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An algorithm is presented which efficiently determines whether a point is interior to or on a 
polyhedron boundary. Such algorithms are useful in 3-D CAD/CAM and solid modeling 
software as well as geoscience and mining software applications. The algorithm has advantages 
over others that have been published in terms of preprocessing time and ease of implementa- 
tion The algorithm presented decides whether or not a point is contained within a given 
polyhedron by examining how the polyhedron radially projects to the unit sphere centered at 
the point in question. If the point is inside the polyhedron, the net area covered by the 
projection is the total area of the sphere; if outside the net area covered is nil. Within 
the algorithm these determinations are made by using the Gauss-Bonnet formula to compute 
the areas of the regions on the sphere covered by radially projected faces. 

1. INTRODUCTION 

This paper describes an algorithm for determining whether or not an arbitrary 
point in R3 is contained in a compact region in three-space whose topological 
boundary is a polyhedron. The algorithm is valid even when the region has “holes” 
or is disconnected. Applications of the algorithm occur in geometric modeling for 
CAD/CAM and geoscience applications [6, lo]. 

The algorithm to be presented is a generalization of the line integral method for 
determining point containment by a planar polygonal region which need not be 
connected or simply connected (can contain holes and separate components) [6-91. 
In the planar case, the polygonal region is represented as a set of oriented edges 
{ e,, e,, . . . e, }. Each e, is an edge of the bounding polygon, and in each case, its 
orientation is compatible with a fixed orientation on the region. If p is a point in the 
plane, then to determine whether or not p is in the given region, a triangle is 
constructed for each edge ej by taking the endpoints of e, and p as vertices. For each 
i, the angle opposite e, is computed and signed positively, if the orientation on e, 
moves counterclockwise about p, and negatively otherwise. 

All of these signed angles are then summed. The result will be zero if p is outside 
of the region, rr if it is on the interior of an edge, and 27r if it is inside. Since the 
result is essentially ternary in value, either 0, 7~, or 2m, the computation of the angles 
can be approximated if the maximum error per side is less than n/2n. 
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To motivate the extension of this technique to the three-dimensional analog-point 
containment by a polyhedron-we observe that the computation of the angle 
opposite the edge ej is equivalent to measuring the arc length of the edge ei radially 
projected onto the unit circle centered at p. 

The obvious and, as we will soon show, the correct analogy in three dimensions is 
to compute and sum the signed (relative to orientation) surface areas of the 
polyhedron’s faces radially projected to a unit sphere. This sphere should be 
centered at the point to be tested. If the polyhedron satisfies the relatively loose 
constraints laid down in the formal definitions that follow, the sum will be zero if the 
point is outside the polyhedron, 2a if on the interior of a face, and 477 if inside. 

The algorithm as presented here will accommodate without preprocessing the 
so-called boundary representations of solids as described by Baumgart [l], Eastman 
and Weiler [2], and others. In fact, it should work well with any boundary 
representation that provides for each face a list of all oriented boundary loops. The 
algorithm complexity is linear with the number of edges, as is its planar analog and 
other 3-D algorithms occurring in the literature. The procedure is particularly 
simple, in essence requiring only the computation and summation of the interior 
angles of a polyhedron on the sphere, and is suitable for firmware or hardware 
implementation. Although algorithms with better than linear expected behavior are 
possible if the data (polyhedron) are presorted and optimized for the point in 
polyhedron tests [ll], the sort is time and space consuming and not natural for other 
accesses to the data. 

2. THE ALGORITHM 

We now move to a description of the algorithm. For this purpose we rely on brief, 
intuitive definitions of the key concepts in an effort to avoid clouding the issue with 
excessive formalism. Sharp definitions and a formal proof of the algorithm’s correct- 
ness will be provided in Section 3. 

Briefly, a polyhedron is a closed, piecewise planar surface that bounds a “solid” in 
R3. A polyhedral region is the “solid” bounded by a polyhedron, The faces of a 
polyhedron are its planar pieces (assumed to be finite in number). The loops of a 
face are the closed, non-self-intersecting polygonal curves that bound it. 

The orientation of a polyhedral region is provided by normals to its faces which 
point outward relative to the region. This along with the right-hand rule provides a 
preferred direction or flow about the polygon bounding each face. 

Suppose we are given a polyhedral region R with bounding polyhedron P(R), and 
a point p in three-space to be tested for containment by R; let F,, F;, . . . , F,, be the 
set of all the faces of P(R). 

If it happens that p is a vertex of any of the faces above, we are done-the point 
being tested is on the polyhedron. Otherwise, we wish to compute the area A(<) of 
the spherical polygonal region resulting from the projection of -F;. radially to the unit 
sphere centered at p. From an application of the Gauss-Bonnet formula [5] to A( I;;) 
we have 

A(&)= i aj +(2(s - r)- r)77 
j=l 
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where the (yi are the interior angles of the polygonal region F; projected on the sphere 
and where s and r are the numbers of outer and inner loops, respectively, and i is the 
number of edges per face F,. Now the a, correspond to the oriented angles ot 
intersection of the two planes passing through p and the sides of F;, and are easily 
calculated, being careful to follow the orientation of the edges of F;. 

It is important to note that the case of coincidence with an edge must be detected 
during angle-between-plane calculation prior to the area calculations. When the list 
of faces is exhausted with no “on edge” condition detected, the sum 

is computed where 6(i) = 1 if the radial projection is orientation preserving and 
S(i) = - 1 otherwise. The projection is said to be orientation-preserving on a face if 
it maps the flow about any outer loop to one that is compatible with the outward 
normal to the sphere. The result will be 4a if p is in R, 2n if p is interior to a face, 
and 0 if p is outside. 

The case of the point on a polyhedron can be detected without computing the 
final sum. If for any E;, A(4) = 0, then the point p lies on the plane of E]. and the 
planar point in the polygon dgorithm (described in the Introduction) can be 
applied. Note that as in the planar case, the sum to be computed is ternary in value 
and therefore needs to be computed to no more than three bits of precision. If the 
maximum magnitude of the error per face area is less than m/n, then the correct 
answer can be computed. 

We will now present a proof of the algorithm. 

3. PROOF OF THE ALGORITHM 

We begin by giving a few key definitions and representational ground rules on 
which the validity of the aIgorithm depends. 

DEFINITION. A polygonal region is a nonempty open subset of a plane whose 
topological closure is compact and whose boundary, called a polygon, is a piecewise 
linear curve with a finite number of line segments. A closed polygonal region is the 
closure of a polygonal region. 

DEFINITION. A polyhedral region, R, is a nonempty open subset of W3 whose 
closure is compact and whose boundary, calIed a pdyhedron, is a union of a finite 
number of closed polygonal regions, called faces. 

Remark. Both polygonal and polyhedral regions can be disconnected and have 
holes. 

We will assume that R3 is endowed, once and for all, with the orientation 
determined by the right-hand ruIe. Then, if R is any polyhedral region in R3, an 
orientation is automaticaIly induced on R which in turn induces an orientation on its 
boundary, P(R), and alI of its faces. This orientation on a face, F, uniquely 
determines an orientation or flow around the connected components of its bounding 
polygon and thus on its edge-s. From now on, whenever reference is made to an 
orientation of a face, it will always be this induced one. In the case of polygons and 
their edges, orientations wiII be used (and make sense) only when they are induced 
by the orientation on a specific containing face. 
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Remark. The orientation on a face F is equivalent to a preferred direction or 
flow around an outward-pointing (relative to the polyhedral region) normal to F. In 
our case, that flow is counterclockwise. By definition any polyhedron can be written 
as a finite union of faces, any two of which meet at most at their bounding edges. 
Further, the faces can be chosen so that the orientation on each (induced by R) is 
compatible with a fixed one on its containing plane. We will assume, then, that if R 
is any polyhedral region, P(R) will be represented as such a union. It is not hard to 
see that the boundary of any face F can be written as a finite union of simple 
(non-self-intersecting) closed polygonal curves, which we call loops, with the follaw- 
ing property. 

If P is the plane containing F, then the bounded components in P determined by 
any two of these loops are either disjoint or one bounded component is contained 
entirely within the other. 

Remark. It is well known that any loop, L, in a plane separates that plane into 
two disjoint connected components exactly one of which is metrically bounded. It is 
this bounded component that is referred to above, and it is called the bounded 
component determined by L. 

Let F be a face of a given polyhedral region and let L be one of a system of loops, 
as above, of F. Let N be a normal to F that is outward-pointing relative to the 
polyhedral region. 

DEFINITION. The loop L is said to be an outer loop if the orientation (flow) on L 
induced by F is counterclockwise about N (i.e., it is compatible with the orientation 
of F). Otherwise, L is said to be an inner loop. 

Any face, F, of P(R) will be assumed to be represented by two sets of loops, 
O(F) (the outer loops of F) and I(F) (the inner loops of F), which together satisfy 
the criteria defined above. Loops, in turn, are assumed to be represented by their 
(oriented) edges. 

The verification of the mathematical correctness of the algorithm is based on the 
following well-known result. We state this without proof in the context of the 
definitions and notations of this paper. 

THEOREM 1. Let R be a polyhedral region in W 3, p E R 3 with p 4 P(R), and let L 
be a ray starting at p that has an empty intersection with any edge of P(R). Then L 
intersects P(R) in a$nite number, n, af points; further, n is odd if p is inside R, and n 
is even if p is outside R. 

Now, we establish the key fact on which the algorithm is based. 
First, by radial projection we mean the map, p, defined by p(x) = x/llxll for 

x E R3, x Z fl and llxll is the Euclidean norm of x. 

THEOREM 2. Without loss of generality assume p is the origin 13. Using the same 
hypothesis and natations of the previous section, and assuming that fl 4 P(R), we have 

xS(i)A(e.) = 0, when 8 65 R 

where 
= 4n, when 8 E R 

S(i) = 1 if radial projection is arientation preserving on F, 
= -1 atherwise . 
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Remark. The orientation on the unit sphere S2 we assume to be given by the 
outward-pointing normal field and it is further assumed that this is compatible with 
the fixed orientation on fw3, 

ProojI Let X, denote the characteristic function of the image of F; on the sphere. 
i.e.. 

x,(x) = 1 if x E image F; 
zz 0 otherwise. 

Then 

S(i)A(t;;) =L,S(i)qdS 

where dS is the standard element of surface area on the unit sphere, S2. Thus, we 
can write 

To prove the theorem, it is sufficient to prove that 

ia(i) (almosteverywhereonS2)ifBER 
i=l 

= 0 (almost everywhere on S2 ) otherwise 

since jp dS = 47~. To see this, let 

Z= {x~S~JxisintheimageofsomeedgeofP(R)). 

Clearly, Z has measure zero in S 2. If x0 is in the complement of Z in S2, then 
evidently the ray, L, starting at the origin and passing through xg meets P(R) in 
finitely many points, xi , . . . , xik, each of which are in the interiors of distinct faces, 
say J$. . . , F$ respectiv!ely. We assume that the ordering i,, i,, . . . , i, is according to 
distance from t9 with the intersection point xi1 being closest. 

First, we note that for i # i,, i,, . . . ,ik, it ts evident that 

which gives 

Now, if 0 is inside of R, then at the point xi,, the ray L, as we move away from 8, 
is exiting R. In view of our orientation conventions, this clearly implies that radial 
projection is orientation-preserving on 6,. Hence, &i,) = 1. But then L must be 
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entering R at xi2 and thus S( i2) = - 1. Arguing in this fashion, we see that the 6( i,) 
will be alternating in sign as L alternately exits and enters R. Hence, we can 
conclude that 

S(i,) = 1 if j is odd 
= -1 ifj is even. 

But by Theorem 1, k is odd so that 

1 = i S(i,) = 5 G(i,)&.,(x,) 
j=l j=l 

since X,,(x,) = 1 for 1 5 j I k, and this is precisely the desired conclusion. 
Now, observe that if f3 65 R, L must be entering R at xfl so that 6(i,) = - 1. Now 

arguing as above and using Theorem 1 to deduce that k 1s even, we get 

i S(ij) X,,(X,) = 0, 
j-1 

and the theorem is proved. 

COROLLARY 3. Let R be a polyhedral region in I? 3 and let F,, . . . , F, be the faces of 
P(R). Suppose that 8 is an interior point of 5 for some 1 I j 5 n (in the topology of 
the plane containing F,). Then in the notation of Theorem 2, 

C G(i)A(E;;) = 2n. 
i+j 

Proof Since 8 lies interior to 5, 8 65 I;; for any i, i + j. Thus, since each of the 
finitely many 4 is compact, there 1s an r 4 R with r > 0 such that the closed ball, 
B(r), of radius r centered at 8 is disjoint from 4 for i f j. Let T be a tetrahedron 
contained entirely in B(r), one of whose faces, say H,, contains 8 in its interior, lies 
in the plane of 4, and hence interior to Fj. Clearly, such a tetrahedron always exists. 

Now, replace 5 by the new face $ constructed by removing the interior of Ho 
from FJ. 

Then the remaining faces of T, say Z-Z,, Hz, H3 along with 4 and the I;;, i # j form 
the face list for a new polyhedral region k with the property that 9 4 P(k). Assume 
that 13 is inside k, which can always be arranged. 

Then we have by Theorem 2 

477 = CG(i)A(&) + i S(H,)A(H,) + G(J.)A(F;) 
i#j I=1 

where the A’s and 6’s are defined as before. 
Now since 4 and B are coplanar, the image of 8 under radial projection is a curve 

on the sphere. More precisely, its image is exactly the great circle, S, on the sphere 
which is contained in the plane of 4. As a result, A(4) = 0. 
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A moment’s reflection on the construction of T, its convexity, and the “inside” 
status of 6 will reveal that radial projection maps 

HI i.: H, u H, 

in a one-to-one, orientation-preserving fashion onto one of the hemispheres de- 
termined by S. Hence 

i G(H,)A(H,) = i A(H,) = 277 
I=1 I=1 

and the desired result is established. 
Remark. Theorems 1 and 2 and Corollary 3 all have analogous formulations in 

08” for any n 2 1 and can be proved by virtually the same lines of argument as used 
above. Further, by somewhat more sophisticated techniques, one can arrive at 
similar results without the piecewise linear restriction. In particular, this is the case 
for the establishment of the validity of the three-valued planar containment algo- 
rithm outlined in the Introduction. 

5. CONCLUSIONS 

The algorithm has been implemented in PASCAL on a VAX 11/780. It appears 
reasonably fast and extremely robust. In the example below, the barbell consists of 
232 faces with the “barbell axis” coincident with the z axis and one unit-radius 
“ball” centered at the origin and the other centered at (0, 0,4.2). The algorithm was 
tested with several points inside and outside the polyhedron as tabulated below. 
Related applications of the algorithm include mass property calculations and area 
filling [3, 41. 

FIG. 5.1. Barbell consisting of 232 faces. 
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Point 

(0, 0, 1) 
(1,1,2) 
(0.3,0.3,2) 
(0.2,0.2,2) 

(LO, 0) 
(l.l,O, 0) 

In/out 

In 
out 
out 
In 
On 
out 

CPU 
W) 

-- 3.41 
3.31 
3.19 
3.37 
3.29 
3.31 
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