanism by which an AutoLISP application updates the
database is by retrieving an entity with entget, modifying its entity list, and
then passing the list back to the database with entmod.

The following code fragment retrieves the definition data of the first entity
in the drawing and changes its layer property to MYLAYER.

(setq en (entnext)) ; Sets en to first entity name
; in the drawing.

(setq ed (entget en)) ; Sets ed to the entity data
; for entity name en.

(setq ed
(subst (cons 8 "MYLAYER")
(assoc 8 ed) ; Changes the layer group in ed.

Using AutoLISP to Manipulate AutoCAD Objects | 95

ed ; to layer MYLAYER.
)

)
(entmod ed) ; Modifies entity en's layer in

; the drawing.

There are restrictions on the changes to the database that entmod can make;
entmodcannot change the following:

■ The entity's type or handle.

■ Internal fields. (Internal fields are the values that AutoCAD assigns to
certain group codes: -2, entity name reference; -1, entity name; 5, entity
handle.) Any attempt to change an internal field—for example, the main
entity name in a seqend subentity (group -2)—is ignored.

■ Viewport entities. An attempt to change a viewport entity causes an error.

Other restrictions apply when modifying dimensions and hatch patterns.

AutoCAD must recognize all objects (except layers) that the entity list refers
to. The name of any text style, linetype, shape, or block that appears in an
entity list must be defined in the current drawing before the entity list is passed
to entmod. There is one exception: entmod accepts new layer names.

If the entity list refers to a layer name that has not been defined in the current
drawing, entmod creates a new layer. The attributes of the new layer are the
standard default values used by the New option of the AutoCAD LAYER
command.

The entmod function can modify subentities such as polyline vertices and
block attributes.

If you use entmod to modify an entity in a block definition, this affects all
INSERT or XREF references to that block. Also, entities in block definitions
cannot be deleted by entdel.

Adding an Entity to a Drawing

An application can add an entity to the drawing database by calling the
entmake function. Like that of entmod, the argument to entmake is a list
whose format is similar to that returned by entget. The new entity that the
list describes is appended to the drawing database (it becomes the last entity
in the drawing). If the entity is a complex entity (an old-style polyline or a
block), it is not appended to the database until it is complete.

96 | Chapter 2 Using the AutoLISP Language

The following code fragment creates a circle on the MYLAYER layer:

(entmake '((0 . "CIRCLE") ; Object type
(8 . "MYLAYER") ; Layer
(10 5.0 7.0 0.0) ; Center point
(40 . 1.0) ; Radius

))

The following entmake restrictions apply to all entities:

■ The first or second member in the list must specify the entity type. The
type must be a valid DXF group code. If the first member does not specify
the type, it can specify only the name of the entity: group -1 (the name is
not saved in the database).

■ AutoCAD must recognize all objects that the entity list refers to. There is
one exception: entmake accepts new layer names.

■ Any internal fields passed to entmake are ignored.

■ entmake cannot create viewport entities.

For entity types introduced in AutoCAD Release 13 and later releases, you
must also specify subclass markers (DXF group code 100) when creating the
entity. All AutoCAD entities have the AcDbEntity subclass marker, and this
must be explicitly included in the entmake list. In addition, one or more
subclass marker entries are required to identify the specific sub-entity type.
These entries must follow group code 0 and must precede group codes that
are specifically used to define entity properties in the entmake list. For
example, the following is the minimum code required to entmake an MTEXT
entity:

(entmake '(
(0 . "MTEXT")
(100 . "AcDbEntity") ; Required for all post-R12
entities.
(8 . "ALAYER")
(100 . "AcDbMText") ; Identifies the entity as MTEXT.
(10 4.0 4.0 0.0)
(1 . "Some\\Ptext")
)
)

Using AutoLISP to Manipulate AutoCAD Objects | 97

The following table identifies the entities that do not require subentity marker
entries in the list passed to entmake:

DXF names of entities introduced
prior to AutoCAD Release 13

ARC3DFACE

ATTRIBATTDEF

DIMENSIONCIRCLE

LINEINSERT

POLYLINE (old-style)POINT

SHAPESEQEND

TEXTSOLID

VERTEXTRACE

VIEWPORT

The entmake function verifies that a valid layer name, linetype name, and
color are supplied. If a new layer name is introduced, entmake automatically
creates the new layer. The entmake function also checks for block names,
dimension style names, text style names, and shape names, if the entity type
requires them. The function fails if it cannot create valid entities. Objects
created on a frozen layer are not regenerated until the layer is thawed.

Creating Complex Entities

To create a complex entity (an old-style polyline or a block), you make multiple
calls to entmake, using a separate call for each subentity. When entmake first
receives an initial component for a complex entity, it creates a temporary file
in which to gather the definition data and extended data, if present. (See Ex-
tended Data—xdata (page 106) .) For each subsequent entmake call, the

98 | Chapter 2 Using the AutoLISP Language

function checks if the temporary file exists. If it does, the new subentity is
appended to the file. When the definition of the complex entity is complete
(that is, when entmake receives an appropriate seqend or endblk subentity),
the entity is checked for consistency; if valid, it is added to the drawing. The
file is deleted when the complex entity is complete or when its creation has
been canceled.

No portion of a complex entity is displayed on your drawing until its definition
is complete. The entity does not appear in the drawing database until the final
seqend or endblk subentity has been passed to entmake . The entlast function
cannot retrieve the most recently created subentity for a complex entity that
has not been completed. You can cancel the creation of a complex entity by
entering entmake with no arguments. This clears the temporary file and
returns nil.

As the previous paragraphs imply, entmake can construct only one complex
entity at a time. If a complex entity is being created and entmake receives
invalid data or an entity that is not an appropriate subentity, both the invalid
entity and the entire complex entity are rejected. You can explicitly cancel
the creation of a complex entity by calling entmake with no arguments.

The following example contains five entmake functions that create a single
complex entity, an old-style polyline. The polyline has a linetype of DASHED
and a color of BLUE. It has three vertices located at coordinates (1,1,0), (4,6,0),
and (3,2,0). All other optional definition data assume default values. (For this
example to work properly, the linetype DASHED must be loaded.)

(entmake '((0 . "POLYLINE") ; Object type
(62 . 5) ; Color
(6 . "dashed") ; Linetype
(66 . 1) ; Vertices follow

))
(entmake '((0 . "VERTEX") ; Object type

(10 1.0 1.0 0.0) ; Start point
))
(entmake '((0 . "VERTEX") ; Object type

(10 4.0 6.0 0.0) ; Second point
))
(entmake '((0 . "VERTEX") ; Object type

(10 3.0 2.0 0.0) ; Third point
))
(entmake '((0 . "SEQEND"))) ; Sequence end

Using AutoLISP to Manipulate AutoCAD Objects | 99

When defining dotted pairs, as in the above example, there must be a space
on both sides of the dot. Otherwise, you will get an invalid dotted pair error
message.

Block definitions begin with a block entity and end with an endblk subentity.
Newly created blocks are automatically entered into the symbol table where
they can be referenced. Block definitions cannot be nested, nor can they
reference themselves. A block definition can contain references to other block
definitions.

NOTE Before you use entmake to create a block, you should use tblsearch to
ensure that the name of the new block is unique. The entmake function does not
check for name conflicts in the block definitions table, so it can redefine existing
blocks. See Symbol Table and Dictionary Access (page 114) for information on
using tblsearch.

Block references can include an attributes-follow flag (group 66). If present
and equal to 1, a series of attribute (attrib) entities is expected to follow the
insert object. The attribute sequence is terminated by a seqend subentity.

Old-style polyline entities always include a vertices-follow flag (also group
66). The value of this flag must be 1, and the flag must be followed by a
sequence of vertex entities, terminated by a seqend subentity.

Applications can represent polygons with an arbitrarily large number of sides
in polyface meshes. However, the AutoCAD entity structure imposes a limit
on the number of vertices that a given face entity can specify. You can
represent more complex polygons by dividing them into triangular wedges.
AutoCAD represents triangular wedges as four-vertex faces where two adjacent
vertices have the same value. Their edges should be made invisible to prevent
visible artifacts of this subdivision from being drawn. The PFACE command
performs this subdivision automatically, but when applications generate
polyface meshes directly, the applications must do this themselves.

The number of vertices per face is the key parameter in this subdivision process.
The PFACEVMAX system variable provides an application with the number
of vertices per face entity. This value is read-only and is set to 4.

Complex entities can exist in either model space or paper space, but not both.
If you have changed the current space by invoking either MSPACE or PSPACE
(with command) while a complex entity is being constructed, a subsequent
call to entmake cancels the complex entity. This can also occur if the subentity
has a 67 group whose value does not match the 67 group of the entity header.

100 | Chapter 2 Using the AutoLISP Language

Working with Blocks

There is no direct method for an application to check whether a block listed
in the BLOCK table is actually referenced by an insert object in the drawing.
You can use the following code to scan the drawing for instances of a block
reference:

(ssget "x" '((2 . "BLOCKNAME")))

You must also scan each block definition for instances of nested blocks.

Anonymous Blocks

The block definitions (BLOCK) table in a drawing can contain anonymous
blocks (also known as unnamed blocks), that AutoCAD creates to support
hatch patterns and associative dimensioning. The entmake function can
create anonymous blocks other than *Dnnn (dimensions) and *Xnnn (hatch
patterns). Unreferenced anonymous blocks are purged from the BLOCK
definition table when a drawing is opened. Referenced anonymous blocks
(those that have been inserted) are not purged. You can use entmake to create
a block reference (insert object) to an anonymous block. (You cannot pass an
anonymous block to the INSERT command.) Also, you can use entmake to
redefine the block. You can modify the entities in a block (but not the block
object itself) with entmod.

The name (group 2) of an anonymous block created by AutoLISP or ObjectARX
has the form *Unnn, where nnn is a number generated by AutoCAD. Also, the
low-order bit of an anonymous block's block type flag (group 70) is set to 1.
When entmake creates a block whose name begins with * and whose
anonymous bit is set, AutoCAD treats this as an anonymous block and assigns
it a name. Any characters following the * in the name string passed to entmake

are ignored.

NOTE Anonymous block names do not remain constant. Although a referenced
anonymous block becomes permanent, the numeric portion of its name can
change between drawing sessions.

Using AutoLISP to Manipulate AutoCAD Objects | 101

Entity Data Functions and the Graphics Screen

Changes to the drawing made by the entity data functions are reflected on
the graphics screen, provided the entity being deleted, undeleted, modified,
or made is in an area and on a layer that is currently visible. There is one
exception: When entmod modifies a subentity, it does not update the image
of the entire (complex) entity. If, for example, an application modifies 100
vertices of an old-style polyline with 100 calls to entmod, the time required
to recalculate and redisplay the entire polyline is unacceptably slow. Instead,
an application can perform a series of subentity modifications, and then
redisplay the entire entity with a single call to the entupd function.

Consider the following: If the first entity in the current drawing is an old-style
polyline with several vertices, the following code modifies the second vertex
of the polyline and regenerates its screen image.

(setq e1 (entnext)) ; Sets e1 to the polyline's entity
name.
(setq v1 (entnext e1)) ; Sets v1 to its first vertex.
(setq v2 (entnext v1)) ; Sets v2 to its second vertex.
(setq v2d (entget v2)) ; Sets v2d to the vertex data.
(setq v2d
(subst
'(10 1.0 2.0 0.0)
(assoc 10 v2d) ; Changes the vertex's location

in v2d
v2d ; to point (1,2,0).

)
)
(entmod v2d) ; Moves the vertex in the drawing.
(entupd e1) ; Regenerates the polyline entity
e1.

The argument to entupd can specify either a main entity or a subentity. In
either case, entupd regenerates the entire entity. Although its primary use is
for complex entities, entupd can regenerate any entity in the current drawing.

NOTE To ensure that all instances of the block references are updated, you must
regenerate the drawing by invoking the AutoCAD REGEN command (with
command). The entupd function is not sufficient if the modified entity is in a
block definition.

102 | Chapter 2 Using the AutoLISP Language

Old-Style Polylines and Lightweight Polylines

A lightweight polyline (lwpolyline) is defined in the drawing database as a
single graphic entity. The lwpolyline differs from the old-style polyline, which
is defined as a group of subentities. Lwpolylines display faster and consume
less disk space and RAM.

As of Release 14 of AutoCAD, 3D polylines are always created as old-style
polyline entities, and 2D polylines are created as lwpolyline entities, unless
they are curved or fitted with the PEDIT command. When a drawing from an
earlier release is opened in Release 14 or a later release, all 2D polylines convert
to lwpolylines automatically, unless they have been curved or fitted or contain
xdata.

Processing Curve-Fit and Spline-Fit Polylines

When an AutoLISP application uses entnext to step through the vertices of
an old-style polyline, it might encounter vertices that were not created
explicitly. Auxiliary vertices are inserted automatically by the PEDIT command's
Fit and Spline options. You can safely ignore them, because changes to these
vertices will be discarded the next time the user applies PEDIT to fit or to
spline the polyline.

The old-style polyline entity's group 70 flags indicate whether the polyline
has been curve-fit (bit value 2) or spline-fit (bit value 4). If neither bit is set,
all the polyline's vertices are regular user-defined vertices. However, if the
curve-fit bit (2) is set, alternating vertices of the polyline have the bit value 1
set in their 70 group to indicate that they were inserted by the curve-fitting
process. If you use entmod to move the vertices of such a polyline with the
intent of refitting the curve by means of PEDIT, ignore these vertices.

Likewise, if the old-style polyline entity's spline-fit flag bit (bit 4) is set, an
assortment of vertices will be found—some with flag bit 1 (inserted by curve
fitting if system variable SPLINESEGS was negative), some with bit value 8
(inserted by spline fitting), and all others with bit value 16 (spline frame-control
point). Here again, if you use entmod to move the vertices and you intend to
refit the spline afterward, move only the control-point vertices.

Using AutoLISP to Manipulate AutoCAD Objects | 103

Non-Graphic Object Handling

AutoCAD uses two types of non-graphical objects: dictionary objects and
symbol table objects. Although there are similarities between these object
types, they are handled differently.

All object types are supported by the entget, entmod, entdel, and entmake

functions, although object types individually dictate their participation in
these functions and may refuse any or all processing. With respect to AutoCAD
built-in objects, the rules apply for symbol tables and for dictionary objects.
For more information, see Symbol Table Objects (page 104) and Dictionary
Objects (page 106).

All rules and restrictions that apply to graphic objects apply to non-graphic
objects as well. Non-graphic objects cannot be passed to the entupd function.

When using entmake, the object type determines where the object will reside.
For example, if a layer object is passed to entmake, it automatically goes to
the layer symbol table. If a graphic object is passed to entmake, it will reside
in the current space (model or paper).

Symbol Table Objects

The following rules apply to symbol tables:
■ Symbol table entries can be created through entmake with few restrictions,

other than being valid record representations, and name conflicts can only
occur in the VPORT table. *ACTIVE entries cannot be created.

■ Symbol table entries cannot be deleted with entdel.

■ The object states of symbol tables and symbol table entries may be accessed
with entget by passing the entity name. The tblobjname function can be
used to retrieve the entity name of a symbol table entry.

■ Symbol tables themselves cannot be created with entmake; however,
symbol table entries can be created with entmake.

■ Handle groups (5, 105) cannot be changed in entmod, nor specified in
entmake.

■ Symbol table entries that are not in the APPID table can have many of
their fields modified with entmod. To be passed to entmod, a symbol table
record list must include its entity name, which can be obtained from entget

104 | Chapter 2 Using the AutoLISP Language

but not from the tblsearch and tblnext functions. The 70 group of symbol
table entries is ignored in entmod and entmake operations.

Renaming symbol table entries to duplicate names is not acceptable, except
for the VPORT symbol table. The following entries cannot be modified or
renamed, except that most LAYER entries can be renamed and xdata can be
modified on all symbol table entries.

Symbol table entries that cannot be modified or renamed

Entry nameTable

*ACTIVEVPORT

CONTINUOUSLINETYPE

Entries cannot be modified, except for xdata, but
renaming is allowed

LAYER

The following entries cannot be renamed, but are otherwise modifiable:

Symbol table entries that cannot be renamed

Entry nameTable

STANDARDSTYLE

STANDARDDIMSTYLE

*MODEL_SPACEBLOCKS

*PAPER_SPACEBLOCKS

No entries can be renamedAPPID

Using AutoLISP to Manipulate AutoCAD Objects | 105

Dictionary Objects

The following rules apply to dictionary objects:
■ Dictionary objects can be examined with entget and their xdata modified

with entmod. Their entries cannot be altered with entmod. All access to
their entries are made through the dictsearch and dictnext functions.

■ Dictionary entry contents cannot be modified through entmod, although
xdata can be modified.

■ Dictionary entries that begin with ACAD* cannot be renamed.

Extended Data - xdata

Several AutoLISP functions are provided to handle extended data (xdata),
which is created by applications written with ObjectARX or AutoLISP. If an
entity contains xdata, it follows the entity's regular definition data.

You can retrieve an entity's extended data by calling entget. The entget

function retrieves an entity's regular definition data and the xdata for those
applications specified in the entget call.

When xdata is retrieved with entget, the beginning of extended data is
indicated by a -3 code. The -3 code is in a list that precedes the first 1001
group. The 1001 group contains the application name of the first application
retrieved, as shown in the table and as described in the topics in this section.

Group codes for regular and extended data

Type of dataFieldGroup code

Normal entityEntity name)(-1, -2
definition dataRegular definition data fields)

.
(0-239
)

.

.

Extended dataExtended data sentinel
Registered application name 1)

(-3
(1001

XDATA fields)(1000,
.1002-1071

106 | Chapter 2 Using the AutoLISP Language

Group codes for regular and extended data

Type of dataFieldGroup code

.(1001

.(1000,
Registered application name 2)1002-1071
XDATA fields)(1001
.
.
.
Registered application name 3)
.
.

Organization of Extended Data

Extended data consists of one or more 1001 groups, each of which begins with
a unique application name. The xdata groups returned by entget follow the
definition data in the order in which they are saved in the database.

Within each application's group, the contents, meaning, and organization of
the data are defined by the application. AutoCAD maintains the information
but does not use it. The table also shows that the group codes for xdata are in
the range 1000-1071. Many of these group codes are for familiar data types,
as follows:

String 1000. Strings in extended data can be up to 255 bytes long (with the
256th byte reserved for the null character).

Application Name 1001 (also a string value). Application names can be up
to 31 bytes long (the 32nd byte is reserved for the null character) and must
adhere to the rules for symbol table names (such as layer names). An
application name can contain letters, digits, and the special characters $ (dollar
sign), - (hyphen), and _ (underscore). It cannot contain spaces.

Layer Name 1003. Name of a layer associated with the xdata.

Database -Handle 1005. Handle of an entity in the drawing database.

3D Point 1010. Three real values, contained in a point.

Real 1040. A real value.

Using AutoLISP to Manipulate AutoCAD Objects | 107

Integer 1070. A 16-bit integer (signed or unsigned).

Long 1071. A 32-bit signed (long) integer. If the value that appears in a 1071
group is a short integer or real value, it is converted to a long integer; if it is
invalid (for example, a string), it is converted to a long zero (0L).

NOTE AutoLISP manages 1071 groups as real values. If you use entget to retrieve
an entity's definition list that contains a 1071 group, the value is returned as a
real, as shown in the following example:

(1071 . 12.0)

If you want to create a 1071 group in an entity with entmake or entmod, you
can use either a real or an integer value, as shown in the following example:

(entmake '((..... (1071 . 12))))

(entmake '((..... (1071 . 12.0))))

(entmake '((..... (1071 . 65537.0))))

(entmake '((..... (1071 . 65537))))

But AutoLISP still returns the group value as a real:

(entmake '((..... (1071 . 65537))))

The preceding statement returns the following:

(1071 . 65537.0)

ObjectARX always manages 1071 groups as long integers.

Several other extended data groups have special meanings in this context (if
the application chooses to use them):

Control String 1002. An xdata control string can be either "{" or "}". These
braces enable the application to organize its data by subdividing it into lists.
The left brace begins a list, and the right brace terminates the most recent list.
Lists can be nested.

NOTE

If a 1001 group appears within a list, it is treated as a string and does not begin
a new application group.

Binary Data 1004. Binary data that is organized into variable-length chunks,
which can be handled in ObjectARX with the ads_binary structure. The
maximum length of each chunk is 127 bytes.

NOTE AutoLISP cannot directly handle binary chunks, so the same precautions
that apply to long (1071) groups apply to binary groups as well.

World Space Position 1011. Unlike a simple 3D point, the WCS coordinates
are moved, scaled, rotated, and mirrored along with the parent entity to which

108 | Chapter 2 Using the AutoLISP Language

the extended data belongs. The WCS position is also stretched when the
STRETCH command is applied to the parent entity and when this point lies
within the select window.

World Space -Displacement 1012. A 3D point that is scaled, rotated, or
mirrored along with the parent, but not stretched or moved.

World -Direction 1013. A 3D point that is rotated or mirrored along with the
parent, but not scaled, stretched, or moved. The WCS direction is a normalized
displacement that always has a unit length.

Distance 1041. A real value that is scaled along with the parent entity.

Scale Factor 1042. Also a real value that is scaled along with the parent.

The DXF group codes for xdata are also described in the DXF Reference.

Registration of an Application

To be recognized by AutoCAD, an application must register the name or names
that it uses. Application names are saved with the extended data of each entity
that uses them, and also in the APPID table. Registration is done with the
regapp function, which specifies a string to use as an application name. If it
successfully adds the name to APPID, it returns the name of the application;
otherwise it returns nil. A result of nil indicates that the name is already
present in the symbol table. This is not an actual error condition but an
expected return value, because the application name needs to be registered
only once per drawing.

To register itself, an application should first check that its name is not already
in the APPID table. If the name is not there, the application must register it.
Otherwise, it can simply go ahead and use the data, as described later in this
section.

The following fragment shows the typical use of regapp. (The tblsearch

function is described in Symbol Table and Dictionary Access (page 114).)

(setq appname "MYAPP_2356") ; Unique application
name.
(if (tblsearch "appid" appname) ; Checks if already
registered.
(princ (strcat
"\n" appname " already registered. "))

(if (= (regapp appname) nil) ; Some other problem.
(princ (strcat

Using AutoLISP to Manipulate AutoCAD Objects | 109

"\nCan't register XDATA for " appname ". "))
)

)

The regapp function provides a measure of security, but it cannot guarantee
that two separate applications have not chosen the same name. One way of
ensuring this is to adopt a naming scheme that uses the company or product
name and a unique number (like your telephone number or the current date
and time).

Retrieval of Extended Data

An application can call entget to obtain the xdata that it has registered. The
entget function can return both the definition data and the xdata for the
applications it requests. It requires an additional argument, application, that
specifies the application names. The names passed to entget must correspond
to applications registered by a previous call to regapp; they can also contain
wild-card characters.

By default, associative hatch patterns contain extended data. The following
code shows the association list of this xdata.
Command: (entget (car (entsel)) '("ACAD"))
Select object: Select an associative hatch

Entering the preceding code at the command line returns a list that looks
something like this:
((-1 . <Entity name: 600000c0>) (0 . "INSERT") (8 . "0") (2
. "*X0")
(10 0.0 0.0 0.0) (41 . 1.0) (42 . 1.0) (50 . 0.0) (43 . 1.0)
(70 . 0) (71 . 0)
(44 . 0.0) (45 . 0.0) (210 0.0 0.0 1.0) (-3 ("ACAD" (1000 .
"HATCH")
(1002 . "{") (1070 . 16) (1000 . "LINE") (1040 . 1.0) (1040
. 0.0)
(1002 . "}"))))

This fragment shows a typical sequence for retrieving xdata for two specified
applications. Note that the application argument passes application names in
list form:

(setq working_elist
(entget ent_name
'("MY_APP_1" "SOME_OTHER") ; Only xdata from "MY_APP_1"

110 | Chapter 2 Using the AutoLISP Language

) ; and "SOME_OTHER" is
retrieved.
)

(if working_elist
(progn
... ; Updates working entity

groups.
(entmod working_elist) ; Only xdata from registered

) ; applications still in
the
) ; working_elist list are
modified.

As the sample code shows, you can modify xdata retrieved by entget by using
a subsequent call to entmod, just as you can use entmod to modify normal
definition data. You can also create xdata by defining it in the entity list passed
to entmake.

Returning the extended data of only those applications specifically requested
protects one application from corrupting another application's data. It also
controls the amount of memory that an application needs to use and simplifies
the xdata processing that an application needs to perform.

NOTE Because the strings passed by application can include wild-card characters,
an application name of "*" will cause entget to return all extended data attached
to an entity.

Attachment of Extended Data to an Entity

You can use xdata to store any type of information you want. For example,
draw an entity (such as a line or a circle), then enter the following code to
attach xdata to the entity:

(setq lastent (entget (entlast))) ; Gets the association
; list of definition data

; for the last entity.
(regapp "NEWDATA") ; Registers the

; application name.

Using AutoLISP to Manipulate AutoCAD Objects | 111

(setq exdata ; Sets the variable
'((-3 ("NEWDATA" ; exdata equal to the
(1000 . "This is a new thing!") ; new extended data—
))) ; in this case, a text

) ; string.
(setq newent
(append lastent exdata)) ; Appends new data list to

; entity's list.
(entmod newent) ; Modifies the entity with the
new

; definition data.

To verify that your new xdata has been attached to the entity, enter the
following code and select the object:

(entget (car (entsel)) '("NEWDATA"))

This example shows the basic method for attaching extended data to an entity.

Management of Extended Data Memory Use

Extended data is currently limited to 16K per entity. Because the xdata of an
entity can be created and maintained by multiple applications, problems can
result when the size of the xdata approaches its limit. AutoLISP provides two
functions, xdsize and xdroom, to assist in managing the memory that xdata
occupies. When xdsize is passed a list of xdata, it returns the amount of
memory (in bytes) that the data will occupy. When xdroom is passed the
name of an entity, it returns the remaining number of free bytes that can still
be appended to the entity.

The xdsize function reads an extended data list, which can be large. This
function can be slow, so it is not recommended that you call it frequently. A
better approach is to use it (in conjunction with xdroom) in an error handler.
If a call to entmod fails, you can use xdsize and xdroom to find out whether
the call failed because the entity didn't have enough room for the xdata.

Handles in Extended Data

Extended data can contain handles (group 1005) to save relational structures
within a drawing. One entity can reference another by saving the other's
handle in its xdata. The handle can be retrieved later from xdata and then

112 | Chapter 2 Using the AutoLISP Language

passed to handent to obtain the other entity. Because more than one entity
can reference another, xdata handles are not necessarily unique. The AUDIT
command does require that handles in extended data either be NULL or valid
entity handles (within the current drawing). The best way to ensure that xdata
entity handles are valid is to obtain a referenced entity's handle directly from
its definition data by means of entget. The handle value is in group 5.

When you reference entities in other drawings (for example, entities that are
attached with XREF), you can avoid protests from AUDIT by using extended
entity strings (group 1000) rather than handles (group 1005). The handles of
cross-referenced entities are either not valid in the current drawing, or they
conflict with valid handles. However, if an XREF Attach changes to an XREF
Bind or is combined with the current drawing in some other way, it is up to
the application to revise the entity references accordingly.

When drawings are combined by means of INSERT, INSERT*, XREF Bind
(XBIND), or partial DXFIN, handles are translated so they become valid in the
current drawing. (If the incoming drawing did not employ handles, new ones
are assigned.) Extended entity handles that refer to incoming entities are also
translated when these commands are invoked.

When an entity is placed in a block definition (with the BLOCK command),
the entity within the block is assigned new handles. (If the original entity is
restored by means of OOPS, it retains its original handles.) The value of any
xdata handles remains unchanged. When a block is exploded (with the
EXPLODE command), xdata handles are translated in a manner similar to the
way they are translated when drawings are combined. If the xdata handle
refers to an entity that is not within the block, it is unchanged. However, if
the xdata handle refers to an entity that is within the block, the data handle
is assigned the value of the new (exploded) entity's handle.

Xrecord Objects

Xrecord objects are used to store and manage arbitrary data. They are composed
of DXF group codes with normal object groups (that is, non-xdata group
codes), ranging from 1 through 369 for supported ranges. These objects are
similar in concept to xdata but is not limited by size or order.

The following examples provide methods for creating and listing xrecord data.

(defun C:MAKEXRECORD(/ xrec xname)
; create the xrecord's data list.
(setq xrec '((0 . "XRECORD")(100 . "AcDbXrecord")
(1 . "This is a test xrecord list")

Using AutoLISP to Manipulate AutoCAD Objects | 113

(10 1.0 2.0 0.0) (40 . 3.14159) (50 . 3.14159)
(62 . 1) (70 . 180))

)
; use entmakex to create the xrecord with no owner.
(setq xname (entmakex xrec))
; add the new xrecord to the named object dictionary.
(dictadd (namedobjdict) "XRECLIST" xname)
(princ)

)

(defun C:LISTXRECORD (/ xlist)
; find the xrecord in the named object dictionary.
(setq xlist (dictsearch (namedobjdict) "XRECLIST"))
; print out the xrecord's data list.
(princ xlist)
(princ)

)

Symbol Table and Dictionary Access

AutoLISP provides functions for accessing symbol table and dictionary entries.
Examples of the tblnext and tblsearch functions are provided in the following
sections. For a complete list of the symbol table and dictionary access functions,
see Symbol Table and Dictionary-Handling Functions (page 146) in AutoLISP
Function Synopsis, (page 119) Refer to the AutoLISP Reference for more detailed
information on the functions listed in the Synopsis.

For additional information on non-graphic objects see, Non-Graphic Object
Handling (page 104).

Symbol Tables

Symbol table entries can also be manipulated by the following functions:
■ entdel

■ entget

■ entmake

■ entmod

■ handent

114 | Chapter 2 Using the AutoLISP Language

The tblnext function sequentially scans symbol table entries, and the tblsearch

function retrieves specific entries. Table names are specified by strings. The
valid names are LAYER, LTYPE, VIEW, STYLE, BLOCK, UCS, VPORT, DIMSTYLE, and
APPID. Both functions return lists with DXF group codes that are similar to
the entity data returned by entget.

The first call to tblnext returns the first entry in the specified table. Subsequent
calls that specify the same table return successive entries, unless the second
argument to tblnext (rewind) is nonzero, in which case tblnext returns the
first entry again.

In the following example, the function GETBLOCK retrieves the symbol table
entry for the first block (if any) in the current drawing, and then displays it
in a list format.

(defun C:GETBLOCK (/ blk ct)
(setq blk (tblnext "BLOCK" 1)) ; Gets the first BLOCK

entry.
(setq ct 0) ; Sets ct (a counter) to
0.
(textpage) ; Switches to the text

screen.
(princ "\nResults from GETBLOCK: ")
(repeat (length blk) ; Repeats for the number
of

; members in the list.
(print (nth ct blk)) ; Prints a new line, then

; each list member.
(setq ct (1+ ct)) ; Increments the counter

by 1.
)
(princ) ; Exits quietly.

)

Entries retrieved from the BLOCK table contain a -2 group that contains the
name of the first entity in the block definition. If the block is empty, this is
the name of the block's ENDBLK entity, which is never seen on occupied
blocks. In a drawing with a single block named BOX, a call to GETBLOCK

displays the following. (The name value varies from session to session.)
Results from GETBLOCK:
(0 . "BLOCK")
(2 . "BOX")
(70 . 0)

Using AutoLISP to Manipulate AutoCAD Objects | 115

(10 9.0 2.0 0.0)
(-2 . <Entity name: 40000126>)

As with tblnext, the first argument to tblsearch is a string that names a table,
but the second argument is a string that names a particular symbol in the
table. If the symbol is found, tblsearch returns its data. This function has a
third argument, setnext, that you can use to coordinate operations with tblnext.
If setnext is nil, the tblsearch call has no effect on tblnext, but if setnext is
non-nil, the next call to tblnext returns the table entry following the entry
found by tblsearch.

The setnext option is useful when you are handling the VPORT symbol table,
because all viewports in a particular viewport configuration have the same
name (such as *ACTIVE).

If the VPORT symbol table is accessed when TILEMODE is turned off, any
changes have no visible effect until TILEMODE is turned on. Do not confuse
VPORTS,which is described by the VPORT symbol table with paper space viewport
entities.

The following processes all viewports in the 4VIEW configuration:

(setq v (tblsearch "VPORT" "4VIEW" T)) ; Finds first VPORT
entry.
(while (and v (= (cdr (assoc 2 v)) "4VIEW"))
.
. ; ... Processes

entry ...
.
(setq v (tblnext "VPORT")) ; Gets next VPORT

entry.
)

Dictionary Entries

A dictionary is a container object, similar to the symbol tables in functions.
Dictionary entries can be queried with the dictsearch and dictnext functions.
Each dictionary entry consists of a text name key plus a hard ownership handle
reference to the entry object. Dictionary entries may be removed by directly
passing entry object names to the entdel function. The text name key uses
the same syntax and valid characters as symbol table names.

116 | Chapter 2 Using the AutoLISP Language

Accessing AutoCAD Groups

The following is an example of one method for accessing the entities contained
in a group. This example assumes a group named G1 exists in the current
drawing.

(setq objdict (namedobjdict))
(setq grpdict (dictsearch objdict "ACAD_GROUP"))

This sets the grpdict variable to the entity definition list of the ACAD_GROUP
dictionary and returns the following:
((-1 . <Entity name: 8dc10468>) (0 . "DICTIONARY") (5 . "D")
(102 . "{ACAD_REACTORS") (330 . <Entity name: 8dc10460>)
(102 . "}") (100 . "AcDbDictionary") (3 . "G1")
(350 . <Entity name: 8dc41240>))

The following code sets the variable group1 to the entity definition list of the
G1 group:

(setq group1 (dictsearch (cdar grpdict) "G1"))

It returns the following:
((-1 . <Entity name: 8dc10518>) (0 . "GROUP") (5 . "23")
(102 . "{ACAD_REACTORS") (330 . <Entity name: 8dc10468>)
(102 . "}") (100 . "AcDbGroup") (300 . "line and circle")
(70 . 0) (71 . 1)
(340 . <Entity name: 8dc10510>)(340 . <Entity name: 8dc10550>)
)

The 340 group codes are the entities that belong to the group.

Using AutoLISP to Manipulate AutoCAD Objects | 117

118

Appendixes

AutoLISP Function Synopsis
To find a function without knowing its name, use the listings in this appendix.
The AutoLISP

®
 functions in this synopsis are organized into functional groups,

and listed alphabetically within each function group. Each function is briefly
described by its signature and a single sentence indicating the function's purpose.

Category Summary

Functions in this synopsis are organized into the following categories:
■ Basic: Application-handling, arithmetic, equality and conditional,

error-handling, function-handling, list manipulation, string-handling, and
symbol-handling functions

■ Utility: Conversion, device access, display control, file-handling, geometric,
query and command, and user input functions

■ Selection Set, Object, and Symbol Table: Extended data-handling,
object-handling, selection set manipulation, and symbol table-handling
functions

■ Memory Management

■ VLX Namespace: Function exposure, document namespace variable access,
and error-handling functions

■ Namespace Communication: Blackboard-addressing and multi-document
loading functions

■ Property List (PIist) Handling

3

119

Functions are grouped by data type and by the action they perform. Detailed
information on each function is provided in the alphabetical listings in the
AutoLISP Reference.

Note that any functions not described here or in other parts of the
documentation are not officially supported and are subject to change in future
releases.

Basic Functions

Application-Handling Functions (page 121)

Arithmetic Functions (page 122)

Equality and Conditional Functions (page 125)

Error-Handling Functions (page 126)

Function-Handling Functions (page 127)

List Manipulation Functions (page 128)

String-Handling Functions (page 131)

Symbol-Handling Functions (page 133)

Utility Functions

Conversion Functions (page 134)

Device Access Functions (page 135)

Display Control Functions (page 136)

File-Handling Functions (page 137)

Geometric Functions (page 139)

Query and Command Functions (page 139)

User Input Functions (page 141)

Selection Set, Object, and Symbol Table Functions

Extended Data-Handling Functions (page 143)

Object-Handling Functions (page 143)

Selection Set Manipulation Functions (page 145)

Symbol Table and Dictionary-Handling Functions (page 146)

120 | Chapter 3 Appendixes

Memory Management Functions (page 147)

Visual LISP AutoLISP Extensions

ActiveX Collection Manipulation Functions

ActiveX Data Conversion Functions

ActiveX Method Invocation Functions

ActiveX Object-Handling Functions

ActiveX Property-Handling Functions

Curve Measurement Functions

Dictionary Functions

Functions for Handling Drawing Objects

Reactor Functions

VLX Namespace Functions (page 147)

Namespace Communication Functions (page 148)

Property List (Plist) Functions (page 149)

Basic Functions

The basic functions consist of the arithmetic, string-handling, equality and
conditional, list manipulation, symbol-handling, function-handling,
error-handling, and application-handling functions.

Application-Handling Functions

The following table provides summary descriptions of the AutoLISP
application-handling functions.

Application-handling functions

DescriptionFunction

Returns a list of the currently loaded ObjectARX
applications

(arx)

AutoLISP Function Synopsis | 121

Application-handling functions

DescriptionFunction

Loads an ObjectARX application(arxload application [onfailure])

Unloads an ObjectARX application(arxunload application [onfailure])

Predefines command names to load an associated
ObjectARX file

(autoarxload filename cmdlist)

Predefines command names to load an associated
AutoLISP file

(autoload filename cmdlist)

Forces the display of the next command's dialog
box

(initdia [dialogflag])

Evaluates the AutoLISP expressions in a file(load filename [onfailure])

Starts an application(startapp appcmd file)

Loads a file into all open AutoCAD documents(vl-load-all filename)

Arithmetic Functions

The following table provides summary descriptions of the AutoLISP arithmetic
functions.

Arithmetic functions

DescriptionFunction

Returns the sum of all numbers(+ (add) [number number] ...)

Subtracts the second and following numbers from
the first and returns the difference

(- (subtract) [number number] ...)

122 | Chapter 3 Appendixes

Arithmetic functions

DescriptionFunction

Returns the product of all numbers(* (multiply) [number number] ...)

Divides the first number by the product of the
remaining numbers and returns the quotient

(/ (divide) [number number] ...)

Returns the bitwise NOT (1's complement) of the
argument

(~ (bitwise NOT) int)

Returns the argument increased by 1 (incremen-
ted)

(1+ (increment) number)

Returns the argument reduced by 1 (decremen-
ted)

(1- (decrement) number)

Returns the absolute value of the argument(abs number)

Returns the arctangent of a number in radians(atan num1 [num2])

Returns the cosine of an angle expressed in radi-
ans

(cos ang)

Returns the constant e (a real) raised to a spe-
cified power (the natural antilog)

(exp number)

Returns a number raised to a specified power(expt base power)

Returns the conversion of a real into the nearest
smaller integer

(fix number)

Returns the conversion of a number into a real(float number)

Returns the greatest common denominator of
two integers

(gcd int1 int2)

AutoLISP Function Synopsis | 123

Arithmetic functions

DescriptionFunction

Returns the natural log of a number as a real(log number)

Returns the result of the logical bitwise AND of
a list of integers

(logand [int int ...])

Returns the result of the logical bitwise inclusive
OR of a list of integers

(logior [int int ...])

Returns the logical bitwise shift of an integer by
a specified number of bits

(lsh [int numbits])

Returns the largest of the numbers given(max [number number ...])

Returns the smallest of the numbers given(min [number number ...])

Verifies that a number is negative(minusp number)

Divides the first number by the second, and re-
turns the remainder

(rem [num1 num2 ...])

Returns the sine of an angle as a real expressed
in radians

(sin ang)

Returns the square root of a number as a real(sqrt number)

Verifies that a number evaluates to zero(zerop number)

124 | Chapter 3 Appendixes

Equality and Conditional Functions

The following table provides summary descriptions of the AutoLISP equality
and conditional functions.

Equality and conditional functions

DescriptionFunction

Returns T if all arguments are numerically equal,
and returns nil otherwise

(= (equal to) numstr [numstr] ...)

Returns T if the arguments are not numerically
equal, and nil if the arguments are numerically
equal

(/= (not equal to) numstr [numstr] ...)

Returns T if each argument is numerically less
than the argument to its right, and returns nil
otherwise

(< (less than) numstr [numstr] ...)

Returns T if each argument is numerically less
than or equal to the argument to its right, and
returns nil otherwise

(<= (less than or equal to) numstr
[numstr] ...)

Returns T if each argument is numerically
greater than the argument to its right, and re-
turns nil otherwise

(> (greater than) numstr [numstr] ...)

Returns T if each argument is numerically
greater than or equal to the argument to its
right, and returns nil otherwise

(>= (greater than or equal to) numstr
[numstr] ...)

Returns the logical AND of a list of expressions(and [expr ...])

Serves as a general bitwise Boolean function(Boole func int1 [int2 ...])

Serves as the primary conditional function for
AutoLISP

(cond [(test result ...) ...])

AutoLISP Function Synopsis | 125

Equality and conditional functions

DescriptionFunction

Determines whether two expressions are
identical

(eq expr1 expr2)

Determines whether two expressions are equal(equal expr1 expr2 [fuzz])

Conditionally evaluates expressions(if testexpr thenexpr [elseexpr])

Returns the logical OR of a list of expressions(or [expr ...])

Evaluates each expression a specified number
of times, and returns the value of the last expres-
sion

(repeat int [expr ...])

Evaluates a test expression, and if it is not nil,
evaluates other expressions; repeats this process
until the test expression evaluates to nil

(while testexpr [expr ...])

Error-Handling Functions

The following table provides summary descriptions of the AutoLISP
error-handling functions.

Error-handling functions

DescriptionFunction

Displays an alert dialog box with the error or
warning message passed as a string

(alert string)

A user-definable error-handling function(*error* string)

Forces the current application to quit(exit)

Forces the current application to quit(quit)

126 | Chapter 3 Appendixes

Error-handling functions

DescriptionFunction

Passes a list of arguments to a specified function
and traps any exceptions

(vl-catch-all-apply ' function list)

Returns a string from an error object(vl-catch-all-error-message
error-obj)

Determines whether an argument is an error ob-
ject returned from vl-catch-all-apply

(vl-catch-all-error-p arg)

Function-Handling Functions

The following table provides summary descriptions of the AutoLISP
function-handling functions.

Function-handling functions

DescriptionFunction

Passes a list of arguments to a specified function(apply function lst)

Defines a function(defun sym ([arguments]
[/ variables...]) expr ...)

Defines a function as a list (intended for backward-
compatibility only)

(defun-q sym ([arguments]
[/ variables...]) expr ...)

Displays the list structure of a function defined with
defun-q

(defun-q-list-ref ' function)

Defines a function as a list (intended for backward-
compatibility only)

(defun-q-list-set 'sym list)

Returns the result of evaluating an AutoLISP expression(eval expr)

AutoLISP Function Synopsis | 127

Function-handling functions

DescriptionFunction

Defines an anonymous function(lambda arguments expr ...)

Evaluates each expression sequentially, and returns the
value of the last expression

(progn [expr] ...)

Aids in AutoLISP debugging(trace function ...)

Clears the trace flag for the specified functions(untrace function ...)

List Manipulation Functions

The following table provides summary descriptions of the AutoLISP list
manipulation functions.

List manipulation functions

DescriptionFunction

Sorts a list of strings by alphabetical order(acad_strlsort lst)

Takes any number of lists and runs them
together as one list

(append lst ...)

Searches an association list for an element
and returns that association list entry

(assoc item alist)

Returns the first element of a list(car lst)

Returns the specified list, except for the
first element of the list

(cdr lst)

The basic list constructor(cons new-first-element lst)

128 | Chapter 3 Appendixes

List manipulation functions

DescriptionFunction

Evaluates expressions for all members of
a list

(foreach name lst [expr ...])

Returns the last element in a list(last lst)

Returns an integer indicating the number
of elements in a list

(length lst)

Takes any number of expressions and
combines them into one list

(list [expr ...])

Verifies that an item is a list(listp item)

Returns a list of the result of executing a
function with the individual elements of

(mapcar function list1 ... listn)

a list or lists supplied as arguments to the
function

Searches a list for an occurrence of an
expression and returns the remainder of

(member expr lst)

the list, starting with the first occurrence
of the expression

Returns the nth element of a list(nth n lst)

Returns a list with its elements reversed(reverse lst)

Searches a list for an old item and returns
a copy of the list with a new item substi-

(subst newitem olditem lst)

tuted in place of every occurrence of the
old item

Determines whether or not a list is nil(vl-consp list-variable)

AutoLISP Function Synopsis | 129

List manipulation functions

DescriptionFunction

Checks whether the predicate is true for
every element combination

(vl-every predicate-function list [more-lists]...)

Constructs and returns a list(vl-list* object [more-objects]...)

Combines the characters associated with
a list of integers into a string

(vl-list->string char-codes-list)

Calculates list length of a true list(vl-list-length list-or-cons-object)

Determines whether the predicate is true
for one of the list members

(vl-member-if predicate-function list)

Determines whether the predicate is nil
for one of the list members

(vl-member-if-not predicate-function list)

Returns the index of the specified list item(vl-position symbol list)

Removes elements from a list(vl-remove element-to-remove list)

Returns all elements of the supplied list
that fail the test function

(vl-remove-if predicate-function list)

Returns all elements of the supplied list
that pass the test function

(vl-remove-if-not predicate-function list)

Checks whether the predicate is not nil
for one element combination

(vl-some predicate-function list [more-lists]...)

Sorts the elements in a list according to
a given compare function

(vl-sort list less?-function)

130 | Chapter 3 Appendixes

List manipulation functions

DescriptionFunction

Sorts the elements in a list according to
a given compare function, and returns
the element index numbers

(vl-sort-i list less?-function)

Converts a string into a list of character
codes

(vl-string->list string)

String-Handling Functions

The following table provides summary descriptions of the AutoLISP
string-handling functions.

String-handling functions

DescriptionFunction

Returns the first list or atom obtained from
a string

(read [string])

Returns a string where all alphabetic charac-
ters have been converted to uppercase or
lowercase

(strcase string [which])

Returns a string that is the concatenation
of multiple strings

(strcat [string1 [string2] ...)

Returns an integer that is the number of
characters in a string

(strlen [string] ...)

Returns a substring of a string(substr string start [length])

Returns the string representation of any LISP
object as if it were output by the prin1
function

(vl-prin1-to-string object)

AutoLISP Function Synopsis | 131

String-handling functions

DescriptionFunction

Returns the string representation of any LISP
object as if it were output by the princ
function

(vl-princ-to-string object)

Converts a string into a list of character
codes

(vl-string->list string)

Returns the ASCII representation of the
character at a specified position in a string

(vl-string-elt string position)

Removes the specified characters from the
beginning of a string

(vl-string-left-trim character-set string)

Returns the length of the longest common
prefix for two strings, starting at specified
positions

(vl-string-mismatch str1 str2
[pos1 pos2 ignore-case-p])

Looks for a character with the specified AS-
CII code in a string

(vl-string-position char-code str
[start-pos [from-end-p]])

Removes the specified characters from the
end of a string

(vl-string-right-trim
character-set string)

Searches for the specified pattern in a string(vl-string-search pattern string [start-pos])

Substitutes one string for another, within a
string

(vl-string-subst new-str pattern string
[start-pos])

Replaces characters in a string with a spe-
cified set of characters

(vl-string-translate
source-set dest-set str)

Removes the specified characters from the
beginning and end of a string

(vl-string-trim char-set str)

132 | Chapter 3 Appendixes

String-handling functions

DescriptionFunction

Performs a wild-card pattern match on a
string

(wcmatch string pattern)

Symbol-Handling Functions

The following table provides summary descriptions of the AutoLISP
symbol-handling functions.

Symbol-handling functions

DescriptionFunction

Verifies that an item is an atom(atomitem)

Returns a list of the currently defined symbols(atoms-family format [symlist])

Verifies whether a value is bound to a symbol(boundp sym)

Verifies that an item evaluates to nil(not item)

Verifies that an item is bound to nil(null item)

Verifies that an item is a real or an integer(numberp item)

Returns an expression without evaluating it(quote expr)

Sets the value of a quoted symbol name to an
expression

(set sym expr)

Sets the value of a symbol or symbols to associ-
ated expressions

(setq sym1 expr1
[sym2 expr2] ...)

Returns the type of a specified item(type item)

AutoLISP Function Synopsis | 133

Symbol-handling functions

DescriptionFunction

Returns a string containing the name of a symbol(vl-symbol-name symbol)

Returns the current value bound to a symbol(vl-symbol-value symbol)

Identifies whether or not a specified object is a
symbol

(vl-symbolp object)

Utility Functions

The utility functions consist of query and command, display control, user
input, geometric, conversion, file-handling, and device access functions.

Conversion Functions

The following table provides summary descriptions of the AutoLISP conversion
functions.

Conversion functions

DescriptionFunction

Converts a string representing an angle into a
real (floating-point) value in radians

(angtof string [mode])

Converts an angular value in radians into a string(angtos angle [mode [precision]])

Returns the conversion of the first character of a
string into its ASCII character code (an integer)

(ascii string)

Returns the conversion of a string into a real(atof string)

Returns the conversion of a string into an integer(atoi string)

134 | Chapter 3 Appendixes

Conversion functions

DescriptionFunction

Returns the conversion of an integer representing
an ASCII character code into a single-character
string

(chr integer)

Converts a value from one unit of measurement
to another

(cvunit value from to)

Converts a string that represents a real (floating-
point) value into a real value

(distof string [mode])

Returns the conversion of an integer into a string(itoa int)

Converts a number into a string(rtos number [mode [precision]])

Translates a point (or a displacement) from one
coordinate system to another

(trans pt from to [disp])

Device Access Functions

The following table provides summary descriptions of the AutoLISP device
access functions.

Device access functions

DescriptionFunction

Reads values from any of the AutoCAD input
devices

(grread [track] [allkeys [curtype]])

AutoLISP Function Synopsis | 135

Display Control Functions

The following table provides summary descriptions of the AutoLISP display
control functions.

Display control functions

DescriptionFunction

Displays the AutoCAD graphics screen(graphscr)

Draws a vector between two points, in the current
viewport

(grdraw from to color [highlight])

Writes text to the status line or to screen menu
areas

(grtext [box text [highlight]])

Draws multiple vectors on the graphics screen(grvecs vlist [trans])

Prints an expression to the command line or writes
an expression to an open file

(prin1 [expr [file-desc]])

Prints an expression to the command line, or
writes an expression to an open file

(princ [expr [file-desc]])

Prints an expression to the command line, or
writes an expression to an open file

(print [expr [file-desc]])

Displays a string on your screen's prompt area(prompt msg)

Redraws the current viewport or a specified object
(entity) in the current viewport

(redraw [ename [mode]])

Prints a newline to the Command line(terpri)

Switches from the graphics screen to the text
screen

(textpage)

136 | Chapter 3 Appendixes

Display control functions

DescriptionFunction

Switches from the graphics screen to the text
screen

(textscr)

Returns a list of viewport descriptors for the cur-
rent viewport configuration

(vports)

File-Handling Functions

The following table provides summary descriptions of the AutoLISP
file-handling functions.

File-handling functions

DescriptionFunction

Closes an open file(close file-desc)

Searches the AutoCAD library path for the
specified file

(findfile filename)

Opens a file for access by the AutoLISP I/O
functions

(open filename mode)

Returns the decimal ASCII code representing
the character read from the keyboard input
buffer or from an open file

(read-char [file-desc])

Reads a string from the keyboard or from an
open file

(read-line [file-desc])

Lists all files in a given directory(vl-directory-files [directory
pattern directories])

AutoLISP Function Synopsis | 137

File-handling functions

DescriptionFunction

Copies or appends the contents of one file to
another file

(vl-file-copy "source-filename"
"destination-filename" [append?])

Deletes a file(vl-file-delete "filename")

Determines if a file name refers to a directory(vl-file-directory-p "filename")

Renames a file(vl-file-rename "old-filename"
"new-filename")

Determines the size of a file, in bytes(vl-file-size "filename")

Returns last modification time of the specified
file

(vl-file-systime "filename")

Returns the name of a file, after stripping out
the directory path and extension

(vl-filename-base "filename")

Returns the directory path of a file, after strip-
ping out the name and extension

(vl-filename-directory
"filename")

Returns the extension from a file name, after
stripping out the rest of the name

(vl-filename-extension
"filename")

Calculates a unique file name to be used for a
temporary file

(vl-filename-mktemp
["pattern" "directory" "extension"])

Writes one character to the screen or to an
open file

(write-char num [file-desc])

Writes a string to the screen or to an open file(write-line string [file-desc])

138 | Chapter 3 Appendixes

Geometric Functions

The following table provides summary descriptions of the AutoLISP geometric
functions.

Geometric functions

DescriptionFunction

Returns an angle in radians of a line defined by
two endpoints

(angle pt1 pt2)

Returns the 3D distance between two points(distance pt1 pt2)

Finds the intersection of two lines(inters pt1 pt2 pt3 pt4 [onseg])

Returns a 3D point that is the result of applying
an Object Snap mode to a specified point

(osnap pt mode)

Returns the UCS 3D point at a specified angle and
distance from a point

(polar pt ang dist)

Measures a specified text object, and returns the
diagonal coordinates of a box that encloses the
text

(textbox elist)

Query and Command Functions

The following table provides summary descriptions of the AutoLISP query and
command functions.

Query and command functions

DescriptionFunction

Executes an AutoCAD command(command [arguments] ...)

AutoLISP Function Synopsis | 139

Query and command functions

DescriptionFunction

Executes an AutoCAD command and the sup-
plied input

(command-s [arguments] ...)

Retrieves application data from the AppData
section of the acad.cfg file

(getcfg cfgname)

Retrieves the localized or English name of an
AutoCAD command

(getcname cname)

Returns the string value assigned to an environ-
ment variable

(getenv "variable-name")

Retrieves the value of an AutoCAD system vari-
able

(getvar varname)

Invokes the Help facility(help [helpfile [topic
[command]]])

Writes application data to the AppData section
of the acad.cfg file

(setcfg cfgname cfgval)

Sets an environment variable to a specified value(setenv "varname" "value")

Registers a user-defined command with the Help
facility so the appropriate help file and topic are

(setfunhelp "c:fname"
["helpfile" ["topic" ["command"]]])

called when the user requests help on that com-
mand

Sets an AutoCAD system variable to a specified
value

(setvar varname value)

Returns a string that contains the current AutoL-
ISP version number

(ver)

140 | Chapter 3 Appendixes

Query and command functions

DescriptionFunction

Executes an AutoCAD command after evaluating
arguments

(vl-cmdf [arguments] ...)

User Input Functions

The following table provides summary descriptions of the AutoLISP user input
functions.

User input functions

DescriptionFunction

Prompts the user to select a single object (entity)
by specifying a point

(entsel [msg])

Pauses for user input of an angle, and returns that
angle in radians

(getangle [pt] [msg])

Pauses for user input of a rectangle's second corner(getcorner pt [msg])

Pauses for user input of a distance(getdist [pt] [msg])

Prompts the user for a file name with the standard
AutoCAD file dialog box, and returns that file name

(getfiled title default ext flags)

Pauses for user input of an integer, and returns that
integer

(getint [msg])

Pauses for user input of a keyword, and returns that
keyword

(getkword [msg])

Pauses for user input of an angle, and returns that
angle in radians

(getorient [pt] [msg])

AutoLISP Function Synopsis | 141

User input functions

DescriptionFunction

Pauses for user input of a point, and returns that
point

(getpoint [pt] [msg])

Pauses for user input of a real number, and returns
that real number

(getreal [msg])

Pauses for user input of a string, and returns that
string

(getstring [cr] [msg])

Establishes keywords for use by the next user input
function call

(initget [bits] [string])

Prompts the user to select an object (entity) by
specifying a point, and provides access to the
definition data contained within a complex object

(nentsel [msg])

Provides similar functionality to that of the nentsel
function without the need for user input

(nentselp [msg] [pt])

Selection Set, Object, and Symbol Table Func-
tions

The selection set, object, and symbol table functions consist of selection set
manipulation, object-handling, extended data-handling, and symbol
table-handling functions.

142 | Chapter 3 Appendixes

Extended Data-Handling Functions

The following table provides summary descriptions of the AutoLISP extended
data-handling functions.

Extended data-handling functions

DescriptionFunction

Registers an application name with the current Auto-
CAD drawing in preparation for using extended object
data

(regapp application)

Returns the amount of extended data (xdata) space
that is available for an object (entity)

(xdroom ename)

Returns the size (in bytes) that a list occupies when it
is linked to an object (entity) as extended data

(xdsize lst)

Object-Handling Functions

The following table provides summary descriptions of the AutoLISP
object-handling functions.

Object-handling functions

DescriptionFunction

Retrieves an entity’s supported properties(dumpallpropertiesename [context]
)

Deletes objects (entities) or restores previously de-
leted objects

(entdel ename)

Retrieves an object's definition data(entget ename [applist])

Returns the name of the last nondeleted main ob-
ject in the drawing

(entlast)

AutoLISP Function Synopsis | 143

Object-handling functions

DescriptionFunction

Creates a new entity (graphical object) in the
drawing

(entmake [elist])

Makes a new object, gives it a handle and entity
name (but does not assign an owner), and then
returns the new entity name

(entmakex [elist])

Modifies the definition data of an object(entmod elist)

Returns the name of the next object in the drawing(entnext [ename])

Updates the screen image of an object(entupd ename)

Returns the current value of an entity’s property(getpropertyvalueename property-
name [or collectionName index
name])

Returns an object name based on its handle(handent handle)

Returns the read-only state of an entity’s property(ispropertyreadonlyename property-
name [or collectionName index
name])

Sets the property value for an entity(setpropertyvalueename property-
name value [or collectionname index
name val])

144 | Chapter 3 Appendixes

Selection Set Manipulation Functions

The following table provides summary descriptions of the AutoLISP selection
set manipulation functions.

Selection set manipulation functions

DescriptionFunction

Adds an object (entity) to a selection set, or cre-
ates a new selection set

(ssadd [ename [ss]])

Deletes an object (entity) from a selection set(ssdel ename ss)

Prompts the user to select objects (entities), and
returns a selection set

(ssget [mode] [pt1 [pt2]] [pt-list]
[filter-list])

Determines which objects are selected and
gripped

(ssgetfirst)

Returns an integer containing the number of ob-
jects (entities) in a selection set

(sslength ss)

Tests whether an object (entity) is a member of a
selection set

(ssmemb ename ss)

Returns the object (entity) name of the indexed
element of a selection set

(ssname ss index)

Retrieves information about how a selection set
was created

(ssnamex ss index)

Sets which objects are selected and gripped(sssetfirst gripset [pickset])

AutoLISP Function Synopsis | 145

Symbol Table and Dictionary-Handling Functions

The following table provides summary descriptions of the AutoLISP symbol
table and dictionary-handling functions.

Symbol table and dictionary-handling functions

DescriptionFunction

Adds a non-graphical object to the specified
dictionary

(dictadd ename symbol newobj)

Finds the next item in a dictionary(dictnext ename symbol [rewind])

Removes an entry from the specified diction-
ary

(dictremove ename symbol)

Renames a dictionary entry(dictrename ename oldsym newsym)

Searches a dictionary for an item(dictsearch ename symbol [setnext])

Returns a list of all paper space layouts in
the current drawing

(layoutlist)

Returns the entity name of the current
drawing's named object dictionary, which

(namedobjdict)

is the root of all non-graphical objects in
the drawing

Establishes a view for a specified viewport(setview view_description [vport_id])

Checks the symbol table name for valid
characters

(snvalid sym_name)

Finds the next item in a symbol table(tblnext table-name [rewind])

Returns the entity name of a specified
symbol table entry

(tblobjname table-name symbol)

146 | Chapter 3 Appendixes

Symbol table and dictionary-handling functions

DescriptionFunction

Searches a symbol table for a symbol name(tblsearch table-name symbol [setnext])

Memory Management Functions

The following table provides summary descriptions of the AutoLISP memory
management functions.

Memory management functions

DescriptionFunction

Sets the segment size to a given number of nodes(alloc int)

Allocates node space by requesting a specified number
of segments

(expand number)

Forces a garbage collection, which frees up unused
memory

(gc)

Displays the current state of memory in AutoLISP(mem)

VLX Namespace Functions

The VLX namespace functions listed below apply to separate-namespace VLX
applications. These functions allow separate-namespace VLX functions to be
accessible from a document namespace, enable the retrieval and updating of

AutoLISP Function Synopsis | 147

variables in the associated document namespace, and provide error-handling
routines for separate-namespace VLX functions.

VLX namespace functions

DescriptionFunction

Retrieves the value of a variable from the namespace
of the associated document

(vl-doc-ref symbol)

Sets the value of a variable in the associated document's
namespace

(vl-doc-set symbol value)

Passes control from a VLX error handler to the *error*
function of the associated document namespace

(vl-exit-with-error “msg”)

Returns a value to the document namespace from
which the VLX was invoked

(vl-exit-with-value value)

Namespace Communication Functions

The namespace communication functions consist of blackboard addressing
and multi-document-loading functions.

Namespace communication functions

DescriptionFunction

Returns the value of a variable from the blackboard
namespace

(vl-bb-ref ' variable)

Sets the value of a variable in the blackboard
namespace

(vl-bb-set ' variable value)

Loads a file into all open AutoCAD documents, and
into any document subsequently opened during the
current AutoCAD session

(vl-load-all “filename”)

148 | Chapter 3 Appendixes

Namespace communication functions

DescriptionFunction

Copies the value of a variable into all open AutoCAD
documents, and into any document subsequently
opened during the current AutoCAD session

(vl-propagate ' variable)

Property List (Plist) Functions

Property List functions query and update the Property List for AutoCAD.

Property List functions

DescriptionFunction

Deletes the specified key or value from the
Property List

(vl-registry-delete reg-key
[val-name])

Returns a list of subkeys or value names for the
specified Property key

(vl-registry-descendents reg-key
[val-names])

Returns data stored in the Property List for the
specified key/value pair

(vl-registry-read reg-key
[val-name])

Creates a key in the Property List(vl-registry-write reg-key
[val-name val-data])

AutoLISP Error Codes
This appendix lists the AutoLISP

®
 error codes.

Error Codes

The following table shows the values of error codes generated by AutoLISP.
The ERRNO system variable is set to one of these values when an AutoLISP

AutoLISP Error Codes | 149

function call causes an error that AutoCAD detects. AutoLISP applications can
inspect the current value of ERRNO with (getvar "errno").

The ERRNO system variable is not always cleared to zero. Unless it is inspected
immediately after an AutoLISP function has reported an error, the error that
its value indicates may be misleading. This variable is always cleared when
starting or opening a drawing.

NOTE The possible values ofERRNO, and their meanings, are subject to change.

Online program error codes

MeaningValue

No error0

Invalid symbol table name1

Invalid entity or selection set name2

Exceeded maximum number of selection sets3

Invalid selection set4

Improper use of block definition5

Improper use of xref6

Object selection: pick failed7

End of entity file8

End of block definition file9

Failed to find last entity10

Illegal attempt to delete viewport object11

Operation not allowed during PLINE12

150 | Chapter 3 Appendixes

Online program error codes

MeaningValue

Invalid handle13

Handles not enabled14

Invalid arguments in coordinate transform request15

Invalid space in coordinate transform request16

Invalid use of deleted entity17

Invalid table name18

Invalid table function argument19

Attempt to set a read-only variable20

Zero value not allowed21

Value out of range22

Complex REGEN in progress23

Attempt to change entity type24

Bad layer name25

Bad linetype name26

Bad color name27

Bad text style name28

Bad shape name29

AutoLISP Error Codes | 151

Online program error codes

MeaningValue

Bad field for entity type30

Attempt to modify deleted entity31

Attempt to modify seqend subentity32

Attempt to change handle33

Attempt to modify viewport visibility34

Entity on locked layer35

Bad entity type36

Bad polyline entity37

Incomplete complex entity in block38

Invalid block name field39

Duplicate block flag fields40

Duplicate block name fields41

Bad normal vector42

Missing block name43

Missing block flags44

Invalid anonymous block45

Invalid block definition46

152 | Chapter 3 Appendixes

Online program error codes

MeaningValue

Mandatory field missing47

Unrecognized extended data (XDATA) type48

Improper nesting of list in XDATA49

Improper location of APPID field50

Exceeded maximum XDATA size51

Entity selection: null response52

Duplicate APPID53

Attempt to make or modify viewport entity54

Attempt to make or modify an xref, xdef, or xdep55

ssget filter: unexpected end of list56

ssget filter: missing test operand57

ssget filter: invalid opcode (-4) string58

ssget filter: improper nesting or empty conditional clause59

ssget filter: mismatched begin and end of conditional clause60

ssget filter: wrong number of arguments in conditional clause (for NOT
or XOR)

61

ssget filter: exceeded maximum nesting limit62

ssget filter: invalid group code63

AutoLISP Error Codes | 153

Online program error codes

MeaningValue

ssget filter: invalid string test64

ssget filter: invalid vector test65

ssget filter: invalid real test66

ssget filter: invalid integer test67

Digitizer is not a tablet68

Tablet is not calibrated69

Invalid tablet arguments70

ADS error: Unable to allocate new result buffer71

ADS error: Null pointer detected72

Cannot open executable file73

Application is already loaded74

Maximum number of applications already loaded75

Unable to execute application76

Incompatible version number77

Unable to unload nested application78

Application refused to unload79

Application is not currently loaded80

154 | Chapter 3 Appendixes

Online program error codes

MeaningValue

Not enough memory to load application81

ADS error: Invalid transformation matrix82

ADS error: Invalid symbol name83

ADS error: Invalid symbol value84

AutoLISP/ADS operation prohibited while a dialog box was displayed85

AutoLISP Error Codes | 155

156

Index

_ (underscore)
for foreign-language support 44

" (quotation marks)
and parentheses in expressions 5
using within quoted strings 18, 19

error function
overview 38, 41

A

accessing
AutoCAD groups 117
dictionary entries 116, 117
entities 92
symbol table entries 114, 116
user input 74

summarized 136
adsfunc function 85, 86
alert function 40
angles

converting radians and degrees 64,
65

converting to strings 62, 63
finding angle between line and X

axis 55
angtof function 64
angtos function 62, 63, 64
angular values, converting radians or

degrees 64, 65
anonymous blocks 101
append function 22
application-handling functions 122
arbitrary data management 113
arithmetic functions 124, 125
ASCII code conversions 65
assoc function 27
association lists 27
attaching data

extended data to entities 111, 112
AutoCAD

accessing AutoCAD groups 117

commands
issuing with AutoLISP 43
redefining 32, 34

configuration control 47
coordinate systems 70, 71
device access and control

functions 74
display control 47, 49

graphics and text windows 48
low-level graphics 48, 49
overview 47, 48

foreign-language support 44
geometric utilities 55, 60

finding angle between line and X
axis 55

finding distance between two
points 55

finding intersection of two
lines 55

finding polar coordinates of
points 55

overview 55, 56
getting user input from 74
handling user input 49, 55

pausing for input 44, 45
inspecting and changing system and

environment variables 47
object snap 56
objects, manipulating 74, 117

extended data 106, 113
object-handling 86, 106
selection set handling 75, 86
symbol table and dictionary

access 114, 117
xrecord objects 113

passing pick points to
commands 45, 46

pausing for user input 44, 45
query and command functions 42,

47
receiving user input from 74

157 | Index

redefining AutoCAD commands 32,
34

related publications 2
sending commands to AutoCAD

prompt 43
text extents 56, 60
undoing commands issued with

command function 46
user input functions 49, 55

accessing user input from
devices 74

allowable input 50
arbitrary keyboard input 54, 55
controlling user-input function

conditions 52, 55
getting user input 49, 52
getxxx functions 49, 52
input options 53
keyword options 53, 54
pausing for user input 44, 45
validating input 55

AutoCAD groups, accessing 117
Autodesk World Wide Web site 2
AutoLISP

accessing AutoCAD groups 117
accessing user input with 74
application-handling functions 122
AutoCAD display control 47, 49

graphics and text windows 48
low-level graphics 48, 49
overview 47, 48

closing files in programs 9
comments in program files 11
communicating with AutoCAD 42

converting data types and
units 61, 72

device access and control 74
display control 47, 49
file-handling functions 72
geometric utilities 55, 60
getting user input 49, 55
query and command

functions 42, 47
conditional branching and

looping 21
control characters in strings 18, 19

converting data types and units 61,
72

angular values from radians or
degrees 64, 65

ASCII code conversions 65
coordinate system

transformations 70, 72
measurement unit

conversions 67, 69
point transformations 72
string conversions 61, 64
synopsis of functions 135

data types 6
entity names 8, 9
file descriptors 9
integers 6, 7
lists 8
reals 7
selection sets 8
strings 8
symbols and variables 10

device access and control
functions 74

synopsis of 136
dictionary functions 116, 117
display-control functions 137
displaying messages with 17, 18
dotted pairs 26, 27
equality and conditional

functions 126
equality verification 21
error codes 149
error-handling 38, 41, 126, 127
exiting quietly 18
expressions 3, 5
extended data functions

attaching extended data to
entities 111, 112

filtering selection sets for
extended data 80

group codes for extended
data 106

handles in extended data 112,
113

managing memory use 112

158 | Index

organization of extended
data 107, 109

registration of
applications 109, 110

retrieving extended data 106,
110, 111

synopsis of 143
file-handling functions

file search 73, 74
synopsis of 138, 139

foreign-language support 44
formatting code 11
function synopsis (summary) 119

basic functions 121, 134
category summary 119, 120
memory management

functions 147
namespace communication

functions 149
Property List functions 149
selection set, object, and symbol

table functions 147
utility functions 134, 142
VLX namespace functions 147

function syntax 5
function-handling 28, 38

adding commands 31
c\

xxx functions 30, 34
defining functions 28, 29
defining functions with

arguments 36, 38
defun function 28, 37
defun-q function 29
local variables in functions 34,

36
redefining AutoCAD

commands 32, 34
special forms 37, 38
synopsis of functions 127, 128

functions, as lists 29
geometric utilities 55, 60

finding angle between line and X
axis 55

finding distance between two
points 55

finding intersection of two
lines 55

finding polar coordinates of
points 55

object snap 56
overview 55, 56
synopsis of 139
text extents 56, 60

integer overflow handling 6, 7
interacting with users 74
list processing functions 26, 27

adding items to list
beginning 22, 23

combining lists 22
dotted pairs 26, 27
grouping related items 22
point lists 23, 26
retrieving items from lists 21,

22
returning all but first

element 22
substituting items 22, 23
synopsis of 131

manipulating AutoCAD objects 74,
117

extended data 106, 113
object-handling 86, 106
selection set handling 75, 86
symbol table and dictionary

access 114, 117
xrecord objects 113

matching parentheses 4
memory management

functions 147
namespace communication

functions 149
number handling 14
object-handling functions 86, 106

blocks and 89, 92
entity access functions 92
entity data functions 92, 102
entity name functions 86, 92
extended data 106, 113
non-graphic

object-handling 104,
106

Index | 159

polylines (old-style and
lightweight) 103

selection sets 75, 86
symbol table and dictionary

entries 114, 117
synopsis of 145
xrecord objects 113

output functions 16, 21
control characters in quoted

strings 18, 19
displaying messages 17, 18
wild-card matching 20, 21

predefined variables 13, 14
program files 11

comments 11
formatting code 11

Property List functions 149
query and command functions 42,

47
configuration control 47
foreign-language support 44
inspecting and changing system

and environment
variables 47

passing pick points to AutoCAD
commands 45, 46

pausing for user input 44, 45
sending commands to AutoCAD

prompt 43
synopsis of 141
undoing commands issued with

command function 46
referring to entities for multiple

sessions 9
selection set handling functions 75,

86
adding entities 83, 84
creating selection sets 75, 77
deleting entities 83, 84
finding number of entities 84,

85
passing selection sets between

AutoLISP and ObjectARX
applications 85, 86

returning entity names 84
selection set filter lists 77, 85

synopsis of 145, 146
testing whether an entity is a

member 84
selection set, object

and symbol table
functions 142, 147

spaces in code 11
special forms 37, 38
string-handling 14, 16, 133
symbol and function-handling 28,

38
symbol table access functions 114,

116
symbol-handling 28, 134
undoing commands issued with

command function 46
user input functions

accessing user input from
devices 74

allowable input 50
arbitrary keyboard input 54, 55
controlling user-input function

conditions 52, 55
getting user input 49, 52
getxxx functions 49, 52
input options 53
keyword options 53, 54
pausing for user input 44, 45
synopsis of 142
validating input 55

utility functions 134, 142
conversion functions 135
device access functions 136
display-control functions 137
file-handling functions 138,

139
geometric functions 139
query and command

functions 141
user input functions 142

variables
assigning values to 10, 12
data type 10, 12
displaying value of 13
nil variables 13
predefined 13, 14

160 | Index

Visual LISP extended functions
VLX namespace functions 147

xrecord objects 113

B

backslash
for control characters in quoted

strings 18, 19
using within quoted strings 18, 19

backslash (\\)
for control characters in quoted

strings 18, 19
using within quoted strings 18, 19

balance of parentheses, checking in
VLISP 4

blocks
working with 101

C

c\
xxx functions 30, 34

caddr function 25
cadr function 24, 25, 26
car function

for point lists 24, 25, 26
handling dotted pairs 27
retrieving items from lists 22

case (of text and symbols)
automatic changing of by

AutoLISP 14
converting with strcase

function 14, 15
equality checking and 21
symbols, automatic case changing

of 14
case sensitivity

comparison functions and 21
of equality functions 21
of grouping operators 83
of input functions 53
of symbol names 10

cdr function
handling dotted pairs 27
returning all but first list element 22

close function 9
closing

files in AutoLISP programs 9
combining lists 22
combining strings in AutoLISP 15
command function

foreign-language support 44
passing pick points to AutoCAD

commands 45, 46
pausing for user input 44, 45
sending commands to AutoCAD

prompt 43
undoing commands 46

comments
in AutoLISP program files 11
in unit definition file 69

concatenating strings in AutoLISP 15
conditional branching and looping in

AutoLISP 21
configuration control 47
cons function

adding items to list beginning 22
creating dotted pairs 26, 27

control characters
in quoted strings 18, 19

controlling AutoCAD display 47, 49
graphics and text windows 48
low-level graphics 48, 49
menus 48
overview 47, 48

conversion functions 61, 72
angular values from radians or

degrees 64, 65
ASCII code conversions 65
coordinate system

transformations 70, 72
AutoCAD coordinate

systems 70, 71
overview 70
point transformations 72
specifying coordinate

systems 71
valid integer codes 72

measurement unit conversions 67,
69

point transformations 72

Index | 161

string conversions 61, 64
synopsis of 135

converting string case 14, 15
coordinate system transformations

AutoCAD coordinate systems 70,
71

entity context and coordinate
transform data 88, 92

overview 70
point transformations 72
specifying coordinate systems 71
valid integer codes 72

creating
complex entities 98, 100
selection sets 75, 77

curve-fit polylines, processing 103
Customization Guide 2
cvunit function 67

D

data types
AutoLISP

entity names 8, 9
file descriptors 9
integers 6, 7
lists 8
overview 6
reals 7
selection sets 8
strings 8
symbols 10
variables 10, 12

extended data organization 107,
109

defining new units 68
defun function 28, 37

adding commands 31
c\

xxx functions 30, 34
compatibility with AutoCAD

versions 29
defining functions 28, 29

with arguments 36, 38
local variables in functions 34, 36

redefining AutoCAD commands 32,
34

defun-q function 64, 65
degrees, converting to radians 65
deleting

entities 93
selection set entities 83, 84
stripping file extensions 15, 16

derived units 69
device access and control functions 74

accessing user input 74
synopsis of 136

dictionary and symbol table handling
functions 147

dictionary functions 116, 117
dictionary objects 106
dictnext function 116
dictsearch function 116, 117
display control functions 137
Display Coordinate System 70, 71
displaying

controlling AutoCAD display 47, 49
graphics and text windows 48
low-level graphics 48, 49
menus 48
overview 47, 48

display control functions 136, 137
messages in AutoLISP 17, 18
variable values 13

distof function 63
dotted pairs 26, 27
drawing area and entity data

functions 102
drawings

adding entities to 96, 98
DXF Reference 2

E

entdel function 93
entget function 93, 95, 106, 110, 111
entities

adding to drawings 96, 98
blocks 101
changing 95, 96
complex 93, 98

162 | Index

handles and use of 87, 88
modifying 95, 96
names, obtaining 86, 87
obtaining information on 93, 95
referring to across multiple

sessions 9
entity access functions 92
entity data functions 92, 102

adding entities to drawings 96, 98
anonymous blocks 101
creating complex entities 98, 100
deleting entities 93
drawing area and 102
modifying entities 95, 96
obtaining entity information 93, 95
working with blocks 101

entity filter lists for selection sets 77, 85
examples 77, 78
filtering for extended data 80
logical grouping of filter tests 82,

83
overview 77, 79
relational tests 80, 82
selection set manipulation 83, 85
wild-card patterns in 79

entity name data type
defined 8
overview 8, 9
referring to entities across multiple

sessions 9
entity name functions 86, 92

entity access functions 92
entity context and coordinate

transform data 88, 92
entity handles and their uses 87, 88
overview 86, 87
retrieving entity names 86, 87
setting entity name to variable

name 87
entlast function 87
entmake function 96, 101, 104
entmod function

dictionary objects and 106
drawing area and 102
modifying entities 95, 96
non-graphic object handling 104

polylines and 103
symbol table objects and 104

entnext function 87, 103
entsel function 86
entupd function 102
environment variables, inspecting and

changing 47
equality and conditional functions 126
equality verification in AutoLISP 21
ERRNO system variable 149
error codes

AutoLISP 149
errors

error function 39
AutoLISP error handling 38, 41
catching and continuing

execution 41
continuing after 41
error-handling functions 38, 40, 127
intercepting with

vl-catch-all-apply 41
vl-catch-all-apply, using 41

escape codes in strings 18, 19
exiting

quietly in AutoLISP 18
expressions

AutoLISP 3, 5
form for 3, 4
function syntax 5
matching parentheses 4
quotation marks and parentheses 5

extended data 106, 113
attaching to entities 111, 112
filtering selection sets for 80
group codes for 106
handles in 112, 113
managing memory use 112
organization of 107, 109
registration of applications 109, 110
retrieving 106, 110, 111
synopsis of 143

F

file descriptor data type
defined 9

Index | 163

overview 9
file extensions

stripping 15
file-handling functions 72, 138, 139

file search 73, 74
synopsis of 138, 139

files
AutoLISP program files 11

comments 11
formatting code 11

closing in AutoLISP programs 9
file-handling functions 72, 138, 139

file search 73, 74
synopsis of 138, 139

stripping file extensions 15
unit definition file 67, 69

filter lists for selection sets 77, 85
examples 77, 78
filtering for extended data 80
logical grouping of filter tests 82,

83
overview 77, 79
relational tests 80, 82
selection set manipulation 83, 85
wild-card patterns in 79

findfile function 73
floating point numbers, distance to

floating point function 63
forcing line breaks in strings 19
foreign-language support 44
formatting code 11
function-handling functions 28, 38

adding commands 31
c\

xxx functions 30, 34
defining functions 28, 29
defining functions with

arguments 36, 38
defun function 28, 37
defun-q function 34, 36
local variables in functions 34, 36
redefining AutoCAD commands 32,

34
special forms 37, 38
synopsis of 128

functions
application-handling 121, 122
arithmetic 122, 124
as AutoCAD commands 30, 34
as lists 30, 34
c\

xxx functions 30, 34
controlling AutoCAD display 47, 49

graphics and text windows 48
low-level graphics 48, 49
menus 48
overview 47, 48

conversion functions
angular values from radians or

degrees 64, 65
ASCII code conversions 65
coordinate system

transformations 70, 72
measurement unit

conversions 67, 69
point transformations 72
string conversions 61, 64
synopsis of 134, 135

device access and control
synopsis of 135

device access and control
functions 74

accessing user input 74
dictionary functions 116, 117
display control functions 137
entity access functions 92
entity data functions 92, 102

adding entities to drawings 96,
98

anonymous blocks 101
creating complex entities 98,

100
deleting entities 93
drawing area and 102
modifying entities 95, 96
obtaining entity

information 93, 95
working with blocks 101

entity name functions 86, 92
entity access functions 92

164 | Index

entity context and coordinate
transform data 88, 92

entity handles and their
uses 87, 88

overview 86, 87
retrieving entity names 86, 87
setting entity name to variable

name 87
equality and conditional 125, 126
error-handling 126
extended data functions 106, 113

attaching extended data to
entities 111, 112

filtering selection sets for
extended data 80

group codes for extended
data 106

handles in extended data 112,
113

managing memory use 112
organization of extended

data 107, 109
registration of

applications 109, 110
retrieving extended data 106,

110, 111
synopsis of 143

file-handling functions 72
file search 73, 74
synopsis of 137, 138

function-handling
synopsis of 128

function-handling functions 28, 38
adding commands 31
c\

xxx functions 30, 34
defining functions 28, 29
defining functions with

arguments 36, 38
local variables in functions 34,

36
redefining AutoCAD

commands 32, 34
special forms 37, 38

geometric utilities 55, 60
finding angle between line and X

axis 55
finding distance between two

points 55
finding intersection of two

lines 55
finding polar coordinates of

points 55
object snap 56
overview 55, 56
synopsis of 139
text extents 56, 60

list handling
synopsis of 131

list handling functions 26, 27
adding items to list

beginning 22, 23
combining lists 22
dotted pairs 26, 27
grouping related items 22
point lists 23, 26
retrieving items from lists 21,

22
returning all but first

element 22
substituting items 22, 23

local variables in 34, 36
making available

as AutoCAD commands 30, 34
memory management

functions 147
namespace communication

functions 149
number handling in AutoLISP 14
object-handling functions

entity access functions 92
entity data functions 92, 102
entity name functions 86, 92
non-graphic

object-handling 104,
106

polylines, old-style and
lightweight 103

synopsis of 145

Index | 165

output functions 16, 21
control characters in quoted

strings 18, 19
displaying messages 17, 18
wild-card matching 20, 21

Property List functions 149
query and command functions

configuration control 47
foreign-language support 44
inspecting and changing system

and environment
variables 47

passing pick points to AutoCAD
commands 45, 46

pausing for user input 44, 45
sending commands to AutoCAD

prompt 43
synopsis of 141
undoing commands issued with

command function 46
selection set handling functions

adding entities 83, 84
creating selection sets 75, 77
deleting entities 83, 84
finding number of entities 84,

85
passing selection sets between

AutoLISP and ObjectARX
applications 85, 86

returning entity names 84
selection set filter lists 77, 85
synopsis of 145, 146
testing whether an entity is a

member 84
special forms 37, 38
string-handling 133
summary of

basic functions 121, 134
category summary 119
memory management

functions 147
namespace communication

functions 149
Property List functions 149

selection set, object, and symbol
table functions 142,
147

symbol-handling functions 134
utility functions 134, 142
VLX namespace functions 147

symbol table access functions 114,
116

syntax conventions in AutoLISP 5
user input functions

accessing user input from
devices 74

allowable input 50
arbitrary keyboard input 54, 55
controlling user-input

conditions 52, 55
getting user input 49, 52
getxxx functions 49, 52
input options 53
keyword options 53, 54
pausing for user input 44, 45
synopsis of 142
validating input 55

user-defined
defining with defun 28, 37

Visual LISP extensions
VLX namespace functions 147

VLX namespace functions 147
fundamental units 68

G

garbage collection 85, 147
geometric utilities 55, 60, 139

finding
angle between line and X

axis 55
distance between two points 55
intersection of two lines 55
polar coordinates of points 55

object snap 56
overview 55, 56
synopsis of 139
text extents 56, 60

getangle function 50, 51
getcorner function 49, 50

166 | Index

getdist function 49, 50
getenv function 47
getfiled function 73, 74
getint function 49, 50
getkword function 50, 52
getorient function 50, 51
getpoint function 49, 50
getreal function 49, 50
getstring function 49, 50
getting user input 49, 55

accessing user input from devices 74
allowable input 50
arbitrary keyboard input 54, 55
controlling user-input function

conditions 52, 55
getxxx functions 49, 52
input options 53
keyword options 53, 54
pausing for user input 44, 45
validating input 55

getvar function 47
getxxx functions 49, 55
graphscr function 48
grdraw function 48, 49
group codes for regular and extended

data 106, 107
grread function 74
grtext function 48, 49
grvecs function 48, 49

H

handent function 87, 88, 112
handles

entity handles and their uses 87, 88
in extended data 112, 113

I

improper lists 26
inches, converting to meters 67
initget function 51, 52, 55
integer data type

defined 6
number handling in AutoLISP 14

overflow handling by AutoLISP 6,
7

overview 6, 7
intercepting program errors 41
international language considerations 44

L

languages, supporting foreign 44
lines (graphic)

finding angle between line and X
axis 55

finding intersection of two lines 55
old-style and lightweight

polylines 103
processing curve-fit and spline-fit

polylines 103
lines (text)

forcing line breaks in strings 19
list data type

defined 8
overview 8

list function
forming point lists 23
grouping related items 22

list handling
adding items to list beginning 22,

23
association lists 27
combining lists 22
creating lists 22, 27
dotted pairs 26, 27
grouping related items 22
improper lists 26
point lists 23, 26
proper lists 26
retrieving items from lists 21, 22
returning all but first element 22
substituting items 22, 23
synopsis of 128, 131

local variables 34, 36

M

manipulating AutoCAD objects 74, 117
extended data 106, 113

Index | 167

object-handling 86, 106
selection set handling 75, 86
symbol table and dictionary

access 114, 117
xrecord objects 113

matching parentheses
in AutoLISP code 4

matching wild-cards in strings 20, 21
measurement unit conversions 67, 69
memory

freeing 85, 147
garbage collection 85, 147
managing extended data memory

use 112
memory management

functions 147
menucmd function 48
menus (AutoCAD)

controlling 48
meters, converting inches to 67

N

names/naming
entity name functions 86, 92
setting entity name to variable

name 87
stripping file extensions 15, 16
symbol naming restrictions 10
symbol table entries that cannot be

renamed 105
variables 10

namespaces
namespace communication

functions 148, 149
VLX namespace functions 147

nentsel function 86, 88, 92
nentselp function 88, 91
newline character 19
nil variables

exiting quietly 18
overview 13

nth function 21, 22
ntmod function, anonymous blocks

and 101
number handling in AutoLISP 14

O

Object Coordinate System 70
Object Snap modes 56
ObjectARX applications

passing selection sets between
AutoLISP and 85, 86

ObjectARX Reference 2
objects

dictionary objects 106
entity access functions 92
entity data functions 92, 102

adding entities to drawings 96,
98

anonymous blocks 101
creating complex entities 98,

100
deleting entities 93
drawing area and 102
modifying entities 95, 96
obtaining entity

information 93, 95
working with blocks 101

entity name functions 86, 92
entity access functions 92
entity context and coordinate

transform data 88, 92
entity handles and their

uses 87, 88
overview 86, 87
retrieving entity names 86, 87
setting entity name to variable

name 87
manipulating AutoCAD objects 74,

117
extended data 106, 113
object-handling 86, 106
selection set handling 75, 86
symbol table and dictionary

access 114, 117
xrecord objects 113

modifying
with entmod 95, 96

object-handling functions 86, 106
entity access functions 92
entity data functions 92, 102

168 | Index

entity name functions 86, 92
non-graphic

object-handling 104,
106

polylines, old-style and
lightweight 103

synopsis of 143
selection set handling functions

adding entities 83, 84
creating selection sets 75, 77
deleting entities 83, 84
finding number of entities 84,

85
passing selection sets between

AutoLISP and ObjectARX
applications 85, 86

returning entity names 84
selection set filter lists 77, 85
synopsis of 145, 146
testing whether an entity is a

member 84
symbol table objects 104, 105
xrecord objects 113

obtaining entity information 93, 95
operators, relational, for selection set filter

lists 80, 82
osnap function 56
output functions 16, 21

control characters in quoted
strings 18, 19

displaying messages 17, 18
wild-card matching 20, 21

P

Paper Space DCS 71
parentheses

matching in AutoLISP code 4
passing pick points to AutoCAD

commands 45, 46
passing selection sets between AutoLISP

and ObjectARX
applications 85, 86

PAUSE symbol 13, 44, 45
pausing for user input 44, 45
PI variable 13

pick points, passing to AutoCAD
commands 45, 46

point lists 23, 26
points

coordinate system
transformations 70, 72

finding distance between 55
finding polar coordinates of 55
transformations 72

polylines
old-style and lightweight 103
processing curve-fit and spline-fit

polylines 103
predefined variables, AutoLISP 13, 14
prin1 function 17
princ function

exiting quietly 18
output display from 17

print function 17
printing

messages in AutoLISP 17, 18
prompt function 17
proper lists 26
Property List functions 149
Property List functions for Mac 149

Q

query and command functions
configuration control 47
foreign-language support 44
inspecting and changing system and

environment variables 47
passing pick points to AutoCAD

commands 45, 46
pausing for user input 44, 45
sending commands to AutoCAD

prompt 43
synopsis of 139
undoing commands issued with

command function 46
quotation marks

and parentheses in expressions 5
using within quoted strings 18, 19

quote function, forming point lists 24

Index | 169

quoted strings
control characters in 18, 19

R

radians
converting degrees to 64, 65
converting to degrees 64, 65

read-char function 74
read-line function 74
real data type

converting to string 61, 62
defined 7
number handling in AutoLISP 14
overview 7
scientific notation for 7

redefining AutoCAD commands 32, 34
redraw function 48
regapp function 109, 111
registration of applications 109, 110
relational operators for selection set filter

lists
logical grouping of 82, 83
overview 80, 82

replacing
list items 22, 23

restrictions
restricted characters 10
symbol naming restrictions 10

retrieving
entity names 86, 87
extended data 106, 110, 111
items from lists 21, 22

return character in quoted strings 19
rtos function 61, 62

S

scientific notation for reals 7
searching

for file names 73, 74
selecting

entities 86, 88, 92
objects 86, 88, 92

selection set data type
defined 8

selection set handling functions 75, 86,
145, 146

selection sets
adding entities to 83, 84
creating 75, 77
deleting entities from 83, 84
filter lists 77, 85

examples 77, 78
filtering for extended data 80
logical grouping of filter

tests 82, 83
overview 77, 79
relational tests 80, 82
selection set manipulation 83,

85
wild-card patterns in 79

finding number of entities 84, 85
passing between AutoLISP and

ObjectARX
applications 85, 86

returning entity names 84
synopsis of functions for

handling 145
testing whether an entity is a

member 84
sending commands to AutoCAD

prompt 43
setq function 12
setvar function 47
single quotation mark, forming point

lists 24
Snap modes 56
spaces

in AutoLISP code 11
special characters

control characters in quoted
strings 18, 19

relational operators for selection set
filter lists 80, 82

special forms 37, 38
spline-fit polylines, processing 103
ssadd function 83, 84
ssdel function 83, 85
ssget function

creating selection sets 75, 77
selection set filter lists 77, 85

170 | Index

sslength function 84, 85
ssmemb function 84
ssname function 84
storing arbitrary data 113
strcase function 14, 15
strcat function 15
string data type

defined 8
overview 8

strings
ASCII code conversions 65
AutoLISP output functions 16, 21
AutoLISP string-handling 14, 16
concatenating 15
control characters in quoted

strings 18, 19
converting angles to 62, 63
converting case 14, 15
converting reals to 61, 62
DIESEL string expressions 48
displaying messages 17, 18
finding number of characters 15
forcing line breaks in 19
returning substrings 15, 16
string conversions 61, 64
string-handling functions 131, 133
stripping file extensions 15, 16
wild-card matching 20, 21

stripping file extensions 15, 16
strlen function 15, 16
subst function 22, 23
substituting list items 22, 23
substr function 15, 16
symbol table

names 21
objects 104, 105

symbols
AutoLISP data type 10
AutoLISP symbol-handling 28
case setting of 10, 21
defined 10
naming restrictions 10
PAUSE symbol 44, 45
restricted characters 10
symbol table

access functions 114, 116

and dictionary handling
functions 146

entries that cannot be
modified 105

entries that cannot be
renamed 105

objects 104, 105
symbol-handling functions 133, 134

system variables
ERRNO 149
specifying values 47

T

T symbol 13
TAB character in quoted strings 19
tblnext function 115, 116
tblsearch function 115, 116
terpri function 19
text extents 56, 60
textbox function 56, 60
textpage function 48
textscr function 48
trans function 70, 72

U

unbalanced parentheses, checking in
AutoLISP 4

underscore (_)
for foreign-language support 44

undoing
commands issued with command

function 46
unit conversions 67, 69

inches to meters 67
overview 67
unit definition file 67, 69

unit definition file 67, 69
defining new units 68
derived units 69
fundamental units 68
user comments 69
valid name definitions 68

updating
entities 95, 96

Index | 171

user comments 69
User Coordinate System 70
user input functions

accessing user input from devices 74
allowable input 50
arbitrary keyboard input 54, 55
controlling user-input

conditions 52, 55
getting user input 49, 52
getxxx functions 49, 52
input options 53
keyword options 53, 54
pausing for user input 44, 45
synopsis of 141, 142
validating input 55

user-defined functions
defining with defun function 28,

37
adding commands 31
c\

xxx functions 30, 34
compatibility with AutoCAD

versions 29
local variables in functions 34,

36
redefining AutoCAD

commands 32, 34
with arguments 36, 38

V

valid name definitions 68
variables

assigning values 10, 12
AutoLISP 12, 14
AutoLISP data type 10

case sensitivity of 10
defined 10
displaying values 13
environment variables, inspecting and

changing 47
local variables in functions 34, 36
names, case and 10
naming 10
nil variables 13
predefined 13, 14
system variables

specifying values 47
Visual LISP extended functions

VLX namespace functions 147
vl-catch-all-apply 41
VLX namespace functions 147

W

wcmatch function 20, 21
Web site for Autodesk 2
wild-card characters

in filter lists for selection sets 79
matching in strings 20, 21

windows
controlling AutoCAD graphics and

text windows 48
World Coordinate System 70
World Wide Web site for Autodesk 2

X

xdroom function 112
xdsize function 112
xrecord objects 113

172 | Index

	Contents
	Introduction
	Introduction
	AutoLISP
	About Related AutoLISP Documents

	Using the AutoLISP Language
	AutoLISP Basics
	AutoLISP Expressions
	AutoLISP Function Syntax

	AutoLISP Data Types
	Integers
	Reals
	Strings
	Lists
	Selection Sets
	Entity Names
	File Descriptors
	Symbols and Variables

	AutoLISP Program Files
	Formatting AutoLISP Code
	Spaces in AutoLISP Code

	Comments in AutoLISP Program Files

	AutoLISP Variables
	Displaying the Value of a Variable
	Nil Variables
	Predefined Variables

	Number Handling
	String Handling
	Basic Output Functions
	Displaying Messages
	Exiting Quietly

	Control Characters in Strings
	Wild-Card Matching

	Equality and Conditional
	List Handling
	Point Lists
	Dotted Pairs

	Symbol and Function Handling
	Using defun to Define a Function
	Compatibility of defun with Previous Versions of AutoCAD

	C:XXX Functions
	Adding Commands
	Redefining AutoCAD Commands

	Local Variables in Functions
	Local Variables versus Global Variables
	Example Using Local Variables

	Functions with Arguments
	Special Forms

	Error Handling in AutoLISP
	Using the *error* Function
	Catching Errors and Continuing Program Execution

	Using AutoLISP to Communicate with AutoCAD
	Accessing Commands and Services
	Command Submission
	Foreign Language Support
	Pausing for User Input
	Passing Pick Points to AutoCAD Commands
	Undoing Commands Issued with the command Function

	System and Environment Variables
	Configuration Control

	Display Control
	Control of Graphics and Text Windows
	Control of Low-Level Graphics

	Getting User Input
	The getxxx Functions
	Control of User-Input Function Conditions
	Input Options for User-Input Functions
	Keyword Options
	Arbitrary Keyboard Input
	Input Validation

	Geometric Utilities
	Object Snap
	Text Extents

	Conversions
	String Conversions
	Angular Conversion
	ASCII Code Conversion
	Unit Conversion
	Converting from Inches to Meters
	The Unit Definition File

	Coordinate System Transformations
	Point Transformations

	File Handling
	File Search

	Device Access and Control
	Accessing User Input

	Using AutoLISP to Manipulate AutoCAD Objects
	Selection Set Handling
	Selection Set Filter Lists
	Wild-Card Patterns in Filter Lists
	Filtering for Extended Data
	Relational Tests
	Logical Grouping of Filter Tests
	Selection Set Manipulation

	Passing Selection Sets between AutoLISP and ObjectARX Applications

	Object Handling
	Entity Name Functions
	Entity Handles and Their Uses
	Entity Context and Coordinate Transform Data
	Entity Access Functions

	Entity Data Functions
	Deleting an Entity
	Obtaining Entity Information
	Modifying an Entity
	Adding an Entity to a Drawing
	Creating Complex Entities
	Working with Blocks
	Anonymous Blocks

	Entity Data Functions and the Graphics Screen
	Old-Style Polylines and Lightweight Polylines
	Processing Curve-Fit and Spline-Fit Polylines

	Non-Graphic Object Handling
	Symbol Table Objects
	Dictionary Objects

	Extended Data - xdata
	Organization of Extended Data
	Registration of an Application
	Retrieval of Extended Data
	Attachment of Extended Data to an Entity
	Management of Extended Data Memory Use
	Handles in Extended Data

	Xrecord Objects
	Symbol Table and Dictionary Access
	Symbol Tables
	Dictionary Entries
	Accessing AutoCAD Groups

	Appendixes
	AutoLISP Function Synopsis
	Category Summary
	Basic Functions
	Application-Handling Functions
	Arithmetic Functions
	Equality and Conditional Functions
	Error-Handling Functions
	Function-Handling Functions
	List Manipulation Functions
	String-Handling Functions
	Symbol-Handling Functions

	Utility Functions
	Conversion Functions
	Device Access Functions
	Display Control Functions
	File-Handling Functions
	Geometric Functions
	Query and Command Functions
	User Input Functions

	Selection Set, Object, and Symbol Table Functions
	Extended Data-Handling Functions
	Object-Handling Functions
	Selection Set Manipulation Functions
	Symbol Table and Dictionary-Handling Functions

	Memory Management Functions
	VLX Namespace Functions
	Namespace Communication Functions
	Property List (Plist) Functions

	AutoLISP Error Codes
	Error Codes

	Index

