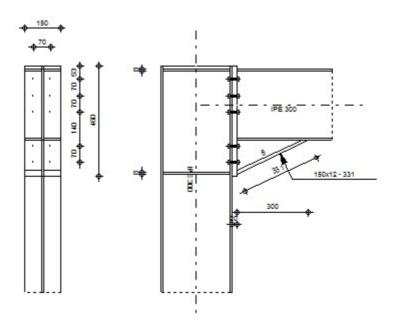
Autour: N.ROUMANEIX Fichier:


Autodesk Robot Structural Analysis Professional 2017

Ratio **2.23**

Calcul de l'Encastrement Traverse-Poteau

NF EN 1993-1-8:2005/NA:2007/AC:2009

GÉNÉRAL

Assemblage N°: 1

Nom de l'assemblage: Angle de portique

GÉOMÉTRIE

POTEAU

Profilé:	IPE 300		
$\alpha =$	-90.0	[Deg]	Angle d'inclinaison
h _c =	300	[mm]	Hauteur de la section du poteau
$b_{fc} =$	150	[mm]	Largeur de la section du poteau
t _{wc} =	7	[mm]	Epaisseur de l'âme de la section du poteau
t _{fc} =	11	[mm]	Epaisseur de l'aile de la section du poteau
r _c =	15	[mm]	Rayon de congé de la section du poteau
A _C =	53.81	[cm ²]	Aire de la section du poteau
I _{xc} =	8356.11	[cm ⁴]	Moment d'inertie de la section du poteau
Matériau	J: S 235		

23.50 [daN/mm²] Résistance

POUTRE

Profilé: IPE 300

	N.ROUMANEI	,	Fichier:
α =	0.0	[Deg]	Angle d'inclinaison
h _b =	300	[mm]	Hauteur de la section de la poutre
b _f =	150	[mm]	Largeur de la section de la poutre
t _{wb} =	7	[mm]	Epaisseur de l'âme de la section de la poutre
t _{fb} =	11	[mm]	Epaisseur de l'aile de la section de la poutre
r _b =	15	[mm]	Rayon de congé de la section de la poutre
$r_b =$	15	[mm]	Rayon de congé de la section de la poutre
$A_b =$	53.81	[cm ²]	Aire de la section de la poutre
I _{xb} =	8356.11	[cm ⁴]	Moment d'inertie de la poutre

Matériau: S 235

 $f_{vb} = 23.50 \text{ [daN/mm}^2\text{] Résistance}$

BOULONS

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

d = 8 [mm] Diamètre du boulon Classe = 10.9 Classe du boulon

 F_{tRd} = 2635 [daN] Résistance du boulon à la traction n_h = 2 Nombre de colonnes des boulons n_v = 5 Nombre de rangéss des boulons

h₁ = 53 [mm] Pince premier boulon-extrémité supérieure de la platine d'about

Ecartement $e_i = 70 \text{ [mm]}$

Entraxe $p_i = 70;70;140;70 \text{ [mm]}$

PLATINE

 $h_p =$ 460 [mm] Hauteur de la platine $b_p =$ 150 [mm] Largeur de la platine $t_p =$ 20 [mm] Epaisseur de la platine

Matériau: S 235

 $f_{vp} = 23.50 \text{ [daN/mm}^2\text{] Résistance}$

JARRET INFÉRIEUR

 $w_d =$ Largeur de la platine 150 [mm] $t_{fd} =$ Epaisseur de l'aile 12 [mm] $h_d =$ 140 [mm] Hauteur de la platine $t_{wd} =$ Epaisseur de l'âme 8 [mm] [mm] Longueur de la platine 300 $\alpha =$ 25.0 [Deg] Angle d'inclinaison

Matériau: S 235

 $f_{\text{vbu}} = 23.50 \text{ [daN/mm}^2\text{] Résistance}$

RAIDISSEUR POTEAU

Supérieur

 h_{su} = 279 [mm] Hauteur du raidisseur b_{su} = 71 [mm] Largeur du raidisseur t_{hu} = 8 [mm] Epaisseur du raidisseur

Matériau: S 235

 $f_{vsu} = 23.50 \text{ [daN/mm}^2\text{] Résistance}$

Inférieur

Auteur: N.ROUMANEIX

Fichier:

$h_{sd} =$	279	[mm]	Hauteur du raidisseur
b _{sd} =	71	[mm]	Largeur du raidisseur
$t_{hd} =$	8	[mm]	Epaisseur du raidisseur
Matária	0 005		

Matériau: S 235

 $f_{ysu} = 23.50 \text{ [daN/mm}^2\text{] Résistance}$

SOUDURES D'ANGLE

a _w =	5	[mm]	Soudure âme
a _f =	8	[mm]	Soudure semelle
a _s =	5	[mm]	Soudure du raidisseur
a _{fd} =	5	[mm]	Soudure horizontale

COEFFICIENTS DE MATÉRIAU

$\gamma_{M0} =$	1.00	Coefficient de sécurité partiel	[2.2]
$\gamma_{M1} =$	1.00	Coefficient de sécurité partiel	[2.2]
$\gamma_{M2} =$	1.25	Coefficient de sécurité partiel	[2.2]
$\gamma_{M3} =$	1.10	Coefficient de sécurité partiel	[2.2]

EFFORTS

Etat limite: ultime

Cas: Calculs manuels

 $M_{b1,Ed}$ = 10000 [daN*m] Moment fléchissant dans la poutre droite

RÉSULTATS ____

RÉSISTANCES DE LA POUTRE

FLEXION - MOMENT PLASTIQUE (SANS RENFORTS)

$W_{plb} =$	628.36	[cm ³]	Facteur plastique de la section	EN1993-1-1:[6.2.5.(2)]
M _{b,pl,Rd} =	$= W_{plb} f_{yb} / \gamma_{Mi}$	0		
M _{b,pl,Rd} =	=14766 [daN	*m] Rés	istance plastique de la section à la flexion (sans renforts)	EN1993-1-1:[6.2.5.(2)]

FLEXION AU CONTACT DE LA PLAQUE AVEC L'ELEMENT ASSEMBLE

$W_{pl} =$	1070.98	[cm ³]	Facteur plastique de la section	EN1993-1-1:[6.2.5]
$M_{cb,Rd} = V$	$V_{\rm pl} f_{\rm yb} / \gamma_{\rm M0}$			
$M_{cb,Rd} =$	25168	[daN*m]	Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]

AILE ET AME EN COMPRESSION

$M_{cb,Rd} =$	25168	[daN*m]	Résistance de calcul de la section à la flexion	EN1993-1-1:[6.2.5]
h _f =	428	[mm]	Distance entre les centres de gravité des ailes	[6.2.6.7.(1)]
$F_{c,fb,Rd} = M_{cl}$	_{b,Rd} / h _f			
$F_{c,fb,Rd} =$	58800	[daN]	Résistance de l'aile et de l'âme comprimées	[6.2.6.7.(1)]

AME OU AILE DU RENFORT EN COMPRESSION - NIVEAU DE L'AILE INFERIEURE DE LA POUTRE

Pression diamétrale:

Autodesk Robot Structural Analysis Professional 2017 Auteur: N.ROUMANEIX Fichier:	
β = 0.0 [Deg] Angle entre la platine d'about et la poutre	
γ = 25.0 [Deg] Angle d'inclinaison du renfort	
b _{eff,c,wb} = 180 [mm] Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
$A_{\rm b}$ = 25.68 [cm ²] Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
ω = 0.87 Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]
$\sigma_{\text{com,Ed}} = 14.88 \text{ [daN/mm}^2] Contrainte de compression maximale dans l'âme$	[6.2.6.2.(2)]
k _{wc} = 1.00 Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]
$F_{c,wb,Rd1} = [\omega k_{wc} b_{eff,c,wb} t_{wb} f_{yb} / \gamma_{M0}] \cos(\gamma) / \sin(\gamma - \beta)$	
F _{c,wb,Rd1} = 55856 [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
Flambement:	
d _{wb} = 249 [mm] Hauteur de l'âme comprimée	[6.2.6.2.(1)]
$\lambda_{\rm p}$ = 0.93 Elancement de plaque	[6.2.6.2.(1)]
ρ = 0.85 Coefficient réducteur pour le flambement de l'élément	[6.2.6.2.(1)]
$F_{c,wb,Rd2} = [\omega k_{wc} \rho b_{eff,c,wb} t_{wb} f_{yb} / \gamma_{M1}] \cos(\gamma) / \sin(\gamma - \beta)$	
F _{c,wb,Rd2} = 47232 [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
F _{c,wb,Rd,low} = 47232 [daN] Résistance de l'âme de la poutre RÉSISTANCES DU POTEAU	[6.2.6.2.(1)]
PANNEAU D'AME EN CISAILLEMENT M _{b1.Ed} = 10000 [daN*m] Moment fléchissant dans la poutre droite	[5.3.(3)]
2.,	
52,20	[5.3.(3)]
V _{c1,Ed} = 0 [daN] Effort tranchant dans le poteau inférieur	[5.3.(3)]
V _{c2,Ed} = 0 [daN] Effort tranchant dans le poteau supérieur z = 356 [mm] Bras de levier	[5.3.(3)]
$V_{wp,Ed} = (M_{b1,Ed} - M_{b2,Ed})/z - (V_{c1,Ed} - V_{c2,Ed})/2$	[6.2.5]
V _{wp,Ed} = 28115 [daN] Panneau d'âme en cisaillement	[5.3.(3)]
wp,Ed 20113 [daiv] I aimead dame en disamement	[0.0.(0)]
A_{vs} = 25.68 [cm ²] Aire de cisaillement de l'âme du poteau	EN1993-1-1:[6.2.6.(3)]
$A_{\rm c}$ = 25.68 [cm ²] Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
d _s = 432 [mm] Distance entre les centres de gravités des raidisseurs	[6.2.6.1.(4)]
M _{pl,fc,Rd} = 101 [daN*m] Résistance plastique de l'aile du poteau en flexion	[6.2.6.1.(4)]
M _{pl,stu,Rd} = 56 [daN*m] Résistance plastique du raidisseur transversal supérieur en flexion	[6.2.6.1.(4)]
M _{pl,stl,Rd} = 56 [daN*m] Résistance plastique du raidisseur transversal inférieur en flexion	[6.2.6.1.(4)]
$V_{wp,Rd} = 0.9 (A_{vs}^* f_{y,wc}) / (\sqrt{3} \gamma_{M0}) + Min(4 M_{pl,fc,Rd} / d_s, (2 M_{pl,fc,Rd} + M_{pl,stu,Rd} + M_{pl,stl,Rd}) / d_s)$	

AME EN COMPRESSION TRANSVERSALE - NIVEAU DE L'AILE INFERIEURE DE LA POUTRE

Résistance du panneau d'âme au cisaillement

0.88 < 1.00

vérifié

Pression diamétrale:

 $V_{wp,Ed} / V_{wp,Rd} \le 1.0$

32086

[daN]

[6.2.6.1]

(0.88)

Auteur: N.ROUMANEIX Fichier:

t _{wc} =	7 [mm]	Epaisseur efficace de l'âme du poteau	[6.2.6.2.(6)]						
$b_{eff,c,wc} =$	204 [mm]	Largeur efficace de l'âme à la compression [6.2.6.2							
$A_{vc} = 2$	25.68 [cm ²]	Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]						
ω =	0.84	Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]						
$\sigma_{\text{com,Ed}} =$	0.00 [daN/mm	²] Contrainte de compression maximale dans l'âme	[6.2.6.2.(2)]						
k _{wc} =	1.00	Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]						
$A_s = 1$	1.43 [cm ²]	Aire de la section du raidisseur renforçant l'âme	EN1993-1-1:[6.2.4]						
$F_{c,wc,Rd1} = \omega$	k _{wc} b _{eff,c,wc} t _{wc}	$_{c}f_{yc}/\gamma_{M0} + A_{s}f_{ys}/\gamma_{M0}$							
F _{c,wc,Rd1} =	55530 [da	aN] Résistance de l'âme du poteau	[6.2.6.2.(1)]						
Flambement	t:								
d _{wc} =	249 [mn	n] Hauteur de l'âme comprimée	[6.2.6.2.(1)]						
$\lambda_{p} =$	0.99	Elancement de plaque	[6.2.6.2.(1)]						
ρ =	0.81	Coefficient réducteur pour le flambement de l'élément	[6.2.6.2.(1)]						
$\lambda_s =$	5.60	Elancement du raidisseur	EN1993-1-1:[6.3.1.2]						
$\chi_s =$	1.00	Coefficient de flambement du raidisseur	EN1993-1-1:[6.3.1.2]						
$F_{c,wc,Rd2} = \omega$	k _{wc} ρb _{eff,c,wc} t	$f_{\text{wc}}f_{\text{yc}}/\gamma_{\text{M1}} + A_{\text{s}}\chi_{\text{s}}f_{\text{ys}}/\gamma_{\text{M1}}$							
$F_{c,wc,Rd2} =$	49974 [da	aN] Résistance de l'âme du poteau	[6.2.6.2.(1)]						
Résistance f	finale:								

PARAMÈTRES GÉOMÉTRIQUES DE L'ASSEMBLAGE

49974 [daN] Résistance de l'âme du poteau

 $F_{c,wc,Rd,low} = Min (F_{c,wc,Rd1}, F_{c,wc,Rd2})$

 $F_{c,wc,Rd} =$

LONGUEURS EFFICACES ET PARAMETRES - SEMELLE DU POTEAU

Nr	m	m _x	е	e _x	р	I _{eff,cp}	I _{eff,nc}	I _{eff,1}	I _{eff,2}	I _{eff,cp,g}	l _{eff,nc,g}	l _{eff,1,g}	I _{eff,2,g}
1	19	_	40	_	70	122	141	122	141	131	112	112	112
2	19	_	40	_	70	122	128	122	128	140	70	70	70
3	19	_	40	_	105	122	128	122	128	210	105	105	105
4	19	_	40	_	105	122	128	122	128	210	105	105	105
5	19	_	40	_	70	122	137	122	137	131	108	108	108

LONGUEURS EFFICACES ET PARAMETRES - PLATINE D'ABOUT

Nr	m	m _x	е	e _x	р	I _{eff,cp}	I _{eff,nc}	I _{eff,1}	l _{eff,2}	I _{eff,cp,g}	I _{eff,nc,g}	I _{eff,1,g}	I _{eff,2,g}
1	26	_	40	_	70	162	178	162	178	151	136	136	136
2	26	_	40	_	70	162	153	153	153	140	70	70	70
3	26	_	40	_	105	162	153	153	153	210	105	105	105
4	26	_	40	-	105	162	153	153	153	210	105	105	105
5	26	_	40	_	70	162	153	153	153	151	112	112	112

[6.2.6.2.(1)]

Auteur: N.ROUMANEIX Fichier:

m - Distance du boulon de l'âme

 m_{x} - Distance du boulon de l'aile de la poutre

- Pince entre le boulon et le bord extérieur е

- Pince entre le boulon et le bord extérieur horizontal

- Entraxe des boulons р

l eff,cp - Longueur efficace pour un boulon dans les mécanismes circulaires

l eff,nc - Longueur efficace pour un boulon dans les mécanismes non circulaires

l eff,1 - Longueur efficace pour un boulon pour le mode 1

l eff.2 - Longueur efficace pour un boulon pour le mode 2

l eff,cp,g - Longueur efficace pour un groupe de boulons dans les mécanismes circulaires

l eff,nc,g - Longueur efficace pour un groupe de boulons dans les mécanismes non circulaires

l eff,1,g - Longueur efficace pour un groupe de boulons pour le mode 1

- Longueur efficace pour un groupe de boulons pour le mode 2 leff,2,g

RÉSISTANCE DE L'ASSEMBLAGE À LA FLEXION

$F_{t,Rd} =$	2635	[daN]	Résistance du boulon à la traction	[Tableau 3.4]
B _{p,Rd} =	6970	[daN]	Résistance du boulon au cisaillement au poinçonnement	[Tableau 3.4]

F_{t.fc.Rd} – résistance de la semelle du poteau à la flexion

F_{t.wc.Rd} – résistance de l'âme du poteau à la traction

F_{t,ep,Rd} – résistance de la platine fléchie à la flexion

F_{t wb Rd} – résistance de l'âme à la traction

$$F_{t,fc,Rd} = Min (F_{T,1,fc,Rd}, F_{T,2,fc,Rd}, F_{T,3,fc,Rd})$$
 [6.2.6.4], [Tab.6.2]

 $F_{t,wc,Rd} = \omega b_{eff,t,wc} t_{wc} f_{yc} / \gamma_{M0}$

[6.2.6.3.(1)][6.2.6.5], [Tab.6.2]

 $\mathsf{F}_{\mathsf{t},\mathsf{ep},\mathsf{Rd}} = \mathsf{Min}\; (\mathsf{F}_{\mathsf{T},\mathsf{1},\mathsf{ep},\mathsf{Rd}}\,,\mathsf{F}_{\mathsf{T},\mathsf{2},\mathsf{ep},\mathsf{Rd}}\,,\mathsf{F}_{\mathsf{T},\mathsf{3},\mathsf{ep},\mathsf{Rd}})$

 $F_{t,wb,Rd} = b_{eff,t,wb} t_{wb} f_{yb} / \gamma_{M0}$ [6.2.6.8.(1)]

RESISTANCE DE LA RANGEE DE BOULONS N° 1

F _{t1,Rd,comp} - Formule	F _{t1,Rd,comp}	Composant
$F_{t,fc,Rd(1)} = 5270$	5270	Aile du poteau - traction
$F_{t,wc,Rd(1)} = 19027$	19027	Ame du poteau - traction
$F_{t,ep,Rd(1)} = 5270$	5270	Platine d'about - traction
$F_{t,wb,Rd(1)} = 27040$	27040	Ame de la poutre - traction
B _{p,Rd} = 13941	13941	Boulons au cisaillement/poinçonnement
$V_{\text{wp,Rd}}/\beta = 32086$	32086	Panneau d'âme - compression
$F_{c,wc,Rd} = 49974$	49974	Ame du poteau - compression
$F_{c,fb,Rd} = 58800$	58800	Aile de la poutre - compression
$F_{c,wb,Rd} = 47232$	47232	Ame de la poutre - compression
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	5270	Résistance d'une rangée de boulon

RESISTANCE DE LA RANGEE DE BOULONS N° 2

Auteur: N.ROUMANEIX

Fichier:

F _{t2,Rd,comp} - Formule	F _{t2,Rd,comp}	Composant
$F_{t,fc,Rd(2)} = 5270$	5270	Aile du poteau - traction
$F_{t,wc,Rd(2)} = 19027$	19027	Ame du poteau - traction
$F_{t,ep,Rd(2)} = 5270$	5270	Platine d'about - traction
$F_{t,wb,Rd(2)} = 25557$	25557	Ame de la poutre - traction
B _{p,Rd} = 13941	13941	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{1} F_{ti,Rd} = 32086 - 5270$	26815	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{1} F_{tj,Rd} = 49974 - 5270$	44704	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{1} F_{tj,Rd} = 58800 - 5270$	53530	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{1} F_{tj,Rd} = 47232 - 5270$	41962	Ame de la poutre - compression
$F_{t,fc,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 10541 - 5270$	5270	Aile du poteau - traction - groupe
$F_{t,wc,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 26305 - 5270$	21035	Ame du poteau - traction - groupe
$F_{t,ep,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 10541 - 5270$	5270	Platine d'about - traction - groupe
$F_{t,wb,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 34406 - 5270$	29135	Ame de la poutre - traction - groupe
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	5270	Résistance d'une rangée de boulon

Réduction supplémentaire de la résistance d'une rangée de boulons

$$\mathsf{F}_{\mathsf{t2},\mathsf{Rd}} = \mathsf{F}_{\mathsf{t1},\mathsf{Rd}} \, \mathsf{h_2}/\mathsf{h_1}$$

 $F_{t2,Rd} = 4326$ [daN]

Résistance réduite d'une rangée de boulon

[6.2.7.2.(9)]

RESISTANCE DE LA RANGEE DE BOULONS N° 3

F _{t3,Rd,comp} - Formule	F _{t3,Rd,comp}	Composant
$F_{t,fc,Rd(3)} = 5270$	5270	Aile du poteau - traction
F _{t,wc,Rd(3)} = 19027	19027	Ame du poteau - traction
= _{t,ep,Rd(3)} = 5270	5270	Platine d'about - traction
t,wb,Rd(3) = 25557	25557	Ame de la poutre - traction
3 _{p,Rd} = 13941	13941	Boulons au cisaillement/poinçonnement
$V_{\rm wp,Rd}/\beta - {\sum_{1}}^{2} F_{\rm ti,Rd} = 32086 - 9596$	22489	Panneau d'âme - compression
$F_{c,wc,Rd} - \Sigma_1^2 F_{tj,Rd} = 49974 - 9596$	40378	Ame du poteau - compression
$=_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 58800 - 9596$	49204	Aile de la poutre - compression
$F_{c,wb,Rd} - \Sigma_1^2 F_{tj,Rd} = 47232 - 9596$	37636	Ame de la poutre - compression
$F_{t,fc,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 10541 - 4326$	6215	Aile du poteau - traction - groupe
$F_{t,wc,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 25566 - 4326$	21240	Ame du poteau - traction - groupe
$=$ t,fc,Rd(3 + 2 + 1) - Σ_2^1 $F_{tj,Rd}$ = 15811 - 9596	6215	Aile du poteau - traction - groupe
$F_{t,wc,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 35488 - 9596$	25892	Ame du poteau - traction - groupe
$F_{t,ep,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 10541 - 4326$	6215	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2)} - \Sigma_2^2 F_{tj,Rd} = 29199 - 4326$	24873	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 15811 - 9596$	6215	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 51925 - 9596$	42328	Ame de la poutre - traction - groupe
$= {}_{t3,Rd} = Min (F_{t3,Rd,comp})$	5270	Résistance d'une rangée de boulon

Auteur : N.ROUMANEIX Fichier :

Réduction supplémentaire de la résistance d'une rangée de boulons

$$F_{t3,Rd} = F_{t1,Rd} h_3/h_1$$

 $F_{t3,Rd} = 3382$ [daN] Résistance réduite d'une rangée de boulon [6.2.7.2.(9)]

$$F_{t3,Rd} = F_{t2,Rd} h_3/h_2$$

F_{t3,Rd} = 3382 [daN] Résistance réduite d'une rangée de boulon [6.2.7.2.(9)]FRA

RESISTANCE DE LA RANGEE DE BOULONS N° 4

F _{t4,Rd,comp} - Formule	F _{t4,Rd,comp}	Composant
$F_{t,fc,Rd(4)} = 5270$	5270	Aile du poteau - traction
$F_{t,wc,Rd(4)} = 19027$	19027	Ame du poteau - traction
$F_{t,ep,Rd(4)} = 5270$	5270	Platine d'about - traction
$F_{t,wb,Rd(4)} = 25557$	25557	Ame de la poutre - traction
B _{p,Rd} = 13941	13941	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{3} F_{ti,Rd} = 32086 - 12978$	19107	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{3} F_{tj,Rd} = 49974 - 12978$	36996	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 58800 - 12978$	45822	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 47232 - 12978$	34254	Ame de la poutre - compression
$F_{t,fc,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 10541 - 3382$	7159	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 29217 - 3382$	25835	Ame du poteau - traction - groupe
$F_{t,fc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 15811 - 7708$	8103	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 35025 - 7708$	27318	Ame du poteau - traction - groupe
$F_{t,fc,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 21082 - 12978$	8103	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 41131 - 12978$	28153	Ame du poteau - traction - groupe
$F_{t,ep,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 10541 - 3382$	7159	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 35039 - 3382$	31657	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 15811 - 7708$	8103	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 46718 - 7708$	39010	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 21082 - 12978$	8103	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 69444 - 12978$	56466	Ame de la poutre - traction - groupe
$F_{t4,Rd} = Min \; (F_{t4,Rd,comp})$	5270	Résistance d'une rangée de boulon

Réduction supplémentaire de la résistance d'une rangée de boulons

$$F_{t4,Rd} = F_{t1,Rd} h_4/h_1$$

 $F_{t4,Rd} = 1493$ [daN] Résistance réduite d'une rangée de boulon [6.2.7.2.(9)]

$$F_{t4,Rd} = F_{t2,Rd} h_4/h_2$$

 $F_{t4,Rd} = 1493$ [daN] Résistance réduite d'une rangée de boulon [6.2.7.2.(9)]FRA

RESISTANCE DE LA RANGEE DE BOULONS N° 5

Auteur: N.ROUMANEIX

Fichier:

F _{t5,Rd,comp} - Formule	F _{t5,Rd,comp}	Composant
$F_{t,fc,Rd(5)} = 5270$	5270	Aile du poteau - traction
$F_{t,wc,Rd(5)} = 19027$	19027	Ame du poteau - traction
$F_{t,ep,Rd(5)} = 5270$	5270	Platine d'about - traction
$F_{t,wb,Rd(5)} = 25557$	25557	Ame de la poutre - traction
$B_{p,Rd} = 13941$	13941	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/\beta - \sum_{1}^{4} F_{ti,Rd} = 32086 - 14471$	17614	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{4} F_{tj,Rd} = 49974 - 14471$	35503	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 58800 - 14471$	44329	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 47232 - 14471$	32761	Ame de la poutre - compression
$F_{t,fc,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 10541 - 1493$	9048	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 29527 - 1493$	28034	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 15811 - 4875$	10936	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 37486 - 4875$	32611	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 21082 - 9201$	11881	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 40986 - 9201$	31785	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5+4+3+2+1)} - \sum_{4}^{1} F_{tj,Rd} = 26352 - 14471$	11881	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4+3+2+1)} - \sum_{4}^{1} F_{tj,Rd} = 44690 - 14471$	30219	Ame du poteau - traction - groupe
$F_{t,ep,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 10541 - 1493$	9048	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 36137 - 1493$	34644	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 15811 - 4875$	10936	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 53657 - 4875$	48782	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 21082 - 9201$	11881	Platine d'about - traction - groupe
F = 65336 - 9201	56135	Ame de la noutre - traction - groupe

Réduction supplémentaire de la résistance d'une rangée de boulons

$$F_{t5,Rd} = F_{t1,Rd} h_5/h_1$$

 $F_{t5,Rd} = 549$ [daN] Résistance réduite d'une rangée de boulon [6.2.7.2.(9)]

 $F_{t5,Rd} = F_{t2,Rd} h_5/h_2$ $F_{t5,Rd} = 549$ [daN] Résistance réduite d'une rangée de boulon

[6.2.7.2.(9)]FRA

TABLEAU RECAPITULATIF DES EFFORTS

Nr	h _j	F _{tj,Rd}	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	$F_{t,wb,Rd}$	F _{t,Rd}	$B_{p,Rd}$
1	391	5270	5270	19027	5270	27040	5270	13941
2	321	4326	5270	19027	5270	25557	5270	13941
3	251	3382	5270	19027	5270	25557	5270	13941
4	111	1493	5270	19027	5270	25557	5270	13941
5	41	549	5270	19027	5270	25557	5270	13941

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION $\mathbf{M}_{\mathbf{j},\mathrm{Rd}}$

$$M_{j,Rd} = \sum h_j F_{tj,Rd}$$

Auteur: N.ROUMANEIX Fichier:

 $M_{i,Rd} = 4482$ [daN*m] Résistance de l'assemblage à la flexion [6.2]

 $M_{b1,Ed} / M_{j,Rd} \le 1.00$ non vérifié (2.23)

RÉSISTANCE DES SOUDURES

A _w =	100.72	[cm ²]	Aire de toutes les soudures	[4.5.3.2(2)]
A _{wy} =	63.18	[cm ²]	Aire des soudures horizontales	[4.5.3.2(2)]
$A_{wz} =$	37.54	[cm ²]	Aire des soudures verticales	[4.5.3.2(2)]
I _{wy} =	26261.49	[cm ⁴]	Moment d'inertie du système de soudures par rapport à l'axe horiz.	[4.5.3.2(5)]
$\sigma_{\perp max} = \tau_{\perp max} =$	6.52	[daN/mm ²]	Contrainte normale dans la soudure	[4.5.3.2(6)]
$\sigma_{\perp} = \tau_{\perp} =$	5.72	[daN/mm ²]	Contraintes dans la soudure verticale	[4.5.3.2(5)]
τ _{II} =	0.00	[daN/mm ²]	Contrainte tangentielle	[4.5.3.2(5)]
$\beta_{w} =$	0.80		Coefficient de corrélation	[4.5.3.2(7)]

$\sqrt{[\sigma_{\perp max}^2 + 3*(\tau_{\perp max}^2)]} \le f_u/(\beta_w^* \gamma_{M2})$	13.05 < 36.00	vérifié	(0.36)
$\sqrt{[\sigma_{\perp}^{2} + 3^{*}(\tau_{\perp}^{2} + \tau_{ }^{2})]} \le f_{u}/(\beta_{w}^{*}\gamma_{M2}^{2})$	11.45 < 36.00	vérifié	(0.32)
$\sigma_{\perp} \le 0.9 * f_u / \gamma_{M2}$	6.52 < 25.92	vérifié	(0.25)

RIGIDITÉ DE L'ASSEMBLAGE

t _{wash} =	3	[mm]	Epaisseur de la plaquette	[6.2.6.3.(2)]
h _{head} =	6	[mm]	Hauteur de la tête du boulon	[6.2.6.3.(2)]
h _{nut} =	8	[mm]	Hauteur de l'écrou du boulon	[6.2.6.3.(2)]
L _b =	44	[mm]	Longueur du boulon	[6.2.6.3.(2)]
k ₁₀ =	1	[mm]	Coefficient de rigidité des boulons	[6.3.2.(1)]

RIGIDITES DES RANGEES DE BOULONS

Nr	hj	k ₃	k ₄	k ₅	k _{eff,j}	$\mathbf{k}_{eff,j}\;\mathbf{h}_{j}$	k _{eff,j} h _j ²
1	391	2	17	57	1	2.95	115.16
2	321	1	10	29	1	1.91	61.34
3	251	2	16	44	1	1.83	45.99
4	111	2	16	44	1	0.81	8.97
5	41	2	16	47	1	0.30	1.23
					Somme	7.81	232.68

$$k_{\text{eff,j}} = 1 / (\sum_{3}^{5} (1 / k_{i,j}))$$
 [6.3.3.1.(2)]

$$z_{eq} = \sum_{j} k_{eff,j} h_{j}^{2} / \sum_{j} k_{eff,j} h_{j}$$

$$z_{eq} = 298 \text{ [mm]} \quad \text{Bras de levier \'equivalent}$$
[6.3.3.1.(3)]

$$k_{eq} = \sum_{j} k_{eff,j} h_{j} / z_{eq}$$
 $k_{eq} = 3 \quad [mm]$ Coefficient de rigidité équivalent du système de boulons [6.3.3.1.(1)]

Auteur: N.ROUMANEIX Fichier:					
de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]				
amètre de transformation	[5.3.(7)]				
s de levier	[6.2.5]				
fficient de rigidité du panneau d'âme du poteau en cisaillement	[6.3.2.(1)]				
fficient de rigidité du panneau d'âme du poteau en compression	[6.3.2.(1)]				
//k ₂ + 1 / k _{eq})	[6.3.1.(4)]				
N*m] Rigidité en rotation initiale	[6.3.1.(4)]				
Coefficient de rigidité de l'assemblage	[6.3.1.(6)]				
	[6.3.1.(4)]				
N*m] Rigidité en rotation finale	[6.3.1.(4)]				
olage par rigidité.					
N*m] Rigidité de l'assemblage rigide	[5.2.2.5]				
N*m] Rigidité de l'assemblage articulé	[5.2.2.5]				
	mmètre de transformation s de levier fficient de rigidité du panneau d'âme du poteau en cisaillement fficient de rigidité du panneau d'âme du poteau en compression / k ₂ + 1 / k _{eq}) N*m] Rigidité en rotation initiale Coefficient de rigidité de l'assemblage N*m] Rigidité en rotation finale plage par rigidité. N*m] Rigidité de l'assemblage rigide				

$S_{j,pin} \le S_{j,ini} < S_{j,rig} SEMI-RIGIDE$

COMPOSANT LE PLUS FAIBLE:

RUPTURE DES BOULONS

Assemblage non satisfaisant vis à vis de la Norme

Ratio 2.23