

1

 Advanced Visual LISP®
Speaker: Doug Broad, Nash Community College

 CP311-4 Put the power of Visual LISP in your hands to create, compare, and edit drawings; interact
with Excel; access the Windows registry; and work with reactors. This class demonstrates how to use the
active document, other open documents, and documents using ObjectDBX, and how to interact with other
applications. We’ll discuss tips for using VLIDE (Visual LISP Integrated Development Environment),
demystifying ActiveX documentation, using ObjectDBX, accessing the Windows registry, and putting reactors
to work. Sample programs will be included. Participants should know LISP but need not know Visual LISP

 About the Speaker:
Doug Broad has taught Architectural Technology at Nash Community College, Rocky Mount, NC and has
been an Architect since 1986. An AutoCAD user since R2.6, an AutoLISP user since R9, and a Visual LISP
user since R2000, he has developed many programs to help in his Architectural practice. Currently using
AutoCAD Architecture 2008, LISP and Visual LISP continue to give him a competitive edge.
dbroad@nashcc.edu

 Advanced Visual LISP®

2
CP-311--4

Make Sure Vlisp Is Loaded First With (VL-LOAD-COM)

For some past versions, the loading of the visual lisp system has been automatic. AutoCAD

2008 does not load the system automatically.

Rule: Assume the system will not be loaded before your program loads.

Advice: Put (vl-load-com) at the top of any file to be loaded. There is no need to

include them inside any user defined function except when posting code to

newsgroups.

Otherwise: Error messages are generated indicating functions aren’t defined:

$ (vlax-get-acad-object)

; error: no function definition: VLAX-GET-ACAD-OBJECT

C
o
m

m
a
n
d

S
e
n
d
C

o
m

m
a
n
d

V
L
A

-

V
L
A

X
-

E
n
tm

o
d

E
n
tg

e
t

E
n
tm

a
k
e

Reactor Callback Capable + � �

Best raw speed + � � �

Best access to active drawing + � � �

ObjectDBX Capable + � �

Object access is self commenting + � � � �

Supports selection sets. + � � � � � � �

Can be used with other open drawings. + � � �

Can be used to control other applications + � �

Works in R14 and earlier + � � � �

Is affected by System Variables - � �

Depends on Command Prompt Sequence - � �

May require complex error handlers - � �

Command

Methods

ActiveX

Methods
A Comparison of LISP

Methodologies. Use Which

One is Best In Context

G
o
o
d
/B

a
d

DXF Methods

Why Learn Vlisp?

1. To allow your LISP programs to interface with other documents and with other
applications.

2. To use reactors to automate certain tasks. (Note: Most reactive tasks have been
made unnecessary due to fields, dynamic blocks, groups, palettes, the design center
and formulas in tables.

3. To better isolate your programs from other LISP programs.
4. To make your code more readable.

 Advanced Visual LISP®

3
CP311-4

Short Review of Vlide Features
 Autodesk has provided VLIDE (Visual Lisp Integrated Development Environment) to assist

with LISP coding. Since other AU classes have focused entirely on these features, we will

only review its primary productivity features:

1 Syntax coloring:

a. Reserved words: blue

i. Indicate functions protected by Autodesk. Help identify correct

spelling and protect mistaken reassignment as user variables.

b. Parentheses: Red

c. Nothing is worse than misplaced, missing, or extra parentheses.

d. Comments: Grey

i. The editor ignores these but you shouldn’t. Be overabundant with

explanations about the intentions of your code.

e. Strings: Magenta

i. A misplaced double quote can really mess up a program. If large parts

of your program are pink, look for the beginning and decide where to

end the string.

f. Constants: Green

i. The letters I, l, and 1 look alike. The color here makes the choice

obvious.

2 Auto-indenting and parentheses matching

a. Indicates how many parentheses remain unclosed

b. Each right parenthesis flashes its corresponding opening parenthesis.

c. Double-clicking on a parenthesis highlights the entire expression.

3 AutoComplete

a. Type enough of a built-in function or reserved word and you can

finish by using CTRL+Spacebar.

b. A short list of choices can be selected from pop down list. See video.

 Advanced Visual LISP®

CP311-4

4 Appropos

a. Forget exactly how to spell something or need to look it how to use a

function. No worries. Use

5 Database exploration.

a. View -> Browse

drawing

database

b. This is great for

finding out about

objects. Avoid the need to use:

i. (setq entinfo

ii. (setq tblinf (entget

6 Debugging Tools

a. Ability to partially load.

i. Double-click a parenthesis in the code editor and choose “load

selection”. After looking at the results in the console and inspecting

variable values, load the next expression, etc.

ii. Reveals errors b

need to add debug printing statements to log variable values.

b. Break on error.

i. Don’t know where problems lie?

Use this to hold the value of local

variables in a known state and

open the error trace window.

c. Code animation

i. Find out where your code is

spending its time and where

execution stops.

d. Breakpoints:

i. Stop at a predetermined point to learn

the values of your variables at any

Code step

4

Forget exactly how to spell something or need to look it how to use a

function. No worries. Use apropos. Help is a quick jump from there.

Database exploration.

objects. Avoid the need to use:

entinfo (entget(car(entsel))’(“*”)))

(setq tblinf (entget (tblobjname “layer” “targetlayer”)))

Ability to partially load.

click a parenthesis in the code editor and choose “load

selection”. After looking at the results in the console and inspecting

variable values, load the next expression, etc.

Reveals errors by showing the intermediate values. Reduces the

need to add debug printing statements to log variable values.

Don’t know where problems lie?

Use this to hold the value of local

variables in a known state and

open the error trace window.

Find out where your code is

spending its time and where

execution stops.

Stop at a predetermined point to learn

the values of your variables at any point.

Code step-through can be performed.

Forget exactly how to spell something or need to look it how to use a

apropos. Help is a quick jump from there.

click a parenthesis in the code editor and choose “load

selection”. After looking at the results in the console and inspecting

y showing the intermediate values. Reduces the

need to add debug printing statements to log variable values.

7 Object inspector:

a. Beginning with

acad-object), you can begin exploring any related thing.

8 Syntax checking

a. Aren’t sure whether you have localized

your variables? Choose to report

statistics during syntax checking

9 Form closing comments

a. Think you know where each expression ends? Bet you don’t.

10 Last Break Source

a. CTRL+9

b. Jump straight to the

problem.

11 Error Trace

a. CTRL+SHFT+R

b. Identify what is broken. See missing variable values

12 Developer Help F1

a. This really should be f

most valuable programming resource.

b. In 2008, the search features were mistakenly omitted (bug). To be able to

search, go to the AutoCAD window and choose Help

the menu. The search

c. Find the object model under the ActiveX and VBA help area. This is most
important for the Vlisp programmer.

 Advanced Visual LISP®

5

Object inspector:

Beginning with a value or symbol(you can enter an expression like (vlax

object), you can begin exploring any related thing.

Syntax checking

Aren’t sure whether you have localized

your variables? Choose to report

statistics during syntax checking

comments

Think you know where each expression ends? Bet you don’t.

Last Break Source

Jump straight to the

CTRL+SHFT+R

Identify what is broken. See missing variable values – NIL ---

Developer Help F1

This really should be first rather than last since it has continued to be my

most valuable programming resource.

In 2008, the search features were mistakenly omitted (bug). To be able to

search, go to the AutoCAD window and choose Help->Developer help from

the menu. The search features there are still intact.

Find the object model under the ActiveX and VBA help area. This is most
important for the Vlisp programmer.

Advanced Visual LISP®

CP311-4

a value or symbol(you can enter an expression like (vlax-get-

Think you know where each expression ends? Bet you don’t.

irst rather than last since it has continued to be my

In 2008, the search features were mistakenly omitted (bug). To be able to

>Developer help from

Find the object model under the ActiveX and VBA help area. This is most

 Advanced Visual LISP®

6
CP311-4

Vlide’s Object Model Documentation

1. What is it?

a. A color coded outline block diagram starting from the application level down
to individual objects.

2. Why use it?

a. To understand the structure of the system.
b. To quickly access object methods and properties.
c. To quickly access help files.
d. To learn the access function names and their arguments.

3. How to get to

it?

a. In Vlide hit
F1.

 Advanced Visual LISP®

7
CP311-4

Component Object Model Terminology

Collection: A group of objects associated with one another and sharing common

characteristics and methods

• Plural node names are usually collections.

• The shape of the node (rectangles are collections). Slots are objects.

 Legend of Object Model

Object: A single indivisible part (Application, Document, Block, Line, Dictionary, Xrecord)

Objects usually belong to collections but they could be properties of Objects or Collections.

Selectionsets: similar to collections but are considered objects. They have slightly

different capabilities and methods. For example, most collections have an add method.

Selectionsets have an additem method. You can still use vlax-for and vlax-map-collection

on them.

Property: a characteristic of an object or collection. Some properties are read-only. A

property and a collection can refer to the same thing. Blocks collection is a property of a

document. So is the layers collection.

Method: an action applied to a collection or object. Some methods are inherited but are

not explicitly stated. To remove an object from a block, you delete the object.

Referenced: Objects cannot be deleted if they are referenced by others objects.

Owner: an object that possesses or has responsibility of other objects or collections.

Model space objects are owned by the model space.

 Advanced Visual LISP®

8
CP311-4

Accessing the Object Model with Vlisp

The application object is the root object (top level). Since it contains all other objects, you

have access to everything below. Starting from the application object however, is not

usually the most efficient way to lower level elements.

Object Access from Application Object

Level Access To Use

1 Application (vlax-get-acad-object)

2 ActiveDocument (vla-get-activedocument (vlax-get-acad-object)))

3 Modelspace (vla-get-modelspace(vla-get-activedocument(vlax-get-acad-object)))

3 Paperspace (vla-get-paperspace(vla-get-activedocument(vlax-get-acad-object)))

2 Preferences (vla-get-preferences(vlax-get-acad-object))

3 ActiveSelectionSet (vla-get-activeselectionset(vla-get-activedocument(vlax-get-acad-

object)))

Methods To Process A Collection

Basic Format Description of Action

(vlax-for Item Collection Expressions) Processes every object in the collection.

Equivalent to Foreach

(vlax-map-collection Collection Function) Applies the function to every object in the

collection. Equivalent to Mapcar

(setq i 0)

(while condition

 (setq Item (vla-item Collection n)

 i (1+ i))

 Expressions)

Allows partial processing of collection until

condition no longer applies

 Object Access From a Line Object

Access To Use

Application (vla-get-application line)

Document (vla-get-document line)

Block Containing Line (vla-ObjectIDToObject(vla-get-document line)(vla-get-ownerid line))

Modelspace (vla-get-modelspace(vla-get-document line))

Addressing low-level items like the Modelspace collection by starting from the application

object is tedious. Therefore, it is good practice to save either the active document or the

active Modelspace object and then to reference lower level objects starting from there.

Such code may be more readable

The direct approach has one advantage:

purposes for each argument

By using separate setq statements, the programmer can individually test and debug the

process.

The following example is a library access function which uses techniques

debatable. It can, however speed access and can shorten other functions, improving

readability.

Example:

The library function “ThisModelSpace” above stores a global variable to make successive

access to the object faster. Caution should always be exercised when usi

variables however, since they are outside the scope of the functions that use them and

since other functions might use the same symbol names for other purposes. For Vlisp, also,

there can be a problem when objects aren’t released. Generally it

document, the application object, and the model and paper space collections as globals.

Never assume lower level objects should be stored since they can change or disappear.

Given a line stored in variable “a”. Let’s say the l

object data from an erased line leads to an error:

(vla-get-startpoint a)

 Advanced Visual LISP®

9

more readable and easier to test than the more direct:

The direct approach has one advantage: there are no variables stored or n

purposes for each argument can be commented instead.

By using separate setq statements, the programmer can individually test and debug the

The following example is a library access function which uses techniques some find

can, however speed access and can shorten other functions, improving

The library function “ThisModelSpace” above stores a global variable to make successive

access to the object faster. Caution should always be exercised when using global

variables however, since they are outside the scope of the functions that use them and

since other functions might use the same symbol names for other purposes. For Vlisp, also,

there can be a problem when objects aren’t released. Generally it is safe to keep the active

document, the application object, and the model and paper space collections as globals.

Never assume lower level objects should be stored since they can change or disappear.

Given a line stored in variable “a”. Let’s say the line gets erased. An attempt to access

object data from an erased line leads to an error:

Advanced Visual LISP®

CP311-4

there are no variables stored or named. The

By using separate setq statements, the programmer can individually test and debug the

ome find

can, however speed access and can shorten other functions, improving

The library function “ThisModelSpace” above stores a global variable to make successive

ng global

variables however, since they are outside the scope of the functions that use them and

since other functions might use the same symbol names for other purposes. For Vlisp, also,

is safe to keep the active

document, the application object, and the model and paper space collections as globals.

Never assume lower level objects should be stored since they can change or disappear.

ine gets erased. An attempt to access

 Advanced Visual LISP®

10
CP311-4

; error: Automation Error. Object was erased

Using local variables to hold low level vla-objects is generally safe and convenient.

Another way to access objects is by going up or down from an object already known. Each

object has a single owner and may own multiple objects. By accessing the owner of an

object, you can go up the model.

At this point blockobj points to the owner object of the line.

Who Owns This Object? - A library function could be written as follows:

Access to the object’s owner is gotten by (GetOwnerObj Line)

Library functions, if employed, should be independent, containing all the code to do their job

without additional functions. Library functions should also be well written and thoroughly

tested. If not self-evident, they should be well commented.

Which layout block is current?

Once a function is passed an entity object, the owner object (its block) can be determined

with GetOwnerObj. To get the current layout block without having an object to refer to, use

properties of the activedocument and activespace or rely on system variables.

The GetCurrentSpace function takes a document object. This makes the function, non-

document specific. This makes it useful for working in other documents. It won’t work on

ObjectDBX documents though.

 Advanced Visual LISP®

11
CP311-4

Lists, Safearrays, and Variants

Try to avoid safearrays if possible

It is often possible to avoid using safearrays and variants. Doing so can simplify

programming tasks, improve readability, and speed execution. Use Vital lisp functions

rather than those generated by vlax-import-type-library automatically for you.

Example: To get the start and endpoints of a line by accessing the line object.

$(setq sp1 (vla-get-startpoint lineobject))

#<variant 8197 ...>

$(setq sp2(vlax-get lineobject ‘startpoint))

(893.563 535.5 0.0)

SP1 is in a form that can be used as input to another Vlisp function but which can’t be used

directly by legacy lisp functions as a list. To get the list form given SP1, use

(Safearray-value (variant-value sp1))

Caution: The safearray-value function only works for single dimension safearrays. For

more general translation, use vlax-safearray->list. For one dimensional safearrays,

safearray-value executes 20% faster.

SP1 can however be used directly as

(Vla-put-startpoint lineobject2 sp1)

SP2 can be used to set the startpoint by

(Vlax-put lineobject2 SP2)

So use the vla-get form in tandem with the vla-put form but use the vlax-get form if the

program needs to process the list.

To create a Safearray

1. Know your data type
a. Example data types are shown. See others in the help files.

i. unknown or mixed vlax-vbVariant
ii. integers: vlax-vbInteger
iii. long integer vlax-vbLong
iv. real numbers: vlax-vbDouble
v. string: vlax-vbString

2. Create a container for the data that uses that data type.
(setq Pt1 (vlax-make-safearray vlax-vbdouble ‘(0 . 2)))

 Advanced Visual LISP®

12
CP311-4

3. Fill the container with your data.
(vlax-safearry-fill Pt1 ‘(1.0 2.0 0.0))
Please note here that Pt1 will change without reassigning it by using setq.

4. Convert to a variant if necessary for function.
(setq pt1v (vlax-make-variant pt1))

What type is it?

 Use the type function to determine what type of data is bound to a variable.

(type x) will return safearray if it is a safearray, variant, if it is a variant, and list, if it is a list.

If the safearray to be made is a point, keep it simple.

(Vlax-3d-point ‘(10.0 12.0 0.0))

The vlax-3d-point creates a 3 item safearray, fills it, and wraps it into a variant.

Safearrays can be multidimensional

Vlax-make-safearray takes a variable number of arguments. The following makes an array

with 3 columns and 4 rows.

(Setq matrix (vlax-make-safearray vlax-vbdouble ‘(0 . 3) ‘(0 . 2)))

(Setq mlist ‘((1 1 0)(2 2 0)(3 3 0)(4 4 0)))

(vlax-safearray-fill matrix mlist)

#<safearray…>

The order for a two dimensional array is (vlax-make-safearray type rows columns)

For 3d arrays the order is planes rows columns.

Other Safearray functions

(vlax-safearray-get-dim matrix) ;;returns the number of dimensions of a safearray

2

(Vlax-safearray-get-element matrix 3 2) ;;obtains a particular element of the safearray

0.0

The sequence below demonstrates that you can change an individual element of a

safearray without converting it to a list and then converting back again.

$(vlax-safearray->list matrix);;a handy function for converting safearrays

((1.0 1.0 0.0) (2.0 2.0 0.0) (3.0 3.0 0.0) (4.0 4.0 0.0))

 Advanced Visual LISP®

13
CP311-4

$ (vlax-safearray-put-element matrix 3 2 25.0)

25.0

_$ $(vlax-safearray->list matrix)

((1.0 1.0 0.0) (2.0 2.0 0.0) (3.0 3.0 0.0) (4.0 4.0 25.0))

(setq dim 1)

(vlax-safearray-get-u-bound matrix dim) ;dim = 1 tests first dimension.

3

$(vlax-safearray-type matrix) ; returns the type of data contained in the safearray

5

$vlax-vbdouble ; each data type variable is bound to an integer.

5

Unfilled Safearrays Are Not Empty

They are initialized. Initialization depends on the data type and is predictable. For Boolean

arrays each element is initialized to :vlax-vb-false (vlisp semi-equivalent to nil)

For strings, each element is initialized to an empty string. See help files for other types.

 Advanced Visual LISP®

14
CP311-4

Vlax-Curve Functions

These make some otherwise difficult geometric operations easy.

Vlax-Curve Functions

Function Format Returns

(vlax-curve-getClosestPointTo curve-obj

givenPnt [extend])
Closest point on the curve to input point

(vlax-curve-

getClosestPointToProjection curve-obj

givenPnt normal[extend])

Closest point (in WCS) on a curve after projecting

the curve onto a plane

(vlax-curve-getDistAtParam curve-

objparam)
Length of the curve's segment from the curve's

beginning to the specified parameter

(vlax-curve-getDistAtPoint curve-obj

point)
Length of the curve's segment from the curve's

beginning to the specified parameter

(vlax-curve-getEndParam curve-obj) Parameter of the endpoint of the curve

(vlax-curve-getEndPoint curve-obj) Endpoint (in WCS) of the curve

(vlax-curve-getFirstDeriv curve-obj

param)
First derivative (in WCS) of a curve at the specified

location

(vlax-curve-getParamAtDist curve-obj

dist)
Parameter of a curve at the specified distance from

the beginning of the curve

(vlax-curve-getParamAtPoint curve-obj

point)
Parameter of the curve at the point

(vlax-curve-getPointAtDist curve-

objdist)
Point (in WCS) along a curve at the distance

specified by the user

(vlax-curve-getPointAtParam curve-obj

param)
Point at the specified parameter value along a

curve

(vlax-curve-getSecondDeriv curve-obj

param)
Second derivative (in WCS) of a curve at the

specified location

(vlax-curve-getStartParam curve-obj) Start parameter on the curve

(vlax-curve-getStartPoint curve-obj) Start point (in WCS) of the curve

(vlax-curve-isClosed curve-obj) Is the start point is the same as the endpoint?
(T, nil)

(vlax-curve-isPeriodic curve-obj) Curve has infinite range in both directions and
there is a period value dT, such that a point on
the curve at (u + dT) = point on curve (u), for
any parameter u? T or nil

(vlax-curve-isPlanar curve-obj) Can a plane that contains the curve? T or nil

Curve parameters should not be interpreted as having a meaning apart from the vlax-curve

functions. Autodesk’s commands generate curve objects that have predictable parameters.

After editing, though, the parameter’s meaning may be unclear. Do not assume that a

parameter means anything.

 Advanced Visual LISP®

15
CP311-4

Vlax-curve-getfirstderiv returns the endpoint of a vector whose startpoint is 0,0,0. The

length of the vector depends on whether the part of the curve picked is straight or curved. If

curved, its length is the radius of the curve. If straight, it is the length of the line segment.

This example will draw a tangent line at a point picked:

Vlax-curve-getsecondderiv returns the endpoint of a vector whose startpoint is 0,0,0 that

points in the direction of the center and whose length is the radius of the cuve at the param.

If the curve object is straight at the point and has no curve, then it returns a second

derivative of (0.0 0.0 0.0)

This example will draw a radius line from the picked point:

 Advanced Visual LISP®

CP311-4

ObjectDBX™

What is ObjectDBX™?

An ActiveX service to access and change the contents of AutoCAD drawing files directly

without opening them in the AutoCAD editor. Many built

(vla-xxx) will work with an ObjectDBX document (

Why use ObjectDBX™?

It’s fast. Using ObjectDBX™ can speed processing of multiple documents because they do

not need to be loaded into the application. You save all the regeneration time, time to load

menus, time to initialize lisp, etc.

Are there any drawbacks?

When saving changes, you lose thumbnails.

How is it accessed?

(setq odoc (ObjectDBXDocument))

(setq odoc2 (ObjectDBXDoc))

resources)

What are the limitations?

1. Commands can’t be used.

2. No access to system variables.

16

An ActiveX service to access and change the contents of AutoCAD drawing files directly

without opening them in the AutoCAD editor. Many built-in type library wrapper functions

xxx) will work with an ObjectDBX document (though not officially supported).

It’s fast. Using ObjectDBX™ can speed processing of multiple documents because they do

not need to be loaded into the application. You save all the regeneration time, time to load

alize lisp, etc.

When saving changes, you lose thumbnails.

(setq odoc (ObjectDBXDocument)) ;uses function above (the recommended method)

 ;uses function above (works but may require extra

 Therefore vla-sendcommand function will not work.

access to system variables. (Vla-get-variable and vla-set-variable aren’t supported.)

Notice the versioning of

the program id.

Getinterfaceobject

allows in-process

execution.

An ActiveX service to access and change the contents of AutoCAD drawing files directly

in type library wrapper functions

though not officially supported).

It’s fast. Using ObjectDBX™ can speed processing of multiple documents because they do

not need to be loaded into the application. You save all the regeneration time, time to load

;uses function above (the recommended method)

require extra

sendcommand function will not work.

variable aren’t supported.)

Notice the versioning of

Getinterfaceobject

process

 Advanced Visual LISP®

17
CP311-4

3. Object selection doesn’t work. Forget about selection sets. This means you must process

entire collections filtering by using object properties.

4. Entity access functions don’t work.

a. Don’t try to use entget, vlax-vla-object->ename, entmod, ssget, etc.

What methods and properties are supported?

(vlax-dump-object odoc t)

; IAxDbDocument: IAxDbDocument Interface

; Property values:

; Application (RO) = Exception occurred

; Blocks (RO) = #<VLA-OBJECT IAcadBlocks 0972bc24>

; Database (RO) = #<VLA-OBJECT IAcadDatabase 09508ee4>

; Dictionaries (RO) = #<VLA-OBJECT IAcadDictionaries 0972bbd4>

; DimStyles (RO) = #<VLA-OBJECT IAcadDimStyles 0972bae4>

; ElevationModelSpace = 0.0

; ElevationPaperSpace = 0.0

; FileDependencies (RO) = #<VLA-OBJECT IAcadFileDependencies 095119b4>

; Groups (RO) = #<VLA-OBJECT IAcadGroups 0972bb84>

; Layers (RO) = #<VLA-OBJECT IAcadLayers 0972bcc4>

; Layouts (RO) = #<VLA-OBJECT IAcadLayouts 0972bd14>

; Limits = (0.0 0.0 12.0 9.0)

; Linetypes (RO) = #<VLA-OBJECT IAcadLineTypes 0972bd64>

; Materials (RO) = #<VLA-OBJECT IAcadMaterials 0972bdb4>

; ModelSpace (RO) = #<VLA-OBJECT IAcadModelSpace2 0972be04>

; Name = ""

; PaperSpace (RO) = #<VLA-OBJECT IAcadPaperSpace2 0972be54>

; PlotConfigurations (RO) = #<VLA-OBJECT IAcadPlotConfigurations 0972bea4>

; Preferences (RO) = #<VLA-OBJECT IAcadDatabasePreferences 0951198c>

; RegisteredApplications (RO) = #<VLA-OBJECT IAcadRegisteredApplications

0972bef4>

; SectionManager (RO) = Exception occurred

; SummaryInfo (RO) = #<VLA-OBJECT IAcadSummaryInfo 095119dc>

; TextStyles (RO) = #<VLA-OBJECT IAcadTextStyles 0972bf44>

; UserCoordinateSystems (RO) = #<VLA-OBJECT IAcadUCSs 0972bf94>

; Viewports (RO) = #<VLA-OBJECT IAcadViewports 0972bfe4>

; Views (RO) = #<VLA-OBJECT IAcadViews 0972c034>

; Methods supported:

; CopyObjects (3)

; DxfIn (2)

; DxfOut (3)

; HandleToObject (1)

; ObjectIdToObject (1)

; Open (2)

; Save ()

; SaveAs (2)

Notice the lack of any property

beginning with Active*, such as

ActiveDimStyle, ActiveLayer,

ActiveLinetype, etc. Managing

object properties is therefore not

affected by any of these active

objects.

Note: You can’t access the

ObjectDBX application itself.

Notice flat list for two 2d

points (llx lly urx ury)

New drawing

(unnamed)

Indicates Single

Document Mode

 Advanced Visual LISP®

CP311-4

Looking at the dump above, (RO) means the property is read only. Numbers in parentheses

indicate the required number of arguments. Compare properties and methods with those of

the ActiveDocument.

What can ObjectDBX be used for?

• Scanning and reporting statistics

• Standardizing layer names, text styles,

dimension styles etc.

• Batch spell checking.

• Standardizing object properties across

a project.

• Updating block definitions in the

current drawing from a library.

• Importing styles and standardizing

open documents to the ObjectDBX

document

Let’s Get Specific

Assuming you already have accessed

ObjectDBX and saved it in Odoc.

• How to open a drawing

o (vla-open odoc “filespecification”

[read-only])

o Note: you can’t open password

protected files with ObjectDBX.

• How to save an opened drawing

o (vla-save odoc)

• How to save a new drawing.

o (vla-saveas odoc “[path/]name”)

o File extension is optional

• How to close a drawing (2 methods)

o (vlax-release-object odoc) ;be

sure to save first.

o (vlax-open odoc

“filespecification”)

o You basically have an SDI

document interface with each

ObjectDBX document.

• How to copy a block definition to the current drawing. It is complicated in

definitions with those stored in other drawings and to refresh existing insertions. Steps are 1

open the source drawing, 2)Temporarily rename the block definition in the activedocument,

18

Looking at the dump above, (RO) means the property is read only. Numbers in parentheses

required number of arguments. Compare properties and methods with those of

What can ObjectDBX be used for?

Scanning and reporting statistics

Standardizing layer names, text styles,

izing object properties across

Updating block definitions in the

current drawing from a library.

Importing styles and standardizing

open documents to the ObjectDBX

• Make a copy of a block in the current

drawing with a different name.

Assuming you already have accessed

ObjectDBX and saved it in Odoc.

open odoc “filespecification”

Note: you can’t open password

protected files with ObjectDBX.

How to save an opened drawing

How to save a new drawing.

saveas odoc “[path/]name”)

File extension is optional

How to close a drawing (2 methods)

object odoc) ;be

You basically have an SDI

interface with each

ObjectDBX document.

How to copy a block definition to the current drawing. It is complicated in Vlisp to

with those stored in other drawings and to refresh existing insertions. Steps are 1

rawing, 2)Temporarily rename the block definition in the activedocument,

Looking at the dump above, (RO) means the property is read only. Numbers in parentheses

required number of arguments. Compare properties and methods with those of

Make a copy of a block in the current

drawing with a different name.

Vlisp to replace block

with those stored in other drawings and to refresh existing insertions. Steps are 1)

rawing, 2)Temporarily rename the block definition in the activedocument,

3)use copyobjects to transfer the block

temporary name the new name, 5)delete

the temporary block, and 5) close the

source drawing. Safe-item allows the

item method to be used where there is a

possibility that the reference won’t exist.

RemapInsertions iterates through the

entire block collection replacing every

reference to the temporary block with the

new block. Notice the nested

statements. This allows every object in

every block to be checked and replaced.

Another wrapper, probably unnecessary

is blocks which obtains the block

collection. GetBlockFrom branches

depending on whether the source

exists in the activedocument. By

temporarily renaming the existing block

definition, it allows the process of

replacement to preserve dynamic block

information from the source blocks by

copying the definitions whole. By using

vlax-invoke, the list of objects to be

copied can be ordinary rather than a

Safearray.

GetBlockFrom is just a start.

Improvements could include working with

a list of block definitions from the same

source drawing, cleaning up attributes,

and preserving dynamic block properties.

 Advanced Visual LISP®

19

3)use copyobjects to transfer the block definition, 4) give block references that have the

temporary name the new name, 5)delete

the temporary block, and 5) close the

item allows the

item method to be used where there is a

possibility that the reference won’t exist.

through the

entire block collection replacing every

reference to the temporary block with the

Notice the nested vlax-for

statements. This allows every object in

every block to be checked and replaced.

Another wrapper, probably unnecessary

is blocks which obtains the block

GetBlockFrom branches

depending on whether the source block

ivedocument. By

temporarily renaming the existing block

definition, it allows the process of

replacement to preserve dynamic block

information from the source blocks by

copying the definitions whole. By using

invoke, the list of objects to be

can be ordinary rather than a

GetBlockFrom is just a start.

Improvements could include working with

a list of block definitions from the same

source drawing, cleaning up attributes,

and preserving dynamic block properties.

Advanced Visual LISP®

CP311-4

definition, 4) give block references that have the

 Advanced Visual LISP®

20
CP311-4

VLR-Reactors - An Introduction

Detour Ahead – Are you sure reactors are your best route?

Our daily commute is sometimes blocked by traffic snarls. Just so, our programming goals have

destinations that must be arrived at on-time and without accidents. Reactors give some choices

but AutoCAD has given us some awfully good toll roads to compete with them.

Destinations Alternatives To Reactors

Automatic layering Palettes, Design Center, CUI, Toolbar Macros,

Command Redefinition.

Custom objects Dynamic Blocks

Text reporting object properties Fields

Annotation Scaling Annotation Features

Automatic Saving savetime

Keeping things together Groups

Scheduling Tables, Data Extraction

Layer Standards Layer state manager

Managing Title-block Info Sheet Set manager

Lock Z value Buy a vertical

Cleanup variables after lisp execution Pause loops in programs for input

Launch a command by double-clicking on an

object

CUI

Bring up a context sensitive menu at right click CUI

Don’t Do That! – Things you shouldn’t use reactors for.

Reactors provide some powerful capabilities but they shouldn’t be misused.

Inappropriate Reactor Uses It is Better to

Cancel commands Alert users and let them cancel

Prevent editing objects Put on locked layers, Use file permissions, Send DWF or

PDF, Train workers

Protect the drawing from changes Send DWF or PDF, Use file permissions, Archive safe

copies, buy Cadlock. Notice I didn’t promote passwords

 Advanced Visual LISP®

21
CP311-4

The Cast – Types of Reactors

Reactor Type Their Specialties

:VLR-AcDb-Reactor Monitor changes in the database. They are very active and should be

used sparingly.

:VLR-Command-Reactor They monitor commands, when they start, when they end, if they are

cancelled and if they are unknown or failed.

:VLR-DeepClone-Reactor Excels in tracking copied objects

:VLR-DocManager-

Reactor

Tracks when documents are opened, destroyed, locked, became

current, will be activated, or will be deactivated. When adding entities,

it triggers often. It watches when you pop to another application.

:VLR-DWG-Reactor Tracks when the drawing will be closed, deleted, opened or saved.

Whether some events will trigger depends on whether SDI=0 or 1

:VLR-DXF-Reactor Tracks operations related to dxfin and dxfout

:VLR-Editor-Reactor A combination of the capabilities of VLR-Command-Reactor, VLR-DWG-

Reactor, VLR-Lisp-Reactor, and the VLR-Sysvar reactor. I suggest using

the others. You should avoid using both for the same event.

:VLR-Insert-Reactor Tracks operation related to inserting blocks or drawings. When

inserting other drawings, there is a translation matrix involved that

controls scaling, translation, and rotation.

:VLR-Linker-Reactor Tracks when ObjectARX application are loaded and unloaded

:VLR-Lisp-Reactor Tracks when lisp expressions entered at the command line begin, end,

and are cancelled. Useful for cleanup behind lisp commands that

change variables and turn over control to AutoCAD commands for

prompting.

:VLR-Miscellaneous-

Reactor

Tracks when the pickfirst selection set changes and when the layout

changes

:VLR-Mouse-Reactor Tracks double-clicks and right-clicks. Prior to AutoCAD adding these

events to the CUI, this was the only way to customize these actions in

relation to object types.

:VLR-Object-Reactor A watch selected Owner objects and notifies when those objects are

copied, erased, un-erased, deleted from memory, opened for

modification, modified, un-appended, re-appended and unmodified.

Formerly, this was the only way LISP programmers had to implement

custom objects.

:VLR-Sysvar-Reactor This is a very active reactor and may trigger multiple times for each

command. Can be very useful.

:VLR-Toolbar-Reactor Tracks when toolbar icon sizes will change or has been changed.

:VLR-Undo-Reactor Tracks subcommands of the undo command (Auto, Control, Begin, End,

Mark, Back, and Number)

 Advanced Visual LISP®

22
CP311-4

:VLR-Wblock-Reactor Tracks Wblock – when it is about to start, when it is being performed,

when it has ended.

:VLR-Window-Reactor Tracks when Document window or application window is resized or

moved. Ignores window tiling operations.

:VLR-XREF-Reactor Tracks XREF operations, including when they are attached, restored,

bound, and unloaded

Put On Your Safety Belt – Expect crashes during testing!

Have you ever ridden with someone you didn’t trust? Perhaps they loved driving fast, popped

wheelies or such? You’re not exactly in the driver’s seat with reactors and they can run off the

road and take all your work with them. So don’t wake up in the recovery room without anything

to show? Bank your success by saving everything before testing anything. While preparing for

this lecture, I crashed numerous times. Be warned!

It’s alive! – How to build a reactor

The reactors listed above are constructed by LISP functions that look very similar to the reactors

themselves. The only difference is that the functions don’t have the starting colons. All of the

functions that build reactors (except those that make object reactors) take 2 arguments.

Generalized Format: (VLR-xxxx-reactor Data Callbacks) returns the reactor object <vla-

object>

Object reactor Format: (VLR-Object-Reactor Owners Data Callbacks) returns the reactor

Example: (VLR-command-reactor nil ‘((:VLR-commandended . CleanUpHandler)))

Data is a placeholder for anything you want stored with the reactor itself. This eliminates the

need to maintain global variables to maintain transitions between events.

Callbacks is a quoted association list that contains dotted pairs in the form (event . callback)

where callback is the name of a user defined function usually accepting 2 arguments (object

reactors 3).

Event is a specially named variable that is bound to its name. Example names are :VLR-

CommandWill-Start, :VLR-CommandEnded, or :VLR-ObjectModified. These names are not

case sensitive but are written that way to improve readability.

 For most reactors the first argument is the calling reactor and the second argument is a

parameter list that varies for each reactor type and each event type within that reactor type.

The help files are the best source of information when writing the callback functions.

Can I Call You Back?

All reactors require callback functions to work. If the callback function doesn’t exist, it generates

an error. It’s up to the programmer to provide those functions. So the programmer should 1)

make sure to define the callback function in the same file that contains the reactor code

2)should define it before the reactor becomes operational, and 3)use a name unique enough to

 Advanced Visual LISP®

23
CP311-4

be reasonably stable. Since callbacks are so important, it might be better to define them in a

separate namespace VLX application (beyond the scope of this course).

Generalized format: (defun AAA_callback (reactor params) …..)

Object reactor callback format: (defun OBJ_was_modified (Notifier Reactor Params)

Example: (defun CleanUpHandler (reactor params)

 (foreach n (VLR-data reactor) (setvar (car n) (cadr n))))

If you didn’t understand any of that, don’t worry. Important things to note are the argument list

of the example excludes its use as an object reactor.

Important! Only ActiveX object access is allowed in callbacks. They cannot

contain: 1) interactive prompts, 2) dialog box calls, 3) command function calls,

4) entmod or entmake or entget statements.

The process of calling the callback function is called notification.

Don’t Fall In Love with a Crash Test Dummy

Callbacks take time to develop. So speed the development of the overall application by using

built-in callback functions initially. Using these dummies will answer the most important

question: Will the reactor trigger when it is needed? These ready-to-use callbacks accept a

variable number of arguments so they can be used for all kinds of events and for every kind of

reactor.

VLR-Trace-Reaction Prints a nice diagnostic message in the trace window of Vlide that

describes the calling reactor and the argument list passed to it.

Warning! Set up the Vlide trace window to be visible before using the reactor

and then do not click in the trace window. Some reactors like VLR-

DocManager-Reactor will lock up AutoCAD if you do.

VLR-Beep-Reaction Beeps when it’s triggered. Often that is just enough to let you know that

something is going on and that the reactor type will work or not for what you want to do. When

a reaction causes a drum roll, you realize how active reactors can be.

User defined dummies: Not satisfied with the built-in dummies? Write your own. Any

defun that accepts the correct number of arguments will work. Use alert boxes and princ

statements to let you know what is going on without resorting to the trace window. You can also

dummy out any callback by leaving the body empty or using alert or princ statements. Doing this

eliminates the need to change things in two places (at the reactor and at the callback) Example:

(defun mydummy (react data) (princ react)(princ data)(princ “\n”)).

 Advanced Visual LISP®

24
CP311-4

The Owners Club

Objects tracked by object reactors are called Owners. Object reactors continuously monitor

those objects and notify the callback functions when selected events occur. Objects keep

Object reactors on their toes by notifying them of what is happening to them. Object events that

are tracked are deletions, un-deletions, modifications, and copying actions.

Owner management functions

Function Name Format Action Returns

VLR-owner-add (VLR-owner-add reactor

ownerobject)

Adds an owner to the

reactor

Ownerobject

VLR-owner-remove (VLR-owner-remove

reactor ownerobject)

Removes an owner

from the reactor

Ownerobject

VLR-Owners (VLR-owners reactor) Identifies Owners of a

reactor.

List of owners or nil

Object Callbacks are powerless over their notifiers: They receive notifications but they

cannot change the state of the notifying objects (called notifiers). Callbacks for :VLR-

openedForModify cannot even access an object’s properties without causing errors. There only

power with respect to the notifiers is to pass references to them on to other reactors that have

power to change.

They Work Well Together

Since object reactors are helpless they need help from unrelated reactors. Command reactors

for instance can be used to revise the object state after the object modification has occurred.

The commandended event is generally a safe event during which to modify objects.

Callbacks can disable and enable reactors. They can pass data to other reactors. In order to

implement this kind of teamwork, reactor objects need to be stored either in each other’s data

area or in global variables. Without this kind of inter-process communication, the teamwork of

different functions acting together at different times is impossible.

They Can Be Persistent!

Object reactors can be made persistent. Persistent reactors are saved with the drawing. The

opposite of persistent is transient. Transient reactors exist only during the current drawing

session. Problems with persistent reactors occur when a drawing containing persistent

reactors is opened unless the callback functions that they use are loaded early in the startup

Relevant functions and their uses are:

 Advanced Visual LISP®

25
CP311-4

VLR-Function General format What it does Returns

VLR-Pers (VLR-pers reactor) Makes a reactor persistent reactor

VLR-Pers-p (VLR-pers-p reactor) Determines if a reactor is persistent T or nil

VLR-pers-

release

(VLR-pers-release

reactor)

Makes a reactor transient Reactor or nil

What Triggered That?

Events trigger reactors that monitor those events. The help files identify for each reactor, a list

of events that it tracks and a description of what those events are. Below each event table is a

callback table that describes the parameter list provided to the callbacks during each event. In

some cases, no parametric information is sent. In other cases the information is very important.

Keep Me Informed

Reactors normally fire only for events that relate to the current database. It is possible to have a

document level reactor be notified by changes/events occurring in other documents.

Experiment with notification settings when working with dummy callbacks to understand the

differences.

VLR-notification Determines whether or not a reactor will fire if its associated namespace

is not active. The return value is either ‘all-documents or ‘active-document-only.

VLR-set-notification Defines whether a reactor's callback function will execute if its associated

namespace is not active. Format: (VLR-set-notification reactor ‘range) where ‘range is either

‘all-documents or ‘active-document-only.

Be careful using reactors that respond to other documents. Each document has its own

namespace and variables in one drawing are not available to the reactor being triggered in

another document. In fact most lisp code is suspended until a document is reactivated. It is

entirely possible that reactors whose notification setting is ‘all-documents might continue to

execute after their host document is closed.

Who’s on First?

When designing your reactor system do not depend on the order of the reactions or on the order

of events. When object reactors fire, they generate a callback call for each tracked object and

for each tracked event.

Regressive Behavior

Don’t forget the importance of handling undo/redo events. If ignored or improperly handled the

system will report errors. In the worst case, you can end up with unpredictable events. The

object reactors are capable of notifying during undo events. At the very least, you should

dummy out the undo callbacks to understand when things happen. Some experts believe that

 Advanced Visual LISP®

26
CP311-4

building a reliable reactor system that accounts for undo/mredo is beyond the capabilities of

LISP. Of course if your drafters never change their minds or make mistakes its unimportant.

You Are Dismissed

It is often wise to disable events during a callback function to the possibility of endless loop

behavior. You don’t want a situation where a reactor callback triggers the calling reactor. More

generally, assume that there might be other reactors that should be temporarily turned off.

Function Format Use Returns

VLR-remove (VLR-remove reactor) Disables this reactor Reactor (a vla-object)

VLR-remove-all (VLR-remove-all) Disables all reactors Reactor list

Get Them Back

Function Format Use Returns

VLR-add (VLR-add reactor) Re-enables this reactor Reactor (a vla-object)

VLR-added-p (VLR-added-p reactor) Is this reactor enabled? T or Nil

Too Much to Do

Reactors, if used sparingly can be a blessing. It is possible however to completely shut down

the system with reactor calls. Be sure to turn reactors on and off when you need them.

Send for the Understudy!

Sometimes you need a substitute for a callback. This could be an alternative to enabling and

disabling a reactor. To do it, use (VLR-reaction-set reactor event function)

Conversely if you need to know the names of the reactions associated with a reactor, use

(VLR-reactions reactor)

To get all the reaction names for a particular reactor-type use (VLR-reaction-names reactor-

type)

Alternatively, since this is lisp, a program can just change the definition of the callback function

by using setq. (setq mycallback <newcallbackfunction>). Mycallback is now different.

 Advanced Visual LISP®

27
CP311-4

Be Sure to Thank the Little People

These functions are important support functions. VLR-data and VLR-data-set avoid the use of

global variables in reactor communications.

Function Calling Format Why use? Returns

VLR-data (VLR-data-reactor) To access data stored in reactor Expression or nil

VLR-data-set To store data in a reactor Expression or nil

VLR-type (VLR-type reactor) Returns a symbol representing the

reactor type.

Symbol

VLR-types (VLR-types) Returns a list of symbols

representing all reactor types

List

Tablets of Stone - Reactor Use Guidelines

1. Don’t rely on the sequence of reactor notifications. A single command triggers multiple events.

Yet the order of those events cannot be relied on.

2. Don’t rely on the sequence of function calls between notifications. If two :VLR-erased

notifications occur on separate objects, the order of the notifications does not indicate which

was erased first.

3. Don’t use interactive functions in callbacks: getpoint, getstring, get…, entsel, etc. will not work.

Don’t launch a dialog box. This is interactive

4. Don’t try to change an object that issued the event notification. You can read properties of

objects but not change them.

5. Avoid actions in callbacks that trigger the same event. Such actions may cause an infinite loop.

Example: opening a drawing within a BeginOpen event.

6. Verify that a reactor is not already set before setting it, or you may end up with multiple

callbacks on the same event. This is so basic but so important. See code examples for good

practice.

7. No events will be fired while AutoCAD is displaying a modal dialog.

8. You cannot use the command function in callbacks

9. You cannot use entget or entmod inside callbacks. Use ActiveX instead.

Where’s the Show?

Let’s put it all together. Following is a function that will quickly demonstrate the reactors and

give them a chance to strut their stuff. See the show at AU 2007 or try it yourself at work.

 Advanced Visual LISP®

28
CP311-4

This code will automatically create dummy reactors for every event that the specified reactor

has. It can quickly identify opportunities to take advantage of the reactor system.

In conclusion, reactors can be useful but should only be considered if other built-in offerings of

AutoCAD are missing the capabilities you desire.

My main uses for reactors have been 1)to serve as cleanup functions for Lisp implemented

commands that seek to auto layer and 2) to modify textsize, dimscale, and ltscale as part of a

custom annotation management system (This use should now be obsolete as well).

Accessing Other Applications
To access an application object other than AutoCAD, use:

 (setq MyApp (vlax-get-or-create

In the context of Microsoft Excel, this becomes:

(setq XLApp (vla-get-or-create-object “Excel.Application”))

 The Excel Object Model Hierarchy

Excel has such good developer documentation that it is easy to prototype the application in VBA

and then to translate into Vlisp. The need for such custom access to Exc

diminished with recent advancements in tables and in data extraction. In fact, it

imagine a task involving Excel that AutoCAD itself can’t do well. The following sample

illustrates VBA vs. LISP methods to access a va

Workbook. The initial setqs above defun are for testing and debugging as illustrated in class.

Sample VBA Code:

Sub test()

Dim wbk As Workbook

Dim sht As Worksheet

Dim rng As Range

Dim val As Integer

Set wbk = Excel.Workbooks("test.xlsx")

Set sht = wbk.Sheets("Sheet1")

Set rng = sht.Range("livingroomarea")

val = rng.Value

Debug.Print val

End Sub

LISP Code Translation

;;Vars above defun for testing

(setq FileSpec "c:\\test.xlsx

 (setq ShtName "Sheet1")

(setq RngName "LivingRoomArea")

(defun c:GetVALue (FileSpec ShtName

RngName / RNG SHT SHTS VAL WBK

WBKS XL)

Excel Workbooks

 Advanced Visual LISP®

29

Accessing Other Applications
To access an application object other than AutoCAD, use:

create-object prog-id))

In the context of Microsoft Excel, this becomes:

object “Excel.Application”))

Excel has such good developer documentation that it is easy to prototype the application in VBA

and then to translate into Vlisp. The need for such custom access to Excel however has greatly

diminished with recent advancements in tables and in data extraction. In fact, it

imagine a task involving Excel that AutoCAD itself can’t do well. The following sample

LISP methods to access a value in a single cell named range in an Excel

Workbook. The initial setqs above defun are for testing and debugging as illustrated in class.

Excel.Workbooks("test.xlsx")

Set sht = wbk.Sheets("Sheet1")

Set rng = sht.Range("livingroomarea")

ame "LivingRoomArea")

(defun c:GetVALue (FileSpec ShtName

RngName / RNG SHT SHTS VAL WBK

 (setq XL (vlax-get-or-create-object

"Excel.Application"))

 (setq WBKS (vlax-get-property XL 'workbooks))

 (setq WBK (vlax-invoke WBKS 'open FileSpec))

 (setq SHTS (vlax-get-property WBK 'worksheets))

 (setq SHT (vlax-get-property SHTS 'item ShtName))

 (setq RNG (vlax-get-property SHT 'RngName

RngName))

 (setq VAL (vlax-get RNG 'value))

 (princ VAL)

 (mapcar 'vlax-release-object (list RNG SHT SHTS))

 (Vlax-invoke WBK 'close) ;Steps of closing

 (vlax-invoke XL 'quit)

 (vlax-release-object XL))

Workbook Worksheets Ran

Advanced Visual LISP®

CP311-4

Excel has such good developer documentation that it is easy to prototype the application in VBA

el however has greatly

diminished with recent advancements in tables and in data extraction. In fact, it’s difficult to

imagine a task involving Excel that AutoCAD itself can’t do well. The following sample

lue in a single cell named range in an Excel

Workbook. The initial setqs above defun are for testing and debugging as illustrated in class.

object

property XL 'workbooks))

invoke WBKS 'open FileSpec))

property WBK 'worksheets))

property SHTS 'item ShtName))

property SHT 'RngName

object (list RNG SHT SHTS))

invoke WBK 'close) ;Steps of closing

ange

 Advanced Visual LISP®

30
CP311-4

Some Visual Lisp Errors

1. Attempting to get properties and

methods not applicable to an vla-

object

2. Using vla-item, vlax-for, or vlax-map-

collection on a vla-object that is not a

collection.

3. Using list methods on safearrays.

4. Attempting to access erased objects.

5. Attempting to access closed

documents.

6. Not accounting for the possibility that

an object type might change (circle to

arc once broken), (polyline to lines

once exploded)

7. Not releasing objects

8. Attempting to delete referenced

objects.

Ways to avoid errors

1. Verify a method or property is applicable before trying to use it or access it.

2. Classify objects by type and direct the appropriate actions by conditional branching:

3. Exclude objects which do not apply by filtering:

4. Mistaking objects for collections can be avoided by looking at the object model, by

using help files, by dumping object properties and by checking whether a count

property or an item method is applicable.

5. Check to see if objects are referenced prior to deleting them. Since this is difficult to

do using vla-methods, trap the inevitable error. See next section.

6. Verify data type or use function to ensure results.

Using library catchall

coming and use the built

7. To avoid errors caused by accessing erased objects, either test to see if they were

erased or don’t keep the objects long term. (vla

test before accessing the potentially erased object.

A Way to Ignore Errors:

Warning! The technique demonstrated in this section is dangerous and may hide

unexpected bugs. The function is useful, however,

ignoring “expected” errors is harmless. F

The vl-catch-all-apply process above is poorly written mistaken code. Mistakes are:

1. It assumes that vl

2. It does not save the results of the vl

be no future opportunity to test the error.

The second try above improve

however are numerous and include: obje

locked layer, layer doesn’t exist….

 Advanced Visual LISP®

31

Verify data type or use function to ensure results.

Using library catchall conversion routines is generally bad practice. Know what is

coming and use the built-in functions to work with the data.

To avoid errors caused by accessing erased objects, either test to see if they were

erased or don’t keep the objects long term. (vlax-erased-p object) can be used to

test before accessing the potentially erased object.

A Way to Ignore Errors:

The technique demonstrated in this section is dangerous and may hide

on is useful, however, since it can simplify processes when

g “expected” errors is harmless. Feel free and guiltless to use them.

apply process above is poorly written mistaken code. Mistakes are:

It assumes that vl-catch-all-apply is like mapcar rather than apply.

does not save the results of the vl-catch-all-apply operation. So there will

be no future opportunity to test the error.

The second try above improves the process. The code will report errors. Errors it ignores

numerous and include: object doesn’t exist, bad argument type, object on

locked layer, layer doesn’t exist….

Advanced Visual LISP®

CP311-4

conversion routines is generally bad practice. Know what is

To avoid errors caused by accessing erased objects, either test to see if they were

p object) can be used to

The technique demonstrated in this section is dangerous and may hide

lify processes when

apply process above is poorly written mistaken code. Mistakes are:

apply is like mapcar rather than apply.

apply operation. So there will

he code will report errors. Errors it ignores,

ct doesn’t exist, bad argument type, object on

 Advanced Visual LISP®

CP311-4

It is better to check beforehand that

an earlier time), and that a layer is

the errors, then vl-catch-all-apply can simplify. It is similar to the VBA method “On Error,

resume next”

Prior to using (vl-catch-all-apply...)

will be noticeable and silly coding

wraps problem code, it hides blunders.

Error handlers

Each susceptible user defined function should contain an error handler that cleans up after

itself and reports the errors.

In MakeThingsBetter, see above

error handler is set up to clean up after itself at the end.

exiting gracefully and serving as a cleanup routine normally. Since the *

stored locally, it does not interfere with user defined error handlers in other functions.

Regular Errors affect Visual Lisp Reliability

1. Bad parenthesis matching.

on each parenthesis to see the enc

2. Data type problem affect regular expressions:

a. (/ 2 3) = 0 (a hidden error if unexpected)

b. (strcat 1 “this”) doesn’t work

3. Lists aren’t always easy to traverse. Step and check. Test theory with real lists.

32

It is better to check beforehand that a layer exists, that an object is not erased (if stored at

layer is unlocked. If the programmer is willing to forgo

apply can simplify. It is similar to the VBA method “On Error,

...), thoroughly test by using (apply…) instead. The errors

will be noticeable and silly coding mistakes can be discovered. Once the vl-catch

wraps problem code, it hides blunders.

Each susceptible user defined function should contain an error handler that cleans up after

see above, system variables are saved first (stored locally) and an

to clean up after itself at the end. *Error* serves a dual purpose of

exiting gracefully and serving as a cleanup routine normally. Since the *error* function i

stored locally, it does not interfere with user defined error handlers in other functions.

Regular Errors affect Visual Lisp Reliability

Bad parenthesis matching. Vlide usually can catch it but not always. Double click

on each parenthesis to see the enclosing code. Check each step.

Data type problem affect regular expressions:

(a hidden error if unexpected)

(strcat 1 “this”) doesn’t work

Lists aren’t always easy to traverse. Step and check. Test theory with real lists.

erased (if stored at

forgo knowing

apply can simplify. It is similar to the VBA method “On Error,

thoroughly test by using (apply…) instead. The errors

catch-all-apply

Each susceptible user defined function should contain an error handler that cleans up after

(stored locally) and an

serves a dual purpose of

function is

stored locally, it does not interfere with user defined error handlers in other functions.

Vlide usually can catch it but not always. Double click

Lists aren’t always easy to traverse. Step and check. Test theory with real lists.

 Advanced Visual LISP®

33
CP311-4

Releasing objects – Our Final Topic
In general, programs should release the objects bound to variables by that program.

Exceptions:

1. Symbols bound to the AutoCAD application object and the activedocument.

2. Objects not bound to variables do not need to be released.

3. Local variables and loop variables do not need to be released. The garbage

collector is smart enough to recover space and to reset pointers when local

variables go out of scope.

How to release one object:

(vlax-release-object object)

How to release a list of objects

(mapcar ‘vlax-release-object objectlist)

or

(foreach n objectlist (vlax-release-object n))

When setting up an *error* handler, use something similar to this:

The code above checks to see if the variable is bound to a value before attempting to

release it. An attempt to release an object not bound to an object will generate an

unnecessary error.

When in doubt, release the object!

In conclusion: 1) Use VLIDE, 2) Keep the Help files open, 3)Program for single line

testing, 4)Dump and examine objects, 5) Don’t program before you explore current

AutoCAD features, 6) Comment thoroughly, 7) Use error handlers ,8) Clean-up after

execution, 9) Be careful using reactors, and 10) Command and DXF methods have

their place. Don’t expect Vlisp to do everything.

Thank you for attending this Class! Hope you’ve enjoyed it. Please don’t forget to fill

out your feedback report.

