The Visual LISP

Developers Bible

4l 2003 Edition
By David M. Stein

Visual LISP Development with AutoCAD 2004




Copyright ©2002-2003 David M. Stein, All Rights Reserved.

This publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose,
without prior explicit written consent and approval of the Author.

The Author makes no warranty, either expressed or implied, including, but not limited to any implied
warranties of merchantability or fitness for a particular purpose, regarding these materials and makes such
materials available solely on an “AS-1S’ basis. In no event shall the Author be liable to anyone for special,
collateral, incidental, or consequential damages in connection with or arising out of purchase or use of
these materials. The sole and exclusive liability to the Author, regardiess of the form of action, shall not
exceed the purchase price of the materials described herein.  All code examples herein are the origina
works of the author unless otherwise stated herein. Any similarities to existing code examples by other
authors that are not explicitly identified are purely coincidental and unintentional.

The Author reserves the right to revise and improve its products or other works as it sees fit. This
publication describes the state of this technology at the time of its publication, and may not reflect the
technology at al timesin the future.

AutoCAD, AutoCAD Development System, AutoL ISP, Mechanical Desktop, Map, MapGuide, Inventor,
Architectural Desktop, ObjectARX and the Autodesk logo are registered trademarks of Autodesk, Inc.
Visua LISP, ACAD, ObjectDBX and VLISP are trademarks of Autodesk, Inc.

Windows, Windows NT, Windows 2000, Windows XP, Windows Scripting Host, Windows Messaging,
COM, ADO®, Internet Explorer, ActiveX®, .NET®, Visual Basic, Visua Basic for Applications (VBA),
and Visua Studio are registered trademarks of Microsoft Corp.

All other brand names, product names or trademarks belong to their respective holders.

Release Log

May 31, 2002 — Initial public release after having no offersto publish for profit. Bummer.

July 6, 2002 — Second public release. Added more to the chapter on Safearrays and Variants, minor
fixes throughout book.

August 5, 2002 — Third public release. Added more to the chapter on Reactors.

September 10, 2002 — Minor updates and corrections only.
October 15, 2002 — Minor corrections and formatting changes. Updated acknowledgements section.
December 24, 2002 — Added more information on ObjectDBX and Xrecords.

March 5, 2003 — Updated to include information about changes introduced by AutoCAD 2004 in
chapter 25 (new chapter).



Acknowledgements

| would like to persondly thank the following people for their help and guidance
throughout the making of this book: My Wife Kathy, my kids, Brad Hamilton, Jon
Szewczak, Phillip Ash, my brothers Larry and Joel, my sister Majel, and or course, God.

| would like to thank the following people for their insight and wisdom in general, which
has no doubt led me to undertake something like this: Joe Sutphin, Frank Zander, Frank
Moore, Jerry Milana, Andrew Hancock, Bud Schroeder, Tom Nelson, Mike Wekdler,
Kenny Ramage, Frank Oquendo, Bill Kramer, Owen Wengard, Rheini Urban, Randall
Rath, Brett Rivers, Bob Leider, Joel Screbnick and Rob Spitzer. | would finally like to
pay homage to the following for have enlightened my programming skills by exposing
me to some of the most elegant and awesome coding and logic I’'ve seen anywhere:
Andrew Hancock, Brad Hamilton, Randall Rath, Randy Kintzley, and Joel Screbnick.

| would like to thank my late parents for bringing me here.

| would like to thank the following for helping me by reviewing the manuscript for this
book and providing excellent comments and corrections: Kenny Ramage, Sherko Sharif,
Jon Szewczak, Phillip Ash, and many others | can’t hope to name.

Persons mentioned above, or anywhere within this document, that may work for certain
known companies are named out of appreciation for their generosity, renown expertise
and overall compassion for helping others to better understand and leverage the software
technologies discussed herein. Itisin no way a statement of acknowledgement, approval
or condonement on behaf of their employers or themselves in any manner. Some of
these people do not even know I’ ve named them herein. Ho ho ho.



Contents

ADOUL TNE AULNOT ...ttt bbb e b e b e s b e s b e nb e sbe e sae e nbeenne e nneennns 7
Fg11goTo (Bt 1o o FOOR ST T PP PR ST PRPRO 8
WAL IS VISUBL LISP?.....eieeeee bbb e n e 8
Comments used Throughout ThiS BOOK ..........coiuiiiiiaiiiiiii et 9
TRE FULUIE? ...ttt bt h e h e bkt h e a e e ae e e et s et e s et e bt ea b e e enr e ear e eareean e e 9
Chapter 1 - The Visua LISP Development ENVIFONMENL. .........ooueiiieiiiiieiee et 10
The Visual LISP IDE TOOIDEIS........ccuciieiieiieiiesiee ettt sttt sr e sre e sreenree s 11
The VLISP IDE PUll-DOWN IMENUS........coiieiieiieiieeiteesiee sttt ettt sr e sreesreesreesreesreesneesreenneens 12
Chapter 2 —Basic Coding iN ViSUal LISP........c.coo it 14
Comparing AUtOLISP t0 Visual LISP/ACHVEX .....cc.eiiiiieiei ettt 15
Exploring Object Properties and Methods............cocuiiiiiioiiicee e 16
ACHVEX VS DX ..ttt b bbbt b e s b e s b e e s b e s b e e s b e e s b e e sbe e sbeenneesbeesnnenne s 18
SEIECHION SELS.....eeteeit ettt b bbb e bt b e R h e nh R e R n e n e s 18

POINE LISES. ...ttt sttt sttt r ettt b e b e b e e s bt e bt e sb e e s b e e s b e e sbeesbeenb e e nbeeabeenneesreenreenreen 18
gV o (0] 0 1= TSR 18
Chapter 3—Using ActiveX With ViSual LISP..........coiiiiii et 19
ClBSSES etttk E e bRt E Rt R Rt Rt Rt R E e re e r e re e nne s 19

1@ o] = ot £ F T TP TP PR P PP RR PPN 19
ClaSS INNEITEAINCE. ..ottt et b e bbbt b e e n e e b e ne e ne e neenne s 20
ColleCtionS 8N DiCHIONEITES.........ueeiueetieite ettt bbb re e re e re e ne e 20
Properties, Methods and BEVENES..........oo it 21
PrOPErtY REIBVANCE ... ittt ettt st e st e e e be e e ebe e e saee e sabeesnbeeenees 22
USING MEENOGS. ...ttt ettt ettt bt e b e e e sate e sa b e e st e e e be e e ebee e snbe e smbeesnbeeenees 24

(D= itz B Y 01 S OO PP PP OUPPPOUPRRN 26
Constants and ENUMEIELIONS. ..........eoiiiiieiieiee et 27
VaATANS BN0 SAFAIMTAYS ......ee ettt ettt e bt e et e e sbb e e sab e e s be e e be e e saee e sabeesnbeeeaees 27
NBIMIESPACES. ...ttt ettt ettt e ettt e e ekttt e e e bttt e e aabe e e e e aa b e e e e e b be e e e aabee e e s aabeeaeanbeeesannneeesanneeanann 28
Interfaces and TYPE LIDIaITES. ... .cooiuii ettt sb et e be e e bee e sane s 29
Chapter 4 — Debugging Code With VisUal LISP..........coiiiiiiiiieie et 32
BIEAKPIOINES. ...ttt ettt ettt a et e ettt e b et e h e e e s at e e sa b e e e b et e be e e ehee e nabe e nabe e ebeeenees 32

S = o] o 1 0o PO RRURRRI 34

F N 01007 (o T TPV P PP 34
WVBECHIES ...ttt ettt b e bbbt bt bRt Rt Rt Rt E e n e n e ne e ne e 35

B L= 1 USROS 36
10T 1 o] o ISP 36
SYMBIOI SEIVICE ...ttt bt a et e st e et e e e she e e sabe e sabe e ebeeeabeeesaneesnreans 37

F N o0 o0 = T PO PO PP PPPTO 37
BOOKIMAIKS. ...ttt r e b e b bt e s b e s bt e s R e e s R e e s b e e b e re e nreenreenreen 39

GO0 LINE POSITION ...ttt sttt ettt sb e b b e sbe e sb e b e sn e sbeenneesneennnas 39

o I =0 o ] oo RS RPUPRPR 40
Visual LISP Error Trapping FUNCLIONS ........cooiuiiiiiieiie ettt be e sne e snee s 40
Chapter 5 —Working with Projects and MUItiple FilES........cooeiiiiiiiiie e 46
Chapter 6 — Working with Variants and SafEarTay's .........ccceereieiieeiiieiie et 48
VisUal LISP Variant FUNCLIONS.........coeiiiiieeiieiee sttt 48

A AE= g A D= = W Y o= U URRRRP 49
Visual LISP SAf@ATITaY FUNCLIONS.........uiiiiiiiiit ettt ettt ettt sbe e ate e sabe e s be e e sbe e enee s 50
Chapter 7 —Object Manipulation FUNCHIONS ..........ouiiiiiiiei ettt 56
Chapter 8 —File and DireCtory FUNCLIONS............oi ittt sb e sae e 59
Chapter 9 -Mapping and 1teration FUNCLIONS...........coiieiiiieii et seee e 63
Chapter 10 “Working With NaMESPECES. .......coiueiiiiee ettt e b e saee e sabe e sbeeeees 66
NAIMESPACE SCOPING. .-t eenteeeiteteitteeiteeetee st e e e suee e s be e s beeaabeeesaeeesabeesabeeabeeeabseesabeesabeeeabeeesaneesabeeanbeeenens 67
NAMESPACE FUNCLIONS ...ttt ettt sa et e st e e e be e e sae e e sabe e sabe e e be e e sane e sabeesnbeeenees 67
Chapter 11 —RegiStry FUNCHIONS. ........oi ittt ettt et saee e sabe e sbe e e sbe e e saee e snbeesnreeenees 74
Chapter 12 — Reactors and Call-BaCtKS..........ooiuiiiiiiiiii ettt 77



ViSUSl LISP REACION FUNCHIONS .....ceeiiiiiiiiiiiiiiiiieeiiieeieeeeeeeeeeeeeeesesssssessssssssssssssssssssssssssssssssssssssssssnsnnnnns 78

RS2 o (0 G Y 0 <= OO PT PP OUPPPTROUPRR 79
VErifYING REBCION TYPES ... iiiiiiie ittt ettt et rbe e e at e e st e e s be e e ebe e e saeeesabeesnbeeenbeeeanneas 82
USING OBJECE REBCIONS ......eeiieee ettt ettt sh et e bt be e ehb e e sabe e sabe e e be e e sane e sabeesnbeeenees 84
Attaching Data to REACIOr ODJECLS.........ueeiiiiiiiieitie ettt ettt sae e e sabe e s be e e sbeeeenee s 86
Inspecting ReaCtors Within the VLIDE ..ot 86
QUETNYING REBCTONS ... ettt ettt ettt a bttt e s be e et e e e sbee e sabe e sabe e sabeeebe e e abee e sabeesmbeesnbeeenees 87
Transient and PersiSteNt REACIOIS. ..........eoiieiieiieieeree ettt st esre e sreesreenreens 88
Opening Drawings With PersiStent REACIOIS ........coiuuiiiiieiiei it 88
Reactors and MUltiple NaMESPECES .........coiiiieie ettt sttt b e e 88
GUIdElINES FOr USING REBCIONS. ... .eiiieieeiiee ittt ettt ettt st e st e e sbe e e sbee e sabe e smbe e snbeeeees 89
Chapter 13 —Making Visual LISP APPliCALIONS..........eiiiiiiiiieiiee ittt 92
Why MaKe VLX APPIICALIONS?........eiieiieiiee ettt ettt ettt e rbe e ae e e sabe e s be e e rbe e e snee s 92
Building @ SImple APPIICALION ......coouiiiiii ettt st et saee e saae e b e e e ees 92
PRV FIIES .. ettt h ettt n e e 97
Chapter 14 — Using ObjectDBX With Visual LISP .......cooiiiiiieiec et 98
WHat IS OBJECIDBX? ...ttt ettt b bt bt e bt e sb e s bt s b e s b e e sb e e sbe e sbe e sbeesneesbeennnennnas 98
How to Use ObjectDBX Within Visual LISP ......ccouiiiiieii et e 98
Chapter 15 — XDATA and XRECORDS..........ccoiuiiiiiiiiie ettt sne s sne s 103
WOTKING WIth XDATA ..ttt ettt ettt sh et a bt e s st e e s be e e be e e ebe e e sabe e sabeesabeeebeeeabaeesaneas 103
Working With XRECORD ODJECES. ......vetiiuiieiiieeiiee ettt ettt et sabe et esbe e sbee e snneas 103
Chapter 16— The AUtOCAD AppPlication ODJECE .......ccueiiiiieiiee e 107
Chapter 17 — AULOCAD ENLITIES......veieieeie ittt ettt ettt et e st e e e sbe e e sbe e e sane e sabeesbeeenees 111
All Objects — COMMON PrOPEITIES.......eeiiieiie ettt ettt ettt sb e be e e sbee e saneas 111
THE ARC ODJECT ...ttt b bt b e b e b e e sb e e sbe e s be e sb e e sb e e b e e nbeenbeenneennnas 111
THE CIRCLE ENEITY ....eeteeteeitieit ettt ettt sttt sb e bbb e bt e sbe e s b e sb e sbe e sb e e sbeesbeenbeesbeenneenneennnas 112
The RotatedDimension (LinearDimension) ENtity .........ocueeiieriieiiiee e 112
THE ELLIPSE EITY. ...cteeitieiteeit ettt sb b e b e b b e b nneenneas 113
THE LEADER ENULY ..eotiiitieitieit ettt sttt sb e bbb b e b e sbe e b e b e b e sne e 114
THE LINE ©NEITY . ...eeeeeeeeeieet et sb e b e b sb e b b e nbeenne e e 114
THE LWPOLY LINE @MY ....teeitiiitieitieitiesiee sttt ettt sttt st sbe bbb b e sbe b e nneesneenneennnennnas 114
THE IMLINE ENETY ....teeiteeiteeitee sttt et b e b e b e sb e sb e sb e e sbe e sbeesbe e sbeenneenneennnas 114
THE MTEXT ENEILY ...teeiteeiteeitee ittt b bbb s b e sb e sbe e sb e e sbe e sbeesbe e nbeenbeenneennnas 114
THE POINT ENEITY ..eoteeiteeitie ettt ettt b e sb e bt sb e b e s b e sbe e sbe e sb e e sbeenneenneennnas 115
THE POLY LINE @Y ...ceteiitiiitieitieitee ittt sttt bbb bbb e s e nneennnas 115
TRERAY ENHILY .ottt b e b e s b e s b e s b e e sb e e b e e b e e sbe e b e e b e ne e b e e nnns 115
THE SOLID ENEILY ..eeteeteeitee ittt b bt b e b e sb e e s b e e sb e e s b e s b e e sbe e sb e e sbeesbeenbeenneennnas 116
THE SPLINE MY ..veeteeiteeitieit ettt ettt b bbbt e sb e esb e sbe e b e sb e nbeenneesneennnas 116
THE TEXT BNEITY ..t e ettt b bbb e b e b e b e e sb e e s b e sb e e sbe e sb e e sb e e sbeeabeenneennnas 116
THE TRACE ENEILY ....tee ettt b e b bbb e s bt e sb e e s b e e sb e e sbe e sb e e sbe e sb e e sbeesbeesbeenneennnas 116
THE VIEWPORT ENEITY ...c.teiitieitieitieitee ittt sttt sttt sttt sb bbb b sbe e nbe e b e sne s e sneennnas 116
THE XLINE ENILITY .. veeteeitee sttt sttt b e sb b e sb e b e sb e sbe e sb e nb e nbeenneenneenneas 116
Chapter 18 — DOCUIMENTS. .......teeiteeeteee ittt e seteesbeeabe e steeesaeeesabeesabeeabeeeabeeesaeeesabeesabeeabeeeabeeesaneesmbeesnbeeenses 117
The DOCUMENES COECLION ......c.veiitieieieitee sttt nb b sae e 117
Chapter 19 — The Preferences ODJECES. ........uui ittt et sb e saee e sb e b e 121
The AcadPreferences ColleCtion OBJECL ..........ooiiiiiiiiiiiee et 121
The DatabasePreferenCes ODJECE ..........eii ittt sae e st e e sbe e saee s 124
REI0BAING @ PTOFIIE ... ettt sb e saee e s esbe e e 125
Chapter 20 —Menus and TOOIDEAIS..........oo e 128
The MENUBEE ODJECL...... ..ottt ettt et e e sbe e e sae e e sabe e st e e e nbee e saneas 128
GEtiNG MENUBAE TTEIMS ...ttt sttt b et sae e e sabe e s be e e nbeeesnneas 129
Inserting PopMenus into the MenuBar COIIECHION ..........coociiiiiiiii e 129
Removing PopMenus from the MenuBar COIIECHION ..........ceooiiiiiiiiiiii e 130

The MenuGroups ColleCtion OBJECT ...........oiiiiiiii e 130
The MeNUGIOUP OBJECL .......eeiiiiiiii ettt e st e e sbe e sae e e sabe e snbe e e nbeeesnneas 130
The POPMENUS ODJECL......ccuteiiiie ettt ettt ettt ettt e ab e e st e e s be e e abe e e sabe e smbeesnbeeenbeeesaneas 131



The POPMENU ODJECE ......eeeiieeiiie ettt ettt b ab e e st e e s be e e sbe e e sabe e smbeesnbeeebeeesaneas 131

The Toolbars ColleCtion OJECL.........oiuiiiiieiiee ettt sb e sab e sabe e sbe e e sbee e saeeas 131
The TOOIDAr OIJECL ..ottt bt hb et e e st e e e nbe e e saee e sabeesnbeeeabeeesneeas 131
Creating @TOOIDAN ...ttt b e eae e et e s be e e nbe e naee s 133
Chapter 21 — Interfacing with Other APPlICAIONS.........coiiiiiieeeee e 135
IMHICTOSOFE EXCEL ...ttt bbbt et r e e e n e e r e e ne e ne e 135
WiINAOWS SCrPLING HOS .......eeeieeeeiie ettt ettt e et e e sbe e e sab e e ssbe e smbe e e be e e abae e saneas 137
The FIHESYSIEM ODJECL......eteeeeiteite ettt bbb bbbt b e b et s e e b e sbesae e e e e e 138
Windows Messaging and CDONTS ... .cooiiiiiieiee ettt ettt sbe e sabe e sabe e sbe e s be e e sbeeesaneas 139
Windows Management Instrumentation (WMI) ........c.oooiiiiiii e 141
WOTKING WITH SEIVICES. ...ttt ettt rat et e st e et et sbe e e sab e e sabe e smbeeebeeenbeeesaneas 142
Chapter 22 -Using Visua Basic DLLSWith Visual LISP .......ccocoiiiiiiiiieee e 143
REGISIENNG DLLS.....eeiitee ittt ettt b ettt e e be e e sbe e e sate e sabe e sbe e e sbee e saneasnneaans 146
RE-REGISIEITNG DLLS ...ttt ettt ettt e et e sbe e e sae e e sabe e sbeeesbee e saeeesnneaaas 146
Chapter 23 —Working With Dialog FOMMS..........ociiiiiiiiieiee ettt 148
Referencing DCL DefiNitiONS.........oiuiiiieaiiee ittt ettt e et e e sbe e e sate e sabe e sbeeeees 148
Dynamic Dialog INTEFACION ......oveiiiieiiee ettt ettt sh et e et e e e sbe e e sabe e sabe e sbeeeees 149
Controlling Images From Call-Backs ..........c..ooiiiiiiii et 150
Chapter 24 — Examples Of COMMION TASKS........ciiitiiiiiiiaiiee ettt ettt sbe e sbe e snae e sabeesbeeeees 153
Example 1 —Dumping aList Of Layer ProOperties.........c.cooueiiiiiiiiieiie et 153
Example 2 — Set All ENLItIES 0 “BYLAYE™ ....coveieiieiee ettt s sb e 154
Example 3 — Purge, Audit and Save all Opened DrawWingS .........cccoeieiaiieenieeniee e 154
Example 4 — Zoom Extents and Save al Opened DraWingS .......cccoeieeeiieerieeniiee e e e 155
Chapter 25 - Changes in AULOCAD 2004 .........uoiiiiieieieiie ettt ettt e sbe e e sbe e e sane e sabeesbeeeees 156
GENENEI ChBNGES. ... eeiutiietie ettt ettt ettt ettt ettt et e e be e e be e e ehee e sabe e eabe e e be e e abee e sabeesabeesnbeeeabaeesnbeesnreans 156
ViISUAl LISP CRENQES.......ciiiiiieiieeeie ettt ettt ettt et e sbe e e sab e e sn e e st e e e be e e abeeesaneas 156
TrUE COlOF PrOPEITIES. ... .eeeieiee ittt ettt ettt ettt st e ab e e st e e s be e e be e e saeeesabeesnbeeenbeeesaneas 157
Changes to the ObJeCtDBX INEEITACE. .......cooieieie e 158
Changes to External Referencing of ACAOAPPIICALION. ........coiiuiiiiiiiiie e 159
ChangestO ACAOPTEfEIEINCES .........eii ittt sttt b et e sbe e s be e e sbee e saeeesnreans 159
SYSIEM VAITADIES ...ttt sttt ettt b et sabe e s abe e e be e e ebe e e sareenarean 162
NEW COMIMEANGS ...ttt ettt b e b e bt bttt e b e e be e bt e b e e bt e b e e be e b e e beeareeaneeneenneenns 163
Modified Commands (SINce AULOCAD 2002).........uteiueiaiieaiieeaieeesieeestteesbeesreessbee s seee e saeeesareeseeeenees 164
TOOI PAIBIEES......cceeeeee ettt b bbb b e s b e b e s b e b e bt b et b e b e nneennnas 164
L6004 To: [0 [o] o IR T TP T TP P PR 167
Appendix A - VLAX ENUMEration CONSEANTS.......ccoiteiiiieieiieeiiee et esiee et stee st e sbee e sase e sbe s b e ssaeeesneeas 168
Appendix B —VLISP IDE Keyboard ShOrMCULS..........coouiiiieii et 170
Appendix C—Tips & TrickSTor Visual LISP.........oooi i 171
Adding VLX support to the (autoload) FUNCLION ............cooiiiiiiiiii e 171
Saving your VLIDE cOnfiguration SEtINGS........ccoueieiueeiieeaieeeriee et e s stee e sibe e v e seeeesneeas 171
Recovering DCL Code from VLX FlES......ocui it 171
Using Projects and DCL with the Make Application Wizard............ocooeieiieiiieniiieesee e 171
Team-based VLX DEVE OPIMENL.........ooiiieieeiiee ittt ettt saee e sabe e sbe e be e e sbeeesaneas 172
APPENdiX D — USEfUI RESOUICES .....cooueiiiieiee ettt ettt ettt ettt e st e e sbe e sab e e sabe e sbeeenbeeesnneas 173
(€T 0SS YU PRPPR 174



About the Author

David Stein was born. He lives in Virginia, which is in the United States. For those
outside of the US, Virginiais south of New Y ork, north of Florida and east of California.
Why am | writing in third person? The particular areal liveis very military oriented. All
branches of the military are heavily represented here, but being that we're on the coast,
the Navy and Coast Guard are the most prevalent.

After 15 years of working as a drafter and designer in the shipbuilding industry, |
graduated in 1999 from a local university with a Bachelor’'s of Science in Information
Science and now work as an IT Manager at a large defense contractor. My job title is
Manager of Software Applications, but | evolved into this from my previous role as
Manager of Engineering and Design Applications. | have been writing various types of
program code for over ten years, but have aways been involved in AutoCAD
programming as a continuum of sorts. The story behind this is so mundanely trivial and
unexciting that to commit it to writing should be a punishable crime.

Today, | split my time between CAD applications development, web-based applications
development, network administration, strategic business development, washing dishes,
taking out the trash, taking my four kids to the beach every day, and drinking beer. | aso
develop software for routine network administration tasks using many different tool sets.

In al, I work with languages like Visua Basic, Visua InterDev, FrontPage, Microsoft
Access, VBA, AutoLISP, Visua LISP, Windows Scripting Host (WSH), Windows
Management Instrumentation (WMI), Active Directory Services Interface (ADSI), Cold
Fusion, SQL, Active Server Pages (ASP), Kix Scripting, Windows Shell programming
(aka Batch and CMD files), Microsoft Systems Management Server (SMS)
administration and scripting. | also perform such vital duties as general coffee drinking
and bullshit talking to whomever can’t run fast enough to escape me. Phew! Do you
really care about any of this? Sheesh!



Introduction

This book is aimed at helping experienced AutoL I SP programmers better understand and
use Visua LISP. This book will cover topics such as ActiveX, Compiling Code,
Debugging, Formatting, Deploying and using advanced features such as reactors and
namespaces. AutoL ISP fundamentals are left for other books to cover as that topic has
been aptly covered elsewhere already. This book will focus solely on the Visua LISP
extensions to AutoL ISP and the unique capabilities and features Visual LISP provides.

For this book, you will need to have access to using AutoCAD 2002 or other Autodesk
products that include the Visual LISP toolset such as Mechanical Desktop or Map. Note
that Visual LISP is not included with, or usable by products such as Inventor or
AutoCAD LT. Nor is Visua LISP provided within competing products such as
IntelliCad™ or CadKey®.

What is Visual LISP?

Visual LISP began life as a product of Basis Software, originally named Vital LISP.
Autodesk purchased the full rights to Vital LI1SP during the late stages of AutoCAD R14
and renamed it Visual LISP. It was then available as a separate add-on to AutoCAD R14.
With the release of AutoCAD 2000, Visual LISP replaced the older Proteus AutoL ISP
interpreter module and became an integral part of AutoCAD. It was then incorporated as
the LISP interpreter in al AutoCAD-based vertical products, such as Map, Mechanical
and Mechanical Desktop.

Visual LISP is more than simply a replacement for AutoLISP, in fact it still works with
older AutoL ISP code just fine, but it also includes many new improvements. Among the
differences are a built-in syntax-aware code editor, dialog previewing, debugging tools,
formatting tools, online development references, a compiler and compiler wizard,
workspace project management and more.

But the most significant changes to the language itself are due to the addition of ActiveX
interface functionality. This effectively puts Visual LISP potential on par with other
ActiveX technologies such as Visual Basic for Applications (VBA). While Visual LISP
still lacks many of the sophisticated tools VBA has, it does possess the capability to
interface with ActiveX providers and consumers such as Microsoft Office, Microsoft
Windows, and even AutoCAD itself, in ways not possible with AutoL1SP aone.

While Autodesk has revised Visual LISP somewhat from its originsin Vital LISP, most
of Vital LISP features have not changed much. Visual LISP could be improved to make
it an even more powerful development platform, but it seems Autodesk is more interested
in other technologies such as VBA, ObjectARX and XML, than ugly old LI1SP.

Autodesk chose to exclude support for many features in Vital LISP when moving it to
Visual LISP. Thisis unfortunate and unfounded given that the overwhelming majority of
development is till done in LISP or Visua LISP. While many Vita LISP features still
exist in Visual LISP, their documentation is not available and this makes certain features

8



risky to use, let alone just figure out. If you happen to be an old Vital LISP user, you
should be aware of this. Some of these features will be explained later in this book.

Comments used Throughout This Book

Some notations will be shown throughout this book that denote specific types of
information. For example...

’r will denote information that may not be documented elsewhere or may be
difficult to find.

wa will denote information that you should be aware of in order to avoid problems
Or errorsin your programming code.

The Future?

Good question. Wouldn't we al want to know the future. As for the future of Visual
LISP, it's anybody’ s guess. Autodesk has provided nothing to indicate what the future of
Visua LISP might be. Rumors abound that it will be replaced by VBA, but that seems
unlikely in the near term anyway. Also, at the time of this writing, new technologies are
emerging such as Microsoft’'s .NET framework (http://www.microsoft.com/vs), and new
variants of LISP such as SharpLISP by 3" Day Software (http://www.objectdcl.com).

In my humble opinion, Visual LISP is an extremely powerful, flexible and dynamic
language to develop upon with respect to CAD applications. It could do much more if
given a little nourishment, but it seems the refrigerator is a bit empty lately. Until
something comes along that can fully replace it without any limitations, | will continue
using it along with the dozen or so other languages | strap on each day to do my work.


http://www.microsoft.com/vs
http://www.objectdcl.com

Chapter 1 - The Visual LISP Development Environment

The VLISP IDE (Integrated Development Environment) is a combination of tools to help
make coding, testing, debugging and compiling output easier and more productive. Type
in VLIDE at the AutoCAD command prompt to open the Visual LISP editor. This will
load the VLISP ObjectARX application interface (vlide.arx) that loads and enables the
IDE for use while AutoCAD is in use. Because Visua LISP is an integral part of
AutoCAD, you cannot use the VLISP IDE without AutoCAD being in use.

[___J|l_i\|'isual LISP for AutoCAD <NNSY_PIPE.dwg>

File Edit Search View Project Options Window Help

H;@@ Hé/é-’s By |.r, o | s ‘ H[:] e ey = —é‘@‘
|[sai)lrclnesn | |[BREEN%0E
= d Dukp - |Of = =
~SAVEASPROWPT ]
Pull-Down Menus : Toolbar Menus

[FASDUMPIHNG object format -> “C:/ASW2K/COM/SYS/asw-api-utilities.fas"]
; Compilation complete.

|
Windows >
4|
'U'isual LISP Console - [Of x|
3 B
H Trace S [=] S
ﬂ ntitled-8> loading...">
Cursor Position H
Status Bar = t
| v 4 =
4 >
Output windo® RO |L 00106 C 000mM

Figure 1-1—The Visud LISP IDE

Note the IDE features shown in Figure 1-1 above. The top portion includes the IDE pull-
down menus and toolbars. The mid-section includes the Build Output, Visual LISP
Console and Trace windows. Thisis also where open program code is shown and edited
in their own windows (one per file). Other windows (not shown above) include the
Watch window, Object Inspection and APROPOS window.

The bottom edge of the IDE window contains the Status bar. This is where messages are
displayed following every action in the IDE. The bottom-right panel is the code editor
cursor location display. This shows the current position of the cursor in the code file
where L nnnnn is the line number and C nnnnn is the character offset number. In this
example, the cursor is positioned on line 106 on the first character of that line.

10



The Visual LISP IDE Toolbars

There are four individual VLISP IDE toolbars available. You can move them, dock or
undock (float) them as well as hide or show each of them to suit your particular tastes.
The toolbars do not exactly match their corresponding pull-down menu features to be
careful not to assume that everything exists on a toolbar for being accessed in the VLISP
IDE window. Y ou may find that pull-down menus are more effective.

[ecd@ sme o -

Figure 1-2 — The STANDARD toolbar

The STANDARD toolbar includes general file management features from left to right:

New

Open

Save

Print

Cut

Copy

Paste

Undo

Redo

Complete Word

||Cy =Py oy o

Figure 1-3—The TOOLS toolbar

]

I
)

The TOOL S toolbar contains general editor features from |eft to right:

Load File
Load Selection
Check File
Check Selection
Format File
Format Selection
Comment Selection
Uncomment Selection
Help

ooy «2tmed/l0

Figure 1-4 — The DEBUG toolbar

The DEBUG toolbar contains tools for testing and debugging code during controlled
execution. Thisincludes from left to right:

11



Step Into

Step Over

Step Out Of
Continue

Stop

Quit

Toggle Breakpoint
Add Watch
APROPOS

Last Break

B ®mB8w%6)E

Figure 1-5—The VIEW toolbar

The VIEW toolbar contains options from left to right:

Activate AutoCAD (switch to AutoCAD editor)
Display LISP Console

Inspect Object

Trace Window

Symbol Service

Apropos

Display Watch Window

The VLISP IDE Pull-Down Menus

The VLISP IDE pull-down menus are always available by default within the IDE
window, whereas the toolbars can be moved, hidden and so forth. As was mentioned in
the section above, the pull-down menus contain much more in terms of VLISP editor
commands than do the toolbars. For this reason, you may find using the pull-down
menus more efficient and effective for daily coding chores.

12



File Edit Search View Project

Ez‘gn”;je o The File pull-down menu contains standard file
Reopen , management options such as Open, New, Save, Print and
Save Ctrls Exit. It aso provides useful commands like Revert, Close
Save As... Ctrl-Alt-5 All, Save All and Load File. The Make Application
save Al AltZShift5 features are discussed later in Chapter 13.

Close Ctrl-F4

Revert

Close All

Print... Ctrl-P

Print Setup...

vlake Application 4

Load File... ctrl-shift-L

Exit Alt-0

Figure 1-6 - File Pull-down

Edit Search view Profect Debud  The ED|T pull-down menu contains standard clipboard

Undo Ctrl-2 . . .
Redo Ctrl-Alt-2 commands, as well as parenthesis matching and a special
Cut Otrl- fly-out named “Extra Commands’ that provides some
o o useful editing command features.

aste Cirl-¥

Delete Del

Select All Ctrl-A

Parentheses Matching Ctrl-M »

Figure 1-7 — Edit pull-down

Indent Block Tab The Extra Commands fly-out menu, located under the Edit

Unindent Block shift-Tab

Indent to Current Level Ctri-Alt-Tab pull-down menu, contains quite a few hidden commands
Prefiz With...

Append With... that can save you a lot of time and effort editing code. In
Comment Block part|CU|ar, Prefix With and Append With, UpCase and

Uncomment Block

———— Downcase, Capitalize, Insert Date, Time and Sort Block.

Upcase Ctrl-Shift-u
Downcase Ctrl-u
Capitalize

Insert Date
Insert Time
Format Date/Time...

Sort Block

Insert File...

Delete to EOL
Delete Blanks

Figure 1-8 — Extra Commands

13



Chapter 2 — Basic Coding in Visual LISP

In this chapter we will begin writing some basic code using Visua LISP and walking
through a simple process for coding, testing, debugging and compiling your code into a
finished product. For the sake of trying to at least remain relevant to what a CAD
programmer expects, this will not involve the customary “Hello World” coding stuff.

(vl -1 oad-com

In order to use any of the cool ActiveX functionsin Visual LISP, you must first initialize
the ActiveX interface by using the (vl-load-com) function. This can be included in every
file or every function definition, it doesn’t matter. Once it has been executed, subsequent
calls do no harm whatsoever.

(defun C SHOALAYER ( / ent |ay)
(if (setq ent (entsel “\nSelect object to view |ayer nane: “))
(alert
(strcat “Layer nane: *“
(vl a-get-1layer (vlax-enane->vla-object (car ent)))

)
)
)
(princ)
)
Figure 2-1 - SHOWLAYERS.LSP

The code in Figure 2-1 demonstrates how to get the layer
assignment of a selected entity and display it in a simple alert

box. Load this code into AutoCAD and type SHOWLAYER a ~ -@®" name: BORDERS
the command prompt to run it. You will be prompted to select

an object on screen “Select object to view layer name: “ upon

which the object’ s layer name is then displayed as follows...

While the differences between how you might traditionally access the layer name using
DXF entity access is only dlight, the user does not need to know that DXF field 8 is the
layer assignment. They can instead use (vla-get-layer) which is a bit more intuitive. This
isthe crux of what makes the ActiveX featuresin VLISP attractive: clarity.

0}
1iP
You can add (vl-load-com) to your startup suite in many ways. You can add it

to your acad.Isp or acaddoc.Isp file. You can make a small LSP file and select it in
APPLOAD as part of your “startup suite”.

14



Comparing AutoLISP to Visual LISP/ActiveX

{vla-get-layer (vlax-ename->vwla-object {car ent}}) :J
{cdr {assoc 8 (entget (car Eﬂt}}}}l —I
A M

Figure 2-2 — Comparison between LISP and Visual LISP methods

Both expressions shown in Figure 2-2 will accomplish the same thing essentially. While
the first expression is a bit more wordy, and actually consumes dlightly more system
resources to execute, the increased baggage is ultimately negligible in most respects.

Once the initial access is made to either root collection of properties (namely, entget or
vlax-ename->vla-object), which is normally done once per object manipulation, the rest
is actually simpler to write in ActiveX form. For example...

(defun CGETLAYER (entity / elist)
(cdr (assoc 8 (entget entity)))

)
...isfunctionally identical to the following...

(defun CGETLAYER (entity / obj)
(vl a-get -1 ayer (vl ax-enane->vl a-object entity))

)

This is not a comprehensive comparison by any means, since this doesn’t demonstrate
how the ActiveX object model allows you to navigate relationships in a logical manner.
For example, the following code shows how you can retrieve a property setting from the
Preferences/Files collection:

(vl a- get - support pat h
(vla-get-files
(vl a-get - preferences (vl ax-get-acad-object))

)

The above capability is not possible to accomplish with AutoLISP aone. It is made
possible by ActiveX and the object model of AutoCAD, and the fact that Visua LISP and
VBA can access these features through their ActiveX interface to AutoCAD.

Using another example of accessing a particular LINE entity’s properties, you can see
how the ActiveX interfaces provide very easy to understand names that make coding
more intuitive:

(setq ent (car (entsel “\nSelect line object: *)))
(setqg objLine (vlax-enane->vla-object ent))

(vl a-get -l ayer objLine)

(vl a-get -col or obj Line)

(vl a-get-1inewei ght objLine)

(vl a-put -1 ayer objLine “0")

15



(vl a- put -col or objLi ne acRed)

As you can see from this example, it is much more intuitive to access and modify entity
properties through ActiveX than by using the more cryptic DXF code numbers. Also, it
isworth noting that while the DXF 62 code is transient, the Color property of an entity is
persistent. To put this yet another way: An entity that has color=ByLayer has no DXF
62 field in the (entget) data list. Only when a color is applied to override the layer
defaults will the entity have a DXF 62 field. However, if you access the same entity
through ActiveX, even with color=ByL ayer, the return value will be acByL ayer.

As an example of how this might be of use to you as the developer, consider the
following function that copies layer, color and linetype properties from one entity to
another:

(defun CopylLayer Col or1l (obj 1 obj2)
(vl a-put -l ayer obj2 (vla-get-layer obj1l))
(vl a-put -col or obj2 (vla-get-color obj1l))

)

You'll notice that we don’t have to rely upon DXF codes, nor do we need to use (subst)
or (entmod) functions to update the entity properties. This same function writtenin
AutoL ISP might look something like the following example:

(defun CopyLayerColor2 (entl ent2 / elistl elist2 layl col 1)
(setq elistl (entget entl)
elist2 (entget ent?2)
layl (cdr (assoc 8 elistl))

(setq elist2 (subst (cons 8 layl) (assoc 8 elist2) elist2))
(if (assoc 62 elistl)
(progn
(setqg coll (cdr (assoc 62 elistl)))
(if (assoc 62 elist?2)
(setqg elist2 (cons (cons 62 coll) elist2))
(setqg elist2 (subst (cons 62 coll1l) (assoc 62 elist2) elist2))
)
)
)

(entnod elist?2)

)

Notice the additiona checking required for the DXF 62 code existence in both the source
and target entity data lists. As you can see, Visua LISP and ActiveX can dramatically
reduce the amount of code required to perform many common tasks. Reducing code also
reduces the potential for errors. Reducing errors also reduces the amount of effort
required to test and debug code. All of this results in faster, easier and more productive
programming with better quality results. And this makes for happier customers!

Exploring Object Properties and Methods

If you haven't already discovered the various properties and methods provided by objects
within AutoCAD, a very good way to start is by getting familiar with the (vI ax- dunp-

16




obj ect) function. This function requires one argument, the object, to request the object
properties, and an optional argument, a flag (anything non-nil) to request the object
methods.

(vl ax- dunp- obj ect obj ect [show nmet hods])

Example of using this function on a standard LINE entity as follows:

% (setq e (entsel)); pick a LINE entity
_$ (setq obj (vlax-enanme->vla-object (car e)))
Ret urns #<VLA- OBJECT | AcadLi ne 00f 20024>

$ (vl ax-dunp-object obj T)
| AcadLi ne: Aut oCAD Line Interface
Property val ues:
Angle (RO = 0.630844
Application (RO = #<VLA-OBJECT | AcadAppli cation 00a8a730>
Col or = 256
Delta (RO = (4.98519 3.64122 0.0)
Docunent (RO = #<VLA- OBJECT | AcadDocunent 00edleOc>
EndPoi nt = (9.63516 6.56966 0.0)
Handl e (RO = "2B"
HasExt ensi onDictionary (RO = 0
Hyperlinks (RO = #<VLA- OBJECT | AcadHyperlinks 00f 21c44>
Layer = "0O"
Length (RO = 6.17338
Li netype = "ByLayer"
Li net ypeScal e 1.0

Li neweight = -1

Normal = (0.0 0.0 1.0)
OhjectI D (RO = 1074179416
oj ect Name (RO = "AcDbLi ne"

© OwnerlD (RO = 1074179320
; Pl ot Styl eNane = "ByLayer"
; StartPoint = (4.64998 2.92844 0.0)
: Thi ckness = 0.0

: Visible = -1

; Met hods support ed:

; ArrayPol ar (3)

; ArrayRect angul ar (6)

;  Copy ()

; Del ete ()

; Get Boundi ngBox (2)

; Get Ext ensi onDi ctionary ()
; Get XData (3)

; Hi ghlight (1)

; Intersect Wth (2)

; Mrror (2)

; Mrror3D (3)

; Move (2)

; Ofset (1)

; Rotate (2)

; Rot at e3D (3)

; Scal eEntity (2)

; Set XDat a (2)

; TransfornmBy (1)

Update ()

17



As you can see, this is a very helpful function for inspecting entities for their properties
and methods. It is also helpful for inspecting any other objects, including application
objects, documents, collections, and so forth.

ActiveX vs. DXF?

Can ActiveX do everything you need in VLISP to handle all your programming chores?
No. There are quite a few situations where the older AutoLISP approach is the only
solution to a given problem. In other situations, you could use either one but the
AutoL ISP approach will turn out to be the most efficient or manageable choice. You
may reply “Oh sure, that’s what you think.” But let’s ook at some scenarios.

Selection Sets

You can create and iterate selection sets, or more properly named picksets, using either
AutoLISP or Visual LISP. However, you will quickly find that dealing with selection
setsin AutoLISP isfar easier and less problematic than with VLISP.

Point Lists

Actually, any LIST structure is easier to manipulate in AutoL ISP than is the case with an
array using VLISP. While both are powerful and flexible, constructing and modifying
LIST structuresin LISP is much simpler than that of ARRAY structures using VLISP.

Entity Properties

While most properties are easier and more intuitive to access with ActivexX using VLISP,
some are not exposed and are therefore only available from DXF code values using
AutoLISP. For example, control points of Linear DIMENSION objects
(acDbRotatedDimension), control points of LEADER objects, and the infamous
BLOCKDEF description property (which isn't completely available to either AutoLISP
or VLISP, it isonly accessible using a separately loaded function library).

Rather than bore you to tears with detailed examples, which | may do later on anyway,
suffice it to say that there are still situations that warrant using AutoL ISP even though
Visual LISP adds so much power and potential to what you can do.

18



Chapter 3 — Using ActiveX with Visual LISP

In this chapter we'll discuss more examples using ActiveX capabilities within Visual
LISP. First, we'll start off with the technological environment of ActiveX, including
things like objects, object models, collections, properties, methods and so forth. Then
we'll dig into the details of certain parts of ActiveX technologies. Understanding
ActiveX functionality is essential to working with it using any language.

ActiveX isbasically an object-oriented medium, meaning that it behaves in a manner that
uses objects and object relationships. | am not going to explain object-oriented issues
here, that’s best left for more focused text books and what-not. However, | will attempt
to give an overview of some of the basic object-oriented aspects for the sake of gaining a
basic understanding.

Classes

Everything in an object-oriented environment begins with Classes. Classes are abstract
frameworks for describing what form objects should take and how they should behave
and interact. Classes define categories of object types in a sense. For example, an
automobile might be a class of vehicles. Vehicles could be the parent class and
automobile would then be a sub-class. In turn, you can get more specific and define
additional sub-classes such as station wagons, vans, and sports cars.

Classes do not address specific instances, they describe aspects about the instances in
advance of their use. When you use a class you are said to invoke an instance of that
class. The result of invoking a classis usually that of creating an object. An object can
be a single entity or a container that holds yet more objects within it.

Objects

An object is an instance of aclass. An object has inherent properties, and may aso have
inherent methods and events. Properties are attributes that define how the object behaves
or reacts. Methods are built-in functions for accessing or modifying object properties or
certain behaviors. Events are notifications sent by objects in response to specific actions
they perform or actions that are performed upon them.

Using the automobile class example above, an object might be a particular car. Say, your
car, which has a distinct configuration (make, model, color, options, and ID number).
Y ou could say that your car is an instance of the automobile class, or some class derived
from the automobile class.

19



Object Model

Object
Properties
[ . Methods
| | . Events

Object Object

Object

A 4

Object Models

An Object Modd is an arbitrary schema, or arrangement of class relationships that define
a hierarchy and means for deriving one object from a higher level of classes. An object
model is independent of the languages or tools used to access it and work within its
logical framework. The same model exists whether you're working with Visual Basic,
VBA, Visua LISP, Delphi, Java, C/C++, CANET or any other language that
incorporates an ActiveX interface. This does not mean that all features of the object
model are equally supported in all languages. They are not. Some features are accessible
or are more easily accessed within some languages than from within others.

One analogy might be that an Object Model is a house and its arrangement of rooms,
doors and windows. The people that enter and use the house al deal with the same
house. In this case, the house and rooms are the object model and the people are the
programming languages. Hopefully, you get the point.

Class Inheritance

An Object Model always begins with aroot or base object. In the case of AutoCAD, the
base object is the AutoCAD Application object, also called the AcadApplication object.
This provides the base properties, methods, events and collections from which all other
objects and collections are derived. For example, the AcadApplication object has a
collection of Documents (the Documents collection), which in turn has one or more
Document objects within it. Each Document object has its own objects, collections,
properties and methods and so on.

You can navigate an Object Model downward into sub-level objects and collections, as
well as navigate upward to parent objects and collections. This model becomes very
powerful for enabling applications to directly access and manipulate the environment to
perform an almost limitless set of tasks. It also keeps things neat and organized, which
always helps when devel oping software solutions.

Collections and Dictionaries

A Caollection is a group of similar objects that have a common parent container. This
container has a unique name and in most cases will provide its own methods for
accessing the objects it contains. A Dictionary is a specia type of collection that allows

20



you to extend your own dictionaries. Visua LISP does not provide a means for creating
or doing much with collections. It does allow you to iterate them, modify members, add
and delete members. A dictionary allows you to add your own dictionaries as well as
popul ate them, iterate them, add, modify and delete their members as well as add, modify
and delete the dictionaries themselves.

Some common collections within AutoCAD are Documents, Layers, Dimension Styles,
Linetypes, Blocks and so forth.

Some common dictionaries within AutoCAD are PageSetups, Layouts (yes, they are also
stored as a dictionary), and various components of Express Tools such as WipeOuts.
Xrecord objects are stored within dictionaries as well.

Properties, Methods and Events

Properties are simply descriptive attributes associated with an object or a collection.
Examples could include Name, Height, Width, Rotation Angle, Scale, Color, Layer,
Linetype and so forth. Properties will vary according to what type of object they are
associated with, but some properties are common to all objects and collections.
Collections and Dictionaries usually provide the Count and Name properties, as well as
the Item, and Add, methods. Only dictionaries will provide a Delete method since you
can’'t delete Collections from Visual LISP.

Methods are built-in functions that an object provides to access or modify special
properties or perform special actions upon the object itself. Examples of common
Methods include Rotate, Erase, Copy, Scale and Offset. Y ou might notice that these look
just like AutoCAD Modify commands. Well, in essence they are just that, but with a
dlight difference.

Whereas AutoCAD Modify commands are general in nature, they must validate object
usage for each execution, Methods are provided by their host object and therefore, only
supported Methods are provided by each object. Confused?

Stated another way, the OFFSET command can be used at any time, but if you try to
OFFSET a TEXT object you'll get an error message from AutoCAD. However, the
TEXT object itself provides a variety of Methods such as Copy, Rotate, Scale and Move
but not Offset. So you can “invoke” a method from an object and be assured that it is
valid for use with that object.

Events are actions that an object or collection can generate from various activities, which
can be detected and responded to as well. This is referred to as event-driven
programming when events are used in combination with reactions to those events.
AutoCAD provides a powerful set of event-response tools called Reactors that enable
you to post triggers in the drawing environment that respond to various Events. For
example, you could create a Reactor to respond to an Erase event when an object has
been erased in the active drawing. Thisisonly one example of Events and Reactors.

21



Property Relevance

It is important to understand that you should NEVER assume all properties are available
to al objects or collections. There are two functions in particular that are valuable for
ensuring your code performs properly when dealing with properties and methods at
runtime: (vl ax- property-avail abl e-p) and (vl ax- met hod- appl i cabl e-p). These
two functions are just two of the Visua LISP predicate functions that provide Boolean
tests for whether a condition is True or False (non-nil or nil in LI1SP terminology).

The syntax for these function is as follows:

(vl ax- property-avail abl e-p object property)
(vl ax- met hod- appl i cabl e-p obj ect net hod)

Properties are related to the type of object they are related to. For example, a Circle
object would have a Diameter property, but Line objects would not. As an example of
how Properties vary according to object types, the following code would crash with an
error when picking a CIRCLE entity:

(if (setq ent (entsel “\nSelect object to get property: “))

(progn
(setq obj (vl ax-enanme->vla-object (car ent)))
(princ
(strcat “\nLength: “ (vla-get-Length obj))

)
)
)

But, if you verify that the property is valid for the relevant object first, it would perform
properly as shown in the example below:

(if (setq ent (entsel “\nSelect object to get property: “))
(progn
(setq obj (vlax-enanme->vla-object (car ent)))
(if (vlax-property-avail abl e-p obj *‘Length)
(princ
(strcat “\nLength: “ (vla-get-Length obj))
)

(princ “\'nObj ect has no LENGTH property..”)

)
)
)

Unfortunately, there is no direct meansto fetch alist of all properties for a given object in
such away as to iterate it for programmatic purposes. However, you can fetch alist for
informational purposes that can help you greatly.

To inquire as to what Properties and Methods a given object has you use the (vl ax-
dunp- obj ect) function on that object. The syntax of this function is (vl ax- dunp-
obj ect obj ect show net hods) where the show-methods argument is either nil or non-
nil. If non-nil, it shows the supported Methods for the object, otherwise Methods are
simply not shown.

22



_$ (setq acadapp (vl ax-get-acad-object))
#<VLA- OBJECT | AcadAppl i cation 00a8a730>

_$ (vl ax-dunmp-object (vla-get-docunents acadapp) T)
| AcadDocument s: The coll ection of all AutoCAD draw ngs open in the
current session
; Property val ues:
Application (RO = #<VLA-OBJECT | AcadApplicati on 00a8a730>
Count (RO =1
Met hods support ed:
Add (1)
G ose ()
Item (1)
Open (2)
Figure 3-1 — Documents collection properties and methods.

Figure 3-1 shows the properties and methods of the Documents collection object. You'll
notice that the first line of output shows the internal object reference (1AcadDocuments)
along with a description of what it represents, and then it lists the available Properties and
Methods.

’r The following command definition may come in handy for you to explore the

properties and methods of selected entities. Thereis no error handling provided, but it is
nonetheless a useful little tool.

(defun C:DUWMP ( / ent obj)
(while (setqg ent (entsel “\nSelect entity to get object data: “))
(setq obj (vlax-enanme->vla-object (car ent)))
(vl ax- dunp-obj ect obj T)
(vl ax-rel ease- obj ect obj)

)
(princ)

The enclosed (RO) beside certain Properties denotes Read-Only, in this case all
the properties are read-only. The enclosed numbers beside the Methods indicate how
many arguments are required to use each method.

To access a Property, you use the (vl a- get - xxx) function, or even the more generic
(vl ax- get - Property) function, either will work. The syntax for the first form is(vl a-
get -xxx object) where xxx is the property name. When using the (vl ax- get -
property) function jthe syntax is (vl ax-get-property object propertynane),
where the propertyname can be either a double-quoted string or a single-quoted name.

(vl ax-get-property object property) or

(vl a-get-property object) or
(vl ax-get object property)

23



Returns the value assigned to the named property of the object. If the property
does not exist for this object, an error is generated. For example, if you request
the “ Diameter” property from a Line entity, this will generate an error.

Arguments.
Object — A vla-object
Property — A valid property with respect to the object.

Examples:

(vl ax-get - property objLine “Length”)
(vl ax-get - property objLine ‘Length)
(vl a-get-Lengt h obj Li ne)

All of these expressions will do the same thing.

Property names are not case sensitive but examples throughout this book will generally
capitalize the first letter for clarity. You will find that the first two options above are
easiest to use in general, however, there are situations that require using the second two
options. This is particularly with respect to interfacing with external applications like
Microsoft Excel or Word. A fourth form vl ax- get isaleftover from R14 for backwards
compatibility only.

Using Methods

Using the example in Figure 3-1, you can see that the Documents collection object
supports four Methods: Add, Close, Item and Open. The Item Method requires one
argument to be used (hence the (1) shown beside that method in Figure 3-1), thisis the
index or name of the document to be fetched from the collection.

An interesting feature of the | t emmethod (in general) is that it can accept either a string
or an integer value argument. When given an integer argument it simply returns the (nth)
item of the collection, where O is the first item. When given a string value, it attempts to
fetch the item by its name property. The |t en( nane) method is not case sensitive, which
is very useful for fetching names without having to first convert string cases.

1‘“"
If you are familiar with Visua Basic or VBA and the use of default
methods or default properties, you should be aware that this feature does not exist

in Visual LISP. For example, in Visual Basic, accessing the | t emmethod can be
done using either of the two following ways:

Object.ltem(12) or Object(12) or Object(*Name”)

24



This is because the | t emmethod is the default method for most objectsin VB or
VBA. Visual LISP does not support this feature and therefore requires that you
spell out all properties and methods for every use, every time. For example:

(vl ax-i nvoke- net hod documents “Itenf 12) will work...
(vl a-item docunents “Drawi ngl.dwg”) will work...
(vl ax-i nvoke- net hod docunments 12) will not worKk.

Using the example in Figure 3-1, the Item method might be used in any of the following
ways.

(vl a-1tem docunents 1)

(vl a-1tem docunents “Drawi ngl.dwg”)

(vl ax-i nvoke- net hod documents “ltenf 1)

(vl ax-i nvoke- nmet hod docunents ‘Item “Draw ngl. dwg”)

(vl ax-i nvoke- met hod obj ect nethod [argunents]...) or
(vl a- net hod obj ect argunents) or
(vl ax-i nvoke object nethod [argunents] ...)

Invokes a method associated with object and supplies any required arguments to
that method. If successful, returns a result. If the requested method is not
provided by the object, an ActiveX error is generated. For example, requesting
the “ Offset” method from a Text entity, will generate an ActiveX error.

Arguments.
Object — A vla-object
Method — A method exposed by the object

Arguments— Any required arguments to supply to the method

Examples:

(vl ax-i nvoke- net hod obj Li ne “Move” pointl point?2)
(vl a- Move obj Li ne pointl point?2)
(vl ax-i nvoke obj Line “Mwve” pointl point?2)

All of these of these examples do the same thing. This is generaly true for most
AutoCAD objects, but not for objects created from imported TypeLib interfaces
or external applications or ActiveX components. You should use the first form
for working with external application objects, however you can use the second
form for internal objects. The third form is a leftover from R14 for compatibility
only.

25



‘ While you opt to use either of the two forms of Get/Put on Properties and
Methods, you may find it more flexible to use the longer form (e.g. vlax-put-property) as
opposed to the shorter form (e.g. vla-put-color). The reason is that by separating the
property name from the function, you can define functions and iterative statements that
can accept alist of properties and their associated values. For example...

(defun MapPropertylLi st (object proplist)
(foreach propset proplist
(if (vlax-property-avail able-p object (car propset))
(vl ax-put - property object (car propset) (cadr propset))
)
)
)

Be careful when trying to apply this approach to methods, as the arguments list for
methods varies with respect to the object and method. Some methods don'’t take any
arguments, while others will vary in length.

Data Types

Data types are a means for describing the type of values a given object or property can
contain. Examples of data types include Integer, Double, Currency, Date, String, and so
on. While AutoL ISP has enjoyed type independence for years, Visual LISP does as well,
but not always. Within AutoCAD, you can remain type independent as you can with
AutoL ISP, but when it comes to interacting with other applications, such as Microsoft
Excel, you will inevitably have to come to terms with data types and use them wisely.

Being type independent is not a free lunch either. The price paid comes in the form of
inefficient processing. When you declare data type in advance, you are telling the
compiler to carve out only enough resources to suit that expected datatype. To store data
of type Integer for example isfar less demanding than storing a“long” Date value. When
you work without data types, everything is automatically allocated for the largest possible
data type to make sure whatever is used will fit in the available resources. The result is
that the application is more bloated than it really needs to be, both in terms of initial load
size aswell as runtime resource allocation.

This is essentialy why applications developed in languages like C++, Java, and even
Visua Basic are usualy faster (when compared to similarly functional coding in type-
free languages). They ensure leaner execution ahead of time in order to ensure faster
performance at runtime. AutoLISP does not do this and is therefore a much slower
processing language medium. Visua LISP is much better, but only if you leverage the
new features to their fullest extent wherever possible.

26



Constants and Enumerations

A Constant is a special data type. It isjust what it sounds like, a value that cannot be
changed. Thisis sometimes referred to as being static. Often, Constants are provided by
the programming language or by the hosting application itself, as a means of
convenience. For example, the acByLayer constant can be substituted for a property
value in place of 256. The name value is easier to understand and remember than an
integer value. For example, the two expressions shown below are functionally identical:

(vl a- put-col or object acByLayer)
(vl a- put-col or object 256)

Enumerations are logical groups of constants that are used to identify a range of
constant values. For example, you might use colors 1, 2, 3, 4, and 5 but having constants
for these such as acRed, acYell ow, acG een, acCyan, acBlue, acMagenta and
acWi te are handy for clarity as well as sensible coding. Ranges of related constant
values of this type are called enumerations. See appendix A for a list of standard
AutoCAD enumerations.

1‘“’!
Not all ActiveX enumerations are provided within Visual LISP. For example,

the standard Decimal and Short data types are not mirrored as vlax-vbDecimal or vlax-
vbShort. Refer to Chapter 6 for more information on data types.

Variants and Safearrays

In the section on Data Types above, there was mention of using the largest alocation
available for type-free declarations, such as (setq) expressions in AutoLISP. Actualy,
this entails alocating for a Variant data type. A Variant is ssmply a catch-all data type
that provides enough resource space to contain any other data type, be it numeric, date,
string, or whatever. A Variant data type is the product of ActiveX actually, but the
concept is more generic in nature and has existed long before ActiveX was around.

Visual LISP actually holds all converted ActiveX data as Variants with a specifier that
denotes what specific type is contained within it. This sounds confusing but it’'s really
very smple. The container is a Variant which is holding a Currency data type value
within it. When you assign a new value to the object, you must provide that specifier to
make sure that the data is properly stored. Thisis especialy true when you are passing
values between AutoCAD and other applications such as Microsoft Excel.

In addition to posting values, you can query the nested data type from a Variant value, as
well as convert the value properly into a relevant LISP data type. For example, you
might query a Variant object value that contains a Double value within it. Y ou would
then read that value as a REAL data type in LISP. Visua LISP provides plenty of
functions for creating, reading, and modifying Variant data values in a LISP
environment.

27



Safearrays are something like LIST objects in AutoLISP. The main difference is that
they are static, meaning that they cannot be stretched or changed in terms of how many
members they can store. This prevents unwanted errors generated by attempting to
assign or fetch members beyond the length of the array. This is why they are caled
“safe” actually. Any LIST structure passed into ActiveX must be converted into a
Safearray first. Any LIST oriented data fetched from an ActiveX object should be
converted to a LIST data type for use by LISP functions such as (car), (nth), (assoc),
(mapcar), (member) and so on. Visua LISP provides plenty of functions for creating,
manipulating and reading Safearray data values.

For more information on Variants and Safearrays, refer to chapter 6.
Namespaces

A Namespace is a virtual space of resource allocation in which a process runs and
interacts with other resources in that space. But it can at times communicate with other
processes in other Namespaces. Think of Namespaces as bedrooms. Y our application
might be a person working in one bedroom; a process in a specific namespace. Another
application can be working in an adjacent bedroom (namespace) as well. The two can
remain independent and isolated or they can be made to pass data between each other for
communication. Thisis essentially how namespaces work.

Some of the advantages to using namespaces are that the processes in a specific
namespace are isolated from those of other namespaces and this prevents them from
stepping on each other (trying to reserve resources in contention). It also enables direct
loading and unloading of processes by their namespace. In other words, it's somewhat
like being able to unplug one of the bedrooms from the house as if it were built in
modular form. Removing one bedroom wouldn’t affect the other rooms or processes they
each have active.

Probably the one significant disadvantage to using namespaces is that they incur some
overhead on the operating system as well as their host application. In order to manage a
given namespace it has to be given its own range of memory addresses and pointer
dlocations. This consumes additional resources to track and control the namespace,
which in turn provides the means to directly access it to unload it or pause it if necessary.

AutoCAD provides its own internal management of namespaces within Visua LISP, as
well as within ObjectARX and VBA. This is yet another powerful improvement
provided by Visual LISP over AutoLISP. Actually, each opened document is its own
namespace as well (if you're not working in single-document mode). The effects of this
can be seen when setting a variable in one drawing session and attempting to read it in
another. There are ways to pass such variables between drawing sessions though, and
we'll discuss these in Chapter 10.

28



Interfaces and Type Libraries

Interfaces are a means for connecting to the object models of other ActiveX processes or
components. When you want to be able to tap into specific properties, constants, or
methods of other applications, you first have to define an interface to load the object
model of that target application. For example, maybe you want to be able to work with
Microsoft Excel to store some AutoCAD information directly into a spreadsheet file
using Excel’s own tools from Visual LISP. This requires that you define the interface,
and that in turn allows for the use of a Type Library, or TypeLib.

To use aType Library, it must be loaded into memory and certain interface pointers have
to be defined. Visua LISP provides a set of functions specifically for loading and
configuring Type Library interfaces.

(vl ax-inport-type-library
:tlb-fil ename nane string
:met hods- prefix string
sproperties-prefix string
:constants-prefix string

)

Imports atype library reference into the current namespace.

Arguments.

‘tIb-filename string — (string) is the path and filename of the TypeLib file
:methods-prefix string — (string) is an arbitrary prefix string identifier
‘properties-prefix string — (string) is an arbitrary prefix string identifier
sconstants-prefix string — (string) is an arbitrary prefix string identifier

Example:

(vl ax-inport-type-library
:tlb-filenane “c:\\nmyfiles\\typelibs\\tlfile.tlb”
:met hods- prefix "dsxm "

sproperties-prefix "dsxp-"
:constants-prefix "dsxc-"

)

This example imports the type library interface to an external application or
control defined in the file tIfile.tlb. The remaining arguments define the prefixes
for methods, properties and constants exposed from the type library interface.

If this type library provided a method named AddNumbers, it would be used in our
Visua LISP code as dsxm-AddNumbers. What's interesting is that once you'’ ve actually
imported the type library and this expression has succeeded, the Visua LISP will
recognize all defined properties, methods and constants from the external application and

29



color-code them in blue as with any built-in LISP function. This is another reason that
the Visual LISP IDE is helpful for coding and providing features that improve your
ability to spot code errors early.

AutoCAD Microsoft Excel

VLX Application Excel API

Type Library
Interface

Figure 3-3— Type Library Interfacing.

A Type Library is smply an interface that exposes all of the object model members of
one provider to other applications that request it. When you load a type library, it
immediately defines and identifies al of the publicly exposed properties, constants and
methods of it’s related application provider to the application consumer that is using it.

In Figure 3-3, the Excel Type Library has been loaded to interface Visua LISP with
Excel’s object model and use the tools it exposes. This can save a lot of time and
headache by giving you direct access to tools built into Excel that will do what you need
without having to attempt to reinvent the wheel in Visual LISP alone. An example of
how this might be used is shown below and in Figure 3-4.

For example, when supplying a constant value as an argument to an Excel function
through a call from Visual LISP, you could use the constant enumeration name instead of
the actual underlying value to keep your code clear and understandable. This also saves
you from having to look up all the enumerations in Excel and translating them in Visual
LISP. If Excel provides a constant such as put-cellcolor you can use that directly from
Excdl.

Visual LISP requires TypelLib information to determine whether a method, property or
constant for an object is available. Some objects may not have any TypeLib information
available, such as the AcadDocument object.

(vl ax-typei nf o-avai | abl e-p obj ect)

Returns T if TypeLib information is available for object. If none is available, it
returns nil.

Arguments.

30



Object — A vla-object.

(defun Excel -Get-Cell (rng row col um)
(vl ax-vari ant - val ue
(msxl -get-item (nexl -get-cells rng)
(vl ax- make-vari ant row)
(vl ax- make-vari ant col um)
)
)

)

(defun Excel -Put-Cel | Col or (row col intcol / rng)
(setqg rng (Excel -Get-Cell (nsxl-get-ActiveSheet xlapp) row col))
(msx| - put-col orindex (msxl-get-interior rng) intcol)

)

Figure 3-4 — Example of using Type Library enabled code with Excel.

The second function definition in Figure 3-4 (Excel-Put-CellColor) provides a means for
applying a color fill value to a given cell in an Excel worksheet from Visua LISP. This
is possible by using the exposed interface methods from Excel that were provided by
loading the Excel Type Library first. The type library items appear above with an msxI-
prefix.

Once you invoke a TypeLib interface, the referenced functions are then recognized by the
VLISP editor syntax engine. When you type them in properly, they change color to show
that they are indeed recognized as a valid function from the externa TypeLib interface.
Thisisthe basis of what makes this a useful coding practice: syntax awareness.

1‘“’!

Type Libraries come in many forms, they are most often .TLB files, but can also
be .OLB, .DLL and even .EXE files. It’sworth noting that Microsoft Office 97 and 2000
normally use .TLB files, however Office XP uses the .EXE files themselves to provide
the type library interface definitions to other applications. Consult the documentation for
whatever external application or service you are wanting to work with for information
about how it exposesits ActiveX type library information.

31



Chapter 4 — Debugging Code with Visual LISP

This chapter will focus on using the testing and debugging tools in Visual LISP to catch
problems early and make your code more bug-proof. Debugging is as much a part of
successful code development as mowing the lawn is for home ownership. It can be
tedious and painful at times, but ignoring or neglecting it will certainly cause you greater
pain in the long rum.

The sooner you get familiar and comfortable with using the tools for debugging, the
better off you'll be in a variety of respects. Not the least of which will be improved code
quality and better customer satisfaction (putting smiles on the faces of those that pay your
salary never hurts).

Breakpoints

Breakpoints are a tool for placing markers in your code to trigger a pause during
execution automatically. If you are having a problem with your code in a particular part
of the execution, place a Breakpoint at the beginning of that section and run the code
until it hits that Breakpoint. Then you can use one or more of the following tools to dig
deeper into the execution in a methodical manner to find the cause of the problem and fix
itinlesstime.

Example: Load the code file ERRORTEST1.LSP shown in Figure 4-1 and run the
GETPROPS command in a drawing that contains a few CIRCLE, ARC and LINE
entities.

4 errortestl.lsp M=l
(defun C:GETPROPS
{ F ent obj lay col 1tp luwt dia len}
{(if (setq ent (entsel "“ynSelect entity to query: "))
{(progn
{setq obj (vlax-ename->vla-object (car ent}))
{setq lay (vla-get-layer obj)
col (vla-get-color obj)
1tp (vla-get-linetype obj)
lut (vla-get-lineweight obj}
dia {vla-get-diameter obj}
len {ula-get-length obj)

FS
—
—

)
{foreach p (list lay col 1ltp lwt dia len)
{princ "Sn——->")
(princ p)
3
)
)
{princ)
) -
o | W

Figure 4-1 —- ERRORTEST1.L SP example code

32



You'll notice that when you select a Line entity, the code crashes with an error message
“error: ActiveX Server returned the error: unknown nane: D aneter”

The same happens if you pick TEXT or POINT objects. Maybe you can see the cause of
this error in the example code aready, but let’s pretend that this is a far more complex
piece of code and you can't easily find the cause of this error by looking at the code.
What to do now? Place a breakpoint in the code, load it and run it again. This time,
when it gets to the breakpoint location in the code, the execution pauses, and you can
begin debugging the code execution using the various tools provided in the Visua LISP
IDE. One of thesetoolsis called Stepping.

Place your editor cursor directly in front of the line that contains (setq lay ...) and press

the F9 key, or pick the K button, to toggle the Breakpoint ON at that location. You'll
see the beginning parenthesis ( blocked in red. Thisis one of the visual aids provided by
the VLISP IDE editor and it is very helpful indeed. Once you’ ve toggle the Breakpoint

ON, load the code into AutoCAD again using the ot button, or press CTRL+ALT+E to
do the same thing.

4 errortestl.lsp M=l
(defun C:GETPROPS
{ F ent obj lay col 1tp luwt dia len}
{(if (setq ent (entsel "“ynSelect entity to query: "))
{(progn
{setq obj (vlax-ename->vla-object (car ent}))
i{setq lay (vla-get-layer obj)
col (vla-get-color obj)
1tp (vla-get-linetype obj)
lut (vla-get-lineweight obj}
dia {vla-get-diameter obj}
len {ula-get-length obj)

FS
—
—

)
{foreach p (list lay col 1ltp lwt dia len)
{princ "Sn——->")
(princ p)
3
)
)
{princ)
) -
o | W

Figure 4-2 — ERRORTEST1.L SP with a BreakPoint set on Line #6

Now when you run the GETPROPS command and pick an entity, it will stop on that
breakpoint and jump back to the VLISP IDE editor to await your next command. You'll
notice here a few things are a little different now. First, the block of code that is
contained within the matching parenthesis is now highlighted. Second, you'll see that the
DEBUG toolbar buttons are now enabled (no longer grayed out). This toolbar is now the
main tool for continuing your debugging process.

33



|[oow 22 Wére 0

The first three buttons at left are the Stepping control buttons (described in the next
section in more detail), followed by the buttons for Continue, Quit and Reset. Then the
next three buttons are Toggle Breakpoint, Add Watch, and Last Break, followed last by
the Breakpoint Step status button. This last button simply shows a visual queue as to
whether the current process is stopped before or after a matching subset of parenthesis. It
can help to look at this to know whether an error is thrown before the expression or just
after it was evaluated.

Go ahead and pick the Step Into button L} Keep picking on that button and watch how
the code continues to execute one expression at a time. This will continue until the
execution encounters the expression that generates the error. At that point, execution is
aborted and the error message is displayed.

Hopefully, you'll discover that the cause of the error is that this code assumes certain
properties are available without first verifying that they indeed are available. The
Diameter property is obviously not available when picking a LINE entity. Nor is the
Length property available when picking a CIRCLE entity.

Stepping

As you may have surmised in the above example, gepping is simply a means of walking
through code execution one line or one expression at a time. This lets you pause the
execution and control the frame advance to proceed along until you get to a point in the
code where you want to inspect what’s going on or reveal an error or specific condition.

You can Step Into @ Step Over O | or Step Out Of M, which are common
stepping methods in all programming languages, not just Visual LISP.

Step Into — Continues advancing execution by evaluating the next expression from the
innermost nested statement to the outermost statement before advancing to the next
expression or statement.

Step Over — Skips the currently highlighted statement block and advances execution to
the next expression or statement.

Step Out Of — Skips out of the breakpoint block and advances to the next expression or
statement. If there are no more breakpoints beyond this point, execution continues
uninterrupted.

Animation
Another method of Stepping is to use Animated Execution. This feature executes the

code normally but pauses after each expression is evaluated to highlight the block of code
in the editor window. After each pause, the code advances automatically to the next



expression. The pauses are processed using a timed delay value that you can adjust to
suit your needs or preferences.

Watches

A Watch, in the context of debugging, is amarker placed on a particular object or symbol
to continually display it's properties during program execution. Adding a watch to a
particular variable (symbol) enables you to see its value assignment during the course of
a step-execution following a breakpoint encounter in the process. To Add a Watch, select
a symbol by highlighting the code in the editor window, and then pick the Add Watch

button & or press CTRL+W. This opens the Watch window and adds a watch
reference into the watch list. You can watch as many symbols at atime as you desire, but
keep in mind that the more you add, the more cumbersome it can be to clearly see what's
going on.

Figure 4-3 shows a Watch being placed on the symbol ‘p’ in the (foreach) section of the
code. By moving the breakpoint to the beginning of the (foreach) section, this will
enable the Watch to display each value of the symbol ‘p’ as it is processed through the
(foreach) iteration.

arerrortestllsp =]
(defun C:GETPROPS
{ F ent obj lay col 1tp luwt dia len}
{(if (setq ent (entsel "“ynSelect entity to query: "))
{(progn
{setq obj (vlax-ename->vla-object (car ent}))
[isetq lay (vla-get-layer obj)
col (vla-get-color obj)
1tp (vla-get-linetype obj)
lut (vla-get-lineweight obj}
dia {vla-get-diameter obj}
len {ula-get-length obj)

FS
—
—

)
{foreach p (list lay col 1ltp lwt dia len)
{princ "Sn——->")

(princ p)
. 6 (1 840y
) F =il
{princ)
) -
A

I
I -

Figure 4-3— Adding aWatch to the ‘p’ symboal.

Note that initially, P=nil, since the code is not executing and there is no value assigned to
‘p’ asof yet. When the (foreach) loop is entered, P will display the values for each of the
symbolsin thelist (lay col Itp Iwt dialen) respectively, even if they are set to nil.

35



Tracing

There are severa Trace features provided by Visua LISP. One is a Command Trace,
which places a marker on a given command (or all commands) and displays a notification
in the Trace Log Window whenever the command (or any command) is called from your
active code execution. If the VLISP IDE is open, the Trace log window is displayed and
any calls are posted there during execution.

If the VLISP IDE is not active, the trace dump is posted to the AutoCAD command
prompt window. However, once Visual LISP (IDE) is activated, it remains active even
when you return to the AutoCAD editor session. Therefore, once VLISP is activated, all
Trace output is sent to the Trace window in the VLISP IDE and you must return to the
VLISP IDE session to continue viewing trace output until you close and reopen
AutoCAD to terminate the trace output to VLISP.

Another type of Traceis a Stack Trace.

The Trace button o is not on the DEBUG toolbar, but instead on the VIEW toolbar.

This is because the Trace feature is actually a window display as opposed to a debugging
command related to a specific piece of code (as is the Add Watch and Breakpoint
features).

To display the Trace Log window, you must first turn ON the command trace by picking
the Debug pulldown menu and checking the option titled “Trace Command”. Once this
is done, any calls to AutoCAD commands from your code execution in the VLISP IDE
are reported to the Trace Log window as shown below.

B Trace =]
AutoCAD command: ("“chprop™) -
AutoCAD command: {{Entity name: 488728e8>) |

AutoCAD command: ("*'")

AutoCAD command: ('"C™)

AutoCAD command: (“BYLAYER')

AutoCAD command: ("*'") -

A W
Figure 4-4 — Trace Log window after CHPROP command called.

Figure 4-4 shows how a command such as CHPRORP is reported to the Trace Log window
along with any arguments it uses such as entity name, command-line options and values
supplied to it. You may notice that each component is represented as a single-member
list. Thisisbecause VLISP represents command stacksin list form internally.

Inspection
Inspection involves drilling down into a symbol to see what properties it contains and

what form it is defined as. For example, inspecting the function (vla-get-activespace)
will show that it is defined as a SUBR, which is an intrinsic or built-in function provided

36



by Visual LISP. The number/letter string to the right of the declaration denotes it’'s
memory address in the current namespace. a

Ul Inspect: SUBR
|1¢<SL|EH (@02:38da5q0 vla-get-ActiveSpace:

|iname} vla-get-betiveS pace

Symbol Service

The Symbol Service utility provides away to inspect symbols as to their properties. This
includes protection status, tracing, debug on entry status and whether it has been exported
to the AutoCAD namespace. From this pop-up form you can also perform online help

look-ups by picking the help button @ 4 the top of the form. The example below shows
the result of highlighting the code (vla-get-activespace) and picking the Symbol Service
button. You can also right-click on the highlighted code and pick Symbol Service from
the pop-up menu.

Ul symbol service |
6 X [2)

M arne:

Ivla-get-ﬁ.ctiveﬁ pace

Walle:

H<5IBR @0238daq0 vla-get-ActiveSpaces

Flags:
[~ Trace ¥ Pratect Assign
[T DebugonEntry [ Export to AutoCaD
k. Cancel |
|
Apropos

The APROPOS feature allows you to search for functions, properties and methods based
upon wildcard matches and returns a list of them within a listbox in the IDE. From this
list you can copy/paste into your code window or perform online help lookups to learn
what the item can do or how it's used. There are various ways to invoke this feature.
One of them is to right-click on some code and pick Apropos from the pop-up menu

(shown in the example below). Or you can pick the Apropos button ) on the View
toolbar.

37



(defun dsx-stuff () (Jl apropos results

(fula-get 5 ]

Cut

Copy —— et
wla-get-tctivelimStyle

Paste vla-get-ActiveD ocument
via-get-Activelayer

Find... wla-get-tetivel apout

Go to Last Edited vla-get-Activelinatype
wla-get-activeProfile

Toggle Breakpoint wla-get-ActivePiewport

Insnect vIa-get-ActiveSeIectionSet
PECE wla-get-tetiveSpace
Add Watch... via-get-AchveTestStyle
WAt . wla-get-ActivellCS

wla-get-aotiveliswport
Symbol Service... vla-get-40 ClnsertUnitsDefz
wla-get-40 ClnzertUnitsDef:
Undo wla-get-Alignment
Redo vla-get-AlighmentP ointcqu
wla-get-tllowlongSymbali.
vla-get-AltFontFile
wla-get-AltR oundDistance
wla-get-AltSuppressLeading
via-get-AltSuppress T railing:
wla-get-altS uppresseemF e

vla-get-AltSuppressZerolng
vl z.mat AT ahlathd anFila

As you can see by the example above, an APROPOS search on “vl-get-* turns up quite a
few matching items in the Results window. Y ou can narrow down the search by typing
in a few more characters in your code window, such as “vla-get-Active” to only find
those items that begin with the same string value.

You can aso modify the Apropos search within the Results window by picking on the
top-left button (tool tip says “Apropos Options’) and entering your changes to the search
criteria in the edit box. Other options on this form allow you to specify case-matching,
prefix only, and lowercase conversion. The Filter Value button displays even more
options on the Filter Value form.

LIl Apropos options | Ul Filter Yalue ] |

— Match by walue type
& &l o filker)

Ivla-get-.-’-‘-.u:tive

v bdatch by prefiy ™ Mull walue
[~ Use'wCMATCH " Monull value
[T Lowercase spmbols " Function

™ Uszer function

™ Eurssubr
Filter ¥ alue | Filter Flagz |
k. I Cancel
k. | Cancel |

Figure 4-5— Apropos Filter Value options

You can, for example, limit your search to items such as built-in functions, externally-
defined functions (ExrSubrs such as those defined by ObjectARX applications), and Null
or Non-Null values. The Filter Flags button displays a search filtering form for limiting

38



the search to symbols that have certain characteristics themselves, such as being
protected or those that have been exported to the AutoCAD namespace.

UL Apropos options | UL Filter Flags E3 |

— b atch by symbaol flags
vla-get-dictive
I . [ Pratect azsign
¥ Match by prefis [T Trace
[~ Use'wCTMATCH [T Debug on entry
[T Lowercaze symbals [ Export bo AutoCAD
Filter W alue | Filter Flags |
2k | Cancel |

Figure 4-6 — Apropos Filter Flags options
Bookmarks

Bookmarks are not necessarily a debugging tool, but they are useful for locating a
particular section of code quickly. Thisis especially true in cases where you are working
with very large amounts of code in asingle file and it becomes difficult to jJump around in
the file to specific points in the code. Bookmarks appear as a rounded square solid green
symbol in front of the line where you insert them.

To insert a Bookmark, place the cursor on the desired line of code and press ALT+. (a
period) or pick Search/Bookmarks/Toggle Bookmark. To remove a bookmark, place the
cursor on the bookmarked line and press ALT+. again or pick Search/Bookmarks/Toggle
Bookmark. To clear al bookmarks in a given file, pick Search/Bookmarks/Clear All
Bookmarks.

1‘“’!
While Visual LISP does not allow you to jump to bookmarks by name, you can
move between them in a Next/Previous manner. To jump from one bookmark to the

next, press CTRL+. (a period). To move to the previous bookmark, press CTRL+, (a
comma) or continue pressing CTRL+. Until you cycle through all the bookmarks again.

Goto Line Position
When Bookmarks are not practical, you can aso jump directly to a line in your code by

number. Simply press CTRL+G to display the Goto Line box, enter the line number and
press Enter to go to that line.

39



Ul Go to line |
| =]

(] Cancel
I |
]

Figure 4-7 —The Go To Line Box.

Error Trapping

Ultimately, no method of debugging will get you to the goal line without proper error
trapping. What is Error Trapping? It issimply a process of capturing an error in order to
diagnose the nature of the error and performing some corrective action as aresult. Thisis
more efficient and produces better quality results than simply allowing the error to crash
your code and display an ugly, cryptic message that confuses the user.

ActiveX in particular, is not known for being very friendly when it comes to the content
of its error messages. For example, a common error message thrown by ActiveX
operationsin Visual LISP isthe following:

Error: ActiveX error: No description provided.

What does this mean to the user? For that matter, what does it mean to anyone? Not
much. However, within the context of your code, you might be trying to initiate a
connection to an Access database using ADO or JET. At the point where you would try
to make the connection, you should place an Error Trap around that code and test whether
it succeeded or failed, and if it failed, determine why it failled. Then you can check the
error conditions and display a meaningful message that may help the user figure out the
cause themselves, saving you even more work.

How do you place an Error Trap around your code? You use the functions provided by
Visual LISP for trapping, checking and handling errors generated by an ActiveX object.

Visual LISP Error Trapping Functions

Visual LISP provides some additional error trapping and error handling functions over
the age-old AutoL ISP *error* function. Each of these functions give you a collective set
of tools to catch, verify and handle errors thrown from code execution in Visual LISP,
especially for code that runs in it's own namespace or that is interfacing with external
application objects or procedures. For example, it can be very difficult at times to
intercept and react to errors generated from things like ADO failures unless you use these
specia functions.

(vl -catch-all-apply ‘function |ist)

Places an error trap over the result of afunction execution. Works similarly to the
Try-Catch exception handing provided in C++, C# and VB.NET programming

40



languages. Returns either the successful object or an Error object. The (vl -
cat ch-al | -error-p) function determinesif the return object is an Error object.

Arguments.

Function — Either a defun or lambda function definition or symbol pointer
List — A list of required arguments for the function being evaluated

The (vl -catch-al | -apply) function isused to place an error “catch” (trap) around a set
of code expressions. Once executed, any result is passed directly to the output of this
function where it can be checked to see if it generated an error, and if so, what kind of
error was generated.

The syntax for this function is (vl -catch-al | -apply function Iist) where function
is the expression being executed, and list is the items on which the function is being
executed upon or by way of.

1‘il’!

Be aware of every ActiveX object you intend to use or interface with. You
should be careful to determine whether or not the object will “throw” an ActiveX or OLE
error when it fails. If it is capable of throwing such an error (as opposed to returning nil)
as the result of a failure, you should ALWAY S wrap the expressions used to interface
with it inside of aerror handler to keep your code from “blowing up” on the user.

For example, to place an error trap around an attempt to open Microsoft Excel, you could
use something like this...

(cond
( (vl-catch-all-error-p
(setqg XL
(vl-catch-all-apply
" vl ax- cr eat e- obj ect
' ("Excel . Appl i cation")

)

(vl-exit-with-error
(strcat "\nError: " (vl-catch-all-error-nmessage XL))

)

( T (princ “\'nSuccessfully opened Mcrosoft Excel session object.”) )

Figure 4-8 — Error trapping example using an Excel application object

This smal example does the following (working from the inside out in order of
processing):

Attempt to create an object of Excel.Application

41



If the attempt fails it returns appsession as an Error object.
(vl -catch-all-error-p) returns T when it inspects appsession

Evaluation is aborted by the (vl - exi t-wi t h-error) function which displays the
error message passed through the Error object appsession.

This error causes the code to abort execution immediately and displays the
message to the user at the same time. Otherwise, if (vl -catch-all-error-p)

returns nil, the returned appsession object is not an Error object, and the program
can continue on to do more things with it.

A more ssimple and direct test is to force a“Divide by Zero” failure to create an error and
see how Visua LISP handles it. From within the LISP Console window, enter the
following two lines of code in the order shown. After the first line, you should see the
error object returned as <%at ch-al | -appl y-error%. After the second line, you
should see the string value message returned from the Error object as “divide by zero”.

_$ (setq catchit (vl-catch-all-apply '/ '(50 0)))
#<%at ch-al | - appl y-error %

_$ (vl-catch-all-error-nessage catchit)

"divide by zero"

A good placeto use (vl -catch-al | -appl y) iswhen attempting to fetch an object from
acollection using the (vl a-i t en) method. For example, you might expect the following
code fragment to return nil if no matching object isfound. However, this fragment would
throw an ActiveX error instead.

(setq | ayers
(vl a-get-1layers
(vl a-get-acti vedocunment (vl ax-get-acad-object))))
(setq nylayer (vla-itemlayers “Doors”))

The proper way to do this would be to use (vl -catch-al | -apply) to trap the error
when arequest fails. This might look something like the following:

(if
(not
(vl-catch-all-error-p
(setqg nyl ayer
(vl-catch-all-apply ‘vlia-item (list layers “Doors”))
)
)
)

(princ “\'nLayer was found in layers collection!”)
(princ “\'nLayer does not exist.”)

)

42



‘ Here is an example function that | will use throughout this book in place of
(vla-item. Itreturnsan object or nil if no item is found in the provided collection. |

highly recommend using a function like this in place of (vl a-itenm to avoid errorsin
your code.

(defun get-item(collection item/ result)
(if
(not
(vl-catch-all-error-p
(setq result
(vl-catch-all-apply ‘via-item (list collection item)

)
)

resul t

)
)

(vl-catch-all-error-p object)

Returns T or nil depending upon whether object is an Error object or not.
Arguments.

Object — Any vla-object
Example:

(vl-catch-all-error-p (vl-catch-all-apply ‘/ (50 0)))
Thiswill returns T (true) because (/ 50 0) isaclassic “divide by zero” failure.
(vl-catch-all-error-nessage object)

Returns the message description from an Error object. If object is not an Error
object, this function returns nil.

Arguments.

Object — Any vla-object
Example:

(vl-catch-all-error-nessage (vl-catch-all-apply ‘/ ‘(50 0)))
Thiswill display an error message “divide by zero”.

(vl-exit-with-error nessage)

43



Aborts the VLX execution and returns a string message result.

Arguments.

Message — A string containing an error message result

The (vl -exit-with-error) function aborts execution immediately and returns a string
value astheresult. Thisisuseful for passing up a custom error message that may provide
added clarity to users. This works very much like the AutoLISP (exi t) function except
that you can pass a return value back as a result of the error. Figure 4-8 shows how you
can pass (vl -catch-al |l -error-nmessage) asthe return message value.

(vl -exit-w th-val ue val ue)
Aborts the VLX execution and returns a numeric or symbolic result value.

Arguments.
Value— Any vaue or symbol

Example:

(defun fubar (somevalue / *error*)
(defun *error* (s)
(vl -exit-wth-val ue s)

(/ sonevalue 0); force divide by zero error

)

(defun errortest ( / try)
(cond
( (vl-catch-all-error-p
(setq try (vl-catch-all-apply 'fubar (list 12)))

(princ (strcat "\nError: " (vl-catch-all-error-nessage try)))

)
)
)

If you load the above example and type in (errortest), the result will be “Error: divide by
zero”. The (vl -exit-w th-val ue) function works the same way as (vl -exit-with-
error) except that it returns a numeric value as the result. This can be helpful if you
want to handle errors using a numeric value parameter, such as passing up the return
value of an ActiveX Error number.

As you can see from these functions and the figures shown, you can perform very
detailed error trapping and handling using Visual LISP to help you produce better quality
code and software products. This practice is not unique to Visual LISP by any means. It
is the same in genera as what is done with other languages such as C/C++, Visual Basic,



VBA, Java and so forth. Error trapping makes sense but you have to make the effort to
put it to efficient use to get the benefits it offers.

45



Chapter 5 — Working with Projects and Multiple Files

Projects are collections of related LSP files that you associate together for a common
purpose. Examples can be multiple files that comprise a single feature or group of
features that you want to always be working together in some respect. Thisis also called
a Work Space in other products, but the overal intent is the same: Collect related code
files together with a name to make it easier to open and work on them together.

Project Debug Tools Window Help

New Project...
' Open Project... Ctrl-Shift-P

Close Project

Project Properties...

Load Project FAS File
Load Project Source Files

Build Project FAS
Rebuild Project FAS

Figure 5-1 — The Project pulldown menu

While Projects are great, VLISP has certain limitations that make them less than ideal
compared to other code development tools on the market such as Microsoft Visual
Studio. Among these limitations are that you cannot include DCL or other types of code
files, and you can only compile the project to FAS output, not to VLX output. Idedly, a
VLISP project should allow for all file types that can be included in a VLX application
(DVB, txt, LSP, DCL).

Nonetheless, Projects are very useful for nothing less than to keep "" -
related L SP files together and be able to quickly open any or al of g ——
them in the editor. See Figures 5-2 and 5-3 for an example of how  [F¥es
aproject configuration is managed. e

dau-texst
e Edit

. . . . autol:. Add File
Once you create and open a project, it will display a dockable [*F gemave file

cpaly

listbox in the VLIDE window that displays &l the member .LSP |56, \sad
files. To open aparticular file, smply double-click onit. doe  Load source

dssd Check syntax
den-fl:

You can aso open multiple files at once by right-clicking on the %" Touch

dax-ol

list and picking Multiple Selection from the pop-up menu (refer to  |&%  arrange files >
the image at right). MR Muitiple Selection

das-xp
digre [Un]Select all

editar

You can add and remove files from a project at any time by using |o= g:':: Pr’;’_i:lfttas
the Add File or Remove File options from the pop-up menu. You s
can also add or remove files from the Project Properties form (see Figure 5-2).

1‘“’!
The order in which you add files or sort them in the project files list is the order
they will be compiled in when using a project files list as the input for the Make

46



Application Wizard (discussed in Chapter 13). You can go back and modify the order of
files after they have been added into a given project.

Project properties n E
Project Files | Build Options |
Home directory is C:/DS=-50URCE fsource

Lookin des-dimtools -
_I dan-layers Top
des-scdraw
dexrtest
R — anum il
dimtools2002 5 api-excel
LayerTools2002 autolay Dawn |
sealediaw2002 autops
TextTools2002 & cpoly
i [ESE|
DIRLIST
| | dss-care LI
Urisckectal | UniSelectal |

‘|

[n]4 I Cancel | Lipply |
Figure 5-2 — The Project Properties form, Files tab

Figure 5-2 shows the main properties form for making and modifying a Visual LISP
project. Note that there are two tabs “Project Files’ and “Build Options’. Figure 5-3
shows the “Build Options’ tab panel. The Project Files panel is where you select the
.LSPfilesto be part of your project.

Project properties ﬂ ﬁ

Project Files  Build Options |

(Gt gl I | Localize wariatles
1+ Standard (o Olptimize: .
¥ Safz optimize

i~ Merge files mode

' Dne moduls for each file
" Single module for all

i~ Link made Fas directory
Do ot Lk ’7 _”
© Link Tmp directary
el “ _I

- Messagemode
Edit Global Declarations. .. |
™ Fatal emmors

' Errors and warnings

" Full reports

[0]:4 I Cancel | Apply |
Figure 5-3 — Project Properties/ Build Options

The options shown in Figure 5-3 will be explained in more detail in Chapter 13 (“Making
Applications’). All of these options pertain to the making of FAS output files, .FASfiles
are compiled LISP code that can be created from one or more LSP files as asingle .FAS
file, which can be compiled into a VLX application file with other FASfiles.

a7



Chapter 6 — Working with Variants and Safearrays

While the topic of Variant and Safearray data types was discussed earlier in this book,
they are significant enough within the ActiveX world of Visual LISP to warrant an entire
chapter devoted solely to them. We will begin by briefly reviewing what they are and
then begin exploring how to work with them using Visual LISP functions.

As we mentioned before, aVariant is a data type that is designed to be a generic catch-all
container for any other type of data. They consume the most memory and processing
resources of all the data types because they are the largest in terms of resource
requirements.

Languages such as C/C++, Visual Basic and Delphi provide declaration statements to
notify the compiler in advance as to what data types each variable will contain. This not
only guarantees leaner resource requirements but also allows for error checking during
compilation that heads off runtime problems.

Visual LISP Variant Functions
(vl ax- make-vari ant [value] [type])

Creates a variant object using the given value or symbol evaluation

Arguments.

Value — The value to be assigned to the variant. If value is omitted, an empty
variant of type vlax-vbEmpty is created.

Type — The data type of the variant. If typeisomitted, the LISP datatypeis cast
to the closest ActiveX data type (see table below).

Examples:

(vl ax-make-variant) or (vlax-make-variant nil)
Creates an uninitialized variant of type (vl ax- vbEnpty) .

(vl ax- make-variant 10 :vl ax-vbl nteger)
Creates a variant of type Integer (vl ax- vbl nt eger ) with value of 10.

(vl ax-make-variant “vlisp exanple”)
Creates avariant of type String (vl ax- vbSt ri ng) with value of “vlisp example”.

(setq dblarray (vl ax-nmake-safearray vl ax-vbDouble ‘(0 . 3)))
(vl ax- make-vari ant dblarray :vlax-vbArray)

Creates a variant containing a safearray of double values.

48



»fil’!

The Decimal, and Short ActiveX data types are not supported in Visual LISP.
You can however, specify their types using the (vlax-variant-type) when reading in
values from external sources. To send data to external sources in these types, you may
have to use the numeric representation of (vlax-vbDecimal) and (vlax-vbShort) as they
are not provided as enumerations within Visual LISP. For example, a Decimal data type

is enumeration value 14.

Variant Data Types

What if you don’t specify the data type for the Variant constructor? Visua LISP will
attempt to convert it to an appropriate variant data type using a default mapping. Table
6-1 below shows the default mapping of data types from LISP to Variant.

LISP Data Type
nil

:vlax-null

INT (integer)
REAL (float)
STR (string)
VLA-OBJECT
:vlax-true or :vlax-false
VARIANT
SafeArray

N/A

N/A

N/A

Variant Default Data Type Assignment
vlax-vbEmpty

viax-vbNull

vlax-vbLong

vlax-vbDouble

vlax-vbString

vlax-vbObject

vlax-vbBoolean

Same as the type of initial value
vlax-vbArray

vlax-vbShort

vlax-vbDecimal

vlax-vbDate

Table 6-1 —Visual LISP Default LISP->Variant Data Mappings

(vl ax-variant-type variant)

Returns the data type of avariant. If the symbol is not avariant, an error is
generated. The return value is an enumeration of the data type (see Appendix A
for Data Type enumerations).

Arguments.

Symbol — A symbol containing a variant value.

Examples:

(setq vartest (vlax-nmake-variant 6 vlax-vblnteger))
(vl ax-variant-type vartest) returns?2 (integer type)

(setq vartest (vlax-nmake-variant “dog” vlax-vbString))
(vl ax-variant-type vartest) returns8 (stringtype)

(vl ax-vari ant - val ue synbol)

49



Returns the value contained in a variant symbol. If symbol does not contain a
variant datatype, and error is generated. Otherwise, the datatypeis returned as
an enumeration (integer) value (see Appendix A for Data Type enumerations).

Arguments.

Symbol — A symbol containing a variant value.

Examples:

(setq vartest (vlax-make-variant “testvalue” vlax-vbString))
(vl ax-vari ant-val ue vartest)

Returns value “testvalue” as a string result.

(setqg sa (vl ax-make-safearray vl ax-vbDouble ‘(0 . 2)))
(setq vartest (vlax-make-variant sa vl ax-vbDoubl e))
(vl ax-vari ant-val ue vartest)

Returns avalue of #<safearray...> which is avla-object type.

(vl ax-safearray->list (vlax-variant-value vartest))

Returnsvalue (0.0 0.0 0.0) alist result.

(vl ax-vari ant - change-type synbol type)
Changes the data type assignment of avariant.
Arguments.

Symbol — A variant value

Type — Datatype number or enumeration to convert to

Examples:

(setq vartest (vlax-nmake-variant 5 vlax-vblnteger))
(setq vartest (vlax-variant-change-type vartest vlax-vbString))

Converts vartest to variant of type String (vlax-vbString) which would result in a
value being returned from (vlax-variant-value) as “5”".

Visual LISP SafeArray Functions

(vl ax- make-safearray type dinl [dinR] .)
Creates a safearray of datatype type of dimension bounds diml, etc. where
additional dimensions can be specified. If the operation fails for any reason,

expression returns nil.

Arguments.

50



Type — Datatype (integer or enumeration)
Dim1 — Dimension of array (one dimension array)
Dim2 — (optional) Dimension of second array (two dimension array) etc.

Examples:

(setq sa (vl ax-nake-safearray vl ax-vbDouble ‘(0 . 2)))

Creates asingle-dimension array of doubles, capable of storing three distinct
elements (0, 1, 2).

(setq sa (vl ax-nake-safearray vlax-vbString ‘(0 . 1) ‘(1 . 3)))

Creates atwo-dimensional array of strings, the first dimension contains two
elements beginning at index 0. The second dimension contains three elements
and begins at index 1.

’

{ip

To populate a SafeArray you can either use (vl ax-saf earray-fill) or
(vl ax- saf earray- put - el enent) depending upon whether you need to assign el ements
one at atimeor all at once.

(vl ax-saf earray->list synbol)

If symbol contains a safearray, the elements are returned in a LISP LIST data
type. If symbol if does not contain a safearray, an error is generated. Y ou should
wrap calls to this function inside of an error catch to ensure proper error handling.

Arguments.
Symbol — A symbol containing a safearray
(vl ax-saf earray-type synbol)

If symbol contains a safearray, the data type of the elementsis returned as an
enumerated result (integer value). This can be matched either by the integer or
enumeration result (see Appendix X for Data Type enumerations). If symbol does
not contain a safearray, an error is generated.

Arguments.
Symbol — A symbol containing a safearray

Examples:

(setq sa (vl ax-nake-safearray vl ax-vbdouble ‘(0 . 3)))
(vl ax-saf earray-type sa)

51



Returns 5 (a double) which equates to vliax-vbDouble

(vl ax-safearray-fill safearray ‘el enent-val ues)

Assigns values to multiple elements in a safearray. If the supplied argument is
not an array, an ActiveX error is returned. You should wrap calls to this function
inside of an error catch to ensure proper error handling.

Arguments.
Safearray An object of type safearray.
Element-values A list of valuesto be stored in the array. Y ou can specify as

many values as there are elementsin the array. If you
specify fewer values than there are elements, the remaining
elements retain their current value or are left empty. For
multi-dimension arrays, element-values must be alist of
lists, with each list corresponding to a dimension of the

array.
Create asingle-dimension array of double values:

_$ (setq nyarray (vl ax-nmake-safearray vl ax-vbdouble '(0 . 2)))
#i<safearray...>

Use vlax-safearray-fill to populate the array elements with values:

_$ (vlax-safearray-fill nyarray '(1 2 3))
#i<safearray...>

List the contents of the array to verify element values.

_$ (vlax-safearray->list nyarray)
(1.0 2.0 3.0)

(vl ax-saf earray-get-el ement safearray elenent [elenent...])

Returns the value of specified elements within a safearray, where element values
are integers denoting the index locations to fetch within the array. If the safearray
argument is not a safearray object, an ActiveX error isreturned. Y ou should wrap
callsto this function inside of an error catch to ensure proper error handling.

Arguments.
Safearray An object of type Safearray
Element Integer of index location to fetch

_$ (setq sa (vlax-make-safearray vlax-vbString "(1 . 2) "(1. 2) ))

52



#<safearray...>

Use vlax-saf earray-put-element to populate the array:

T$"(vlax—safearray—put—elenﬁnt salil"A")
Tg"(vlax—safearray—put—elenﬁnt sal?2"B")
Tgn(vlax—safearray—put—elenﬁnt sa21"C
_% (vl ax-safearray-put-elenent sa 2 2 "D")

Use vlax-saf earray-get-element to retrieve the second element in the first
dimension of the array:

_$ (vlax-safearray-get-elenent sa 1 1)
" A

_$ (vlax-safearray-get-elenment a 2 2)
D

(vl ax-saf earray-put-el enent safearray elenent [elenent...]
val ue)

Assigns a new value to a single element in a safearray. If the safearray argument
is not a Safearray object, an ActiveX error is returned. If the element-value
supplied is not capable of casting into the expected array data type, an ActiveX
error isreturned. Y ou should wrap calls to this function inside of an error catch to
ensure proper error handling.

Arguments.
Safearray =~ An object of type Safearray

Element A set of index values pointing to the element you are assigning a
value to. For asingle-dimension array, specify one index value; for
atwo-dimension array, specify two index values, and so on.

Value A value to assign to each element. To assign different values to
individual elementsin the array, make separate calls with unique
values to correspond to the appropriate element locations.

_$ (setq sa (vlax-make-safearray vlax-vbString "(1 . 2) "(1. 2)))
#i<safearray...>

Use vlax-saf earray-put-element to populate the array:

_$ (vlax-safearray-put-element sa 1 1 "A")
e
_$ (vlax-safearray-put-element sa 1 2 "B")

53



" g
_$ (vlax-safearray-put-element sa 2 1 "C")
o
_$ (vlax-safearray-put-element sa 2 2 "D")
D

Y ou can also populate array values using the vl ax- saf earray-fill function.
The following function call accomplishes the same task as three vi ax-
saf earray- put - el enent cals:

(vl ax-safearray-fill sa '"(("A" "B") ("C" "D")))
(vl ax- saf earray-get-di m saf earr ay)

Returns the dimension (number of array dimensions) in a given safearray. If the
supplied argument is not an array, an ActiveX error is returned. Y ou should wrap
callsto this function inside of an error catch to ensure proper error handling.

Arguments.
Safearray ~ An object of type Safearray

_$ (setq nyarray (vl ax-make-safearray vlax-vbinteger '(2 . 5)))
#i<safearray...>

_$ (vl ax-safearray-get-di mnyarray)
2

(vl ax-saf earray-get-I|-bound safearray din

Returns the lower boundary of the specified array dimension (an integer value). |f
the supplied argument is not an array, an ActiveX error is returned. Y ou should
wrap calls to this function inside of an error catch to ensure proper error handling.

Arguments.
Safearray =~ An object of type Safearray

Dim The integer location of the dimension within the array, where the
first dimensionis 1.

The following examples evaluate a safearray defined as follows:

(vl ax- make-safearray vlax-vbString "(1 . 2) '(0 . 1) ))

Get the starting index value of the array's first dimension:

_$ (vl ax-safearray-get-1-bound tmatrix 1)
1



(vl ax-saf earray-get - u-bound safearray din

Returns the upper boundary of the specified array dimension (an integer value). |If
the supplied argument is not an array, an ActiveX error is returned. Y ou should
wrap calls to this function inside of an error catch to ensure proper error handling.

Arguments.
Safearray =~ An object of type Safearray

Dim The integer location of the dimension within the array, where the
first dimensionis 1.

(setq sa (vl ax-nake-safearray vlax-vbString "(1 . 2) "(0 . 1) ))
_$ (vl ax-safearray-get-u-bound sa 1)
2

Thefirst dimension ends with index 2.

Get the end index value of the second dimension of the array, which starts at 1:

_$ (vl ax-safearray-get-u-bound sa 2)
1

55



Chapter 7 —Object Manipulation Functions

Visua LISP provides a set of functions that allow you to create, manipulate and close
ActiveX objects. Thisisnormally with respect to external application session objects,
but it can also apply to any external process object, such as DLL or OCX interfaces.

(vl ax- get - obj ect programi d)

Attempts to connect to an existing object (process). Same as the Visual
Basic/VBA function GetObject (program-id).

Arguments.

Program-1D — A string that names the application object class identifier. For
example “Word.Application” or “Excel . Application”.

Example:
(setq xlapp (vl ax-get-object “Excel.Application”))

Returns a vla-object to the external Excel application session if successful,
otherwise it returns nil.

(vl ax-create-object programid)

Attempts to create a new object session (process). Same as the Visual Basic
function CreateObject (program-id).

Arguments.

Program-1D — A string that names the application object class identifier. For
example “Word.Application” or “Excel . Application”.

Example:

(setq xlapp (vl ax-create-object “Excel.Application”))

Returns a vla-object to the new external Excel application session if successful,
otherwise it returns nil.

(vl ax-get-or-create-object programid)
Attemptsto first connect to an existing object session, and then, if none are found,
it attempts to create a new object session. This function has no equivalent in
Visual Basic, it isunique to Visual LISP.

Arguments.

56



Program-1D — A string that names the application object class identifier. For
example “Word.Application” or “Excel . Application”.

Example:
(setq xlapp (vl ax-get-or-create-object “Excel.Application”))

Returns a vla-object to the external Excel application session if successful,
otherwise it returns nil.

(vl ax-wite-enabl ed-p object)
Returns T if object can be modified, otherwise it returns nil.

Note: Be careful about this function. 1t may often return False when the object is
in fact open for modification.

Arguments.
Object — Any vla-object
(vl ax- obj ect - erased-p object)
Returns T if object was erased from the drawing, otherwise returns nil.
Arguments.
Object — Any vila-object representing an Entity object type.
(vl ax-rel ease- obj ect object)

Releases object from memory. Does not deallocate memory. When releasing an
object that points to an external application session it is strongly suggested that
(gc) beforced to release the external process from operating system resources.

Arguments.
Object — Any via-object.

[]

mrnlllgl

While object symbols may be localized, completion of a function does
not necessarily release the objects resources. It is advised that you still use this
function to ensure the object is released properly when it is no longer needed.
However, be aware that even releasing an object derived from an external
application may not fully release it from memory or from the process stack of the
operating system. It is best to follow the completion of your code with releasing

57



of al unused objects, and then you should call the (gc) function in order to
"force” a garbage collection of the memory heap.

58



Chapter 8 —File and Directory Functions

Some of the most useful functions provided by Visual LISP are the file and directory
functions. These are a collection of functions that enable you to access, and modify file
properties as well as list files and folders within specified folders. One example of
putting these to use, is within the context of a dialog box listbox.

Maybe you'd like to show alist of drawing filesin alistbox but not show their extensions
(possibly to keep the names shorter). This can be done by combining a directory listing
and the vl-filename-base function in unison as follows:

(mapcar ‘vl-filenane-base (vl-directory-files pathnanme “*.dwg”))

Thiswill return alist of names such as (“drawingl” “drawing2” ...). Be careful with this
example in that it provides no error checking. If the (vI-directory-files) function returns
nil, the rest of the expression would crash with an error. This example is only shown to
demonstrate how these functions can be combined and used to facilitate file and directory
information usage.

(vl-file-size fil enane)

Returns the byte size of filename in integer form. If filename is not found, returns
nil.

Arguments.

Filename String name of file to query.

Example:
(vl-file-size “c:\\nyfilel.txt”); returns 125523 (roughly 124 Kb)

(vl-file-copy source-filenane target-fil enane [append])

Copies file from source location source-filename to destination target-filename.
If append is non-nil and destination file exists, the source file is appended to the
existing destination file. If destination file exists and append is nil, the file will
not be copied and the return value is nil. If successful, an integer value is
returned.

Arguments.

Sour ce-filename Name of file to be copied. If fileisnot in the default search
path, then the filename must include the full path location.

Target-filename Name of destination to copy source fileto. If destination path
is not specified, the default working directory location is used.

59



Append (Optional) if non-nil, indicates source file is to be appended
onto destination file if destination file exists.

(vl-file-copy “c:\\nyfilel.txt” “c:\\nycopy.txt”)

(vl-file-copy “c:\\nyfile2.txt” “c:\\nycopy.txt” T); appends target file
(vl-file-delete fil enane)

Deletes filename. Returns T if successful, otherwise returns nil.

Arguments.

Filename String name of file to delete.

(vl-file-renane ol d- name new- nane)

Renames existing file from old-name to new-name. Returns T if successful,
otherwise returns nil.

Arguments.

Old-Name  String name of existing file.

New-Name  String name to rename file when completed.
(vl-file-directory-p fil enane)

Returns T if filename represents a directory folder name. Returns nil if filename
isactually afile or does not exist at all.

(vl-file-systine fil enane)

Returns list of date and time values for last modification of filename. Return list
isin the form of (year month day-of-week day-of-month hours minutes seconds)

(vl-filename-base fil enane)
Returns the base filename without its path or extension.

Arguments.

Filename String naming the file, with or without the path or extension.

Examples:

(vl -filenane-base “c:\\nyfiles\\draw ngl.dwgy”)
Returns “drawingl”

60



(vl -filenane-base “draw ngl. dwg”)
Returns “drawingl”

(vl-filenanme-directory fil enane)

Returns the directory or path prefix value from the specified filename string.

Arguments.

Filename String naming the file including the pathname.

Examples.

(vl-filenane-directory “c:\\dwgfil es\\working\\draw ngl.dwg”)
Returns: “c:\\dwgfil es\\working”

(vl-filename-extension fil enane)
Returns the extension of a given filename string.

Arguments.

Filename Name of file (string)

Examples:

(vl-filenane-extension “c:\\nyfiles\\draw ngl.dwgy”)
Returns “dwg”

(vl-filename-nktenp [pattern directory extension])

Creates aunique file name to be used for atemporary file. Returnsastring file
name, in the format: directory\base<XXX><.extension> where baseisupto 5
characters, taken from pattern, and XXX is a 3 character unique combination.

All file names generated by vl-filename-mktemp during a VLISP session are
deleted when you exit VLISP.

Arguments.

Pattern A string containing afile name pattern; if nil or absent, vl-filename-
mktemp uses "$VL~~".

Directory A string naming the directory for temporary files; if nil or absent, vl-
filename-mktemp chooses a directory in the following order:

The directory specified in pattern, if any.
The directory specified in the TMP environment variable.
The directory specified in the TEMP environment variable.

61



The current directory.

Extension A string naming the extension to be assigned to the file; if nil or

absent, vI-filename-mktemp uses the extension part of pattern (which
may be an empty string).

Examples:

(vl -fil enane- nkt enp)

"C A\ TMP\\ $VL~~004"

(vl-fil enane-nktenp "mnyapp.del ")

" C:\\ TMP\ \ MYAPP0OO5. DEL"

(vl-filenane-nktenp "c:\\acad2002\\ nyapp. del ")
" C:\\ ACAD2002\ \ MYAPPOO6. DEL"
(vl-filenane-nktenp "c:\\acad2002\\ nyapp. del ")
" C:\\ ACAD2002\ \ MYAPPOO7. DEL"

(vl-fil enanme-nktenp "myapp" "c:\\acad2002")

" C:\\ ACAD2002\ \ MYAPPO08"

(vl-fil enane-nktenp "myapp"” "c:\\acad2002" ".del")
" C:\\ ACAD2002\ \ MYAPPOOA. DEL"

(vl-director

y-files path pattern [node])

Returns a list of files or sub-folders depending upon mode.

Arguments.

Path String name of path to query.

Pattern String denoting files to query, may contain wildcards. If not
specified or nil, assumes “* .*”,

Mode (Optional) Integer. One of the following...
-1= List directory names only
0= Listfilesand directories (default if not specified)
1= Listfilesonly.

Examples.

Command: (vl-directory-files “c:\\dwgfil es\\Working” “*.dwg")

(“drawi ngl.dwg” “drawi ng2.dwg” . . .)

Command: (vl-directory-files “c:\\dwgfiles” nil -1)

(“.” " “Fini shed” “Working”)

Command: (vl-directory-files “c:\\dwgfiles” nil 1)

nil

62



Chapter 9 —Mapping and lIteration Functions

AutoL ISP provides many powerful mapping and iteration functions such as (whil e)
(foreach) (mapcar) and (apply). Visua LISP adds a few more that are more suited
to working with ActiveX collection objects. These include (vl ax-for), (vl -every)
and (vl ax- map- col | ecti on) to name afew.

(vl ax- map-col | ecti on object function)

Applies function over collection object members (objects). If objectisnot a
collection, an error is generated.

Arguments.

Object A vla-object representing a collection
Function A symbol or lambda expression to be applied to object

Examples:

(setq docs (vl a-get-docunments (vl ax-get-acad-object)))
(vl ax- map-col | ecti on docs ‘vl ax- dunp-obj ect)

Thiswill repeat the full property listing for each document currently opened...

; | AcadDocument : An Aut oCAD dr awi ng

; Property val ues:

; Active (RO = -1
ActiveDi nStyl e = #<VLA- OBJECT | AcadDi nStyl e 046bb644>
ActivelLayer = #<VLA- OBJECT | AcadLayer 046bbd84>
ActiveLayout = #<VLA- OBJECT | AcadLayout 046b8a64>

; ActiveLi netype = #<VLA- OBJECT | AcadLi neType 046b89b4>

...cont’d...

(vl ax-for symbol collection [expressionl [expression2]]..)

Iterates member objects of collection and performs expressions on each member
object. If second argument is not a collection object, an error is generated.
Reference to symbol is localized and temporary, just as with (foreach).

Arguments.
Symbol A symbol to be assigned to each vla-object in a collection.
Collection A vla-object representing a collection

Expressions One or more expressions to be evaluated (optional)

Examples:

(setq acad (vl ax-get-acad-object))

63



(setq layers (vla-get-layers (vla-get-activedocunent acad)))
(vl ax-for eachLayer |ayers
(princ (vl a-get-nane eachLayer))
(terpri)
)
Thiswill list the names of al layersin the active drawing at the command prompt.
(vl-position itemlist)

Returns the nth position of itemwithin list if found. If itemisnot found in list,
returns nil. The position index of the first member is zero (0).

Arguments.

Item Any symbol or value.

List A list of values or symbols.

Example:

(setqg nylist ‘(“A” “B” “C"))
(vl-position “B” nylist) returns 1
(vl-position “b” nylist) returns nil.

(vl -every predicate-function list [list]...)

The vl-every function passes the first element of each supplied list as an argument
to the test function, followed by the next element from each list, and so on.
Evaluation stops as soon as one of the lists runs out.

Arguments.

Predicate-function Thetest function. This can be any function that accepts as
many arguments as there are lists provided with vl-every,
and returns T on any user-specified condition. Returns T, if
predicate-function returns a non-nil value for every element
combination, otherwise it returns nil.

The predicate-function value can take one of the following forms:

A symbol (function name)
(function (lambda (A1 A2) ...))

List(s) Thelist to be tested.

Examples:

Check for files larger than 1024 bytes in given folder



(vl -every
(function
(lambda (fil enane)
(> (vl-file-size filenane) 1024)
)
)

(vl-directory-files nil nil 1)
)
T

Conparing two lists...

(vl-every "= "(12) '"(1 3))
Returns nil

(vl-every "="'"(12) "(1223))
Returns T

The first expression returned nil because vl-every compared the second element in
each list and they were not numerically equal. The second expression returned T
because vl - every stopped comparing elements after it had processed all the
elements in the shorter list (1 2), at which point the lists were numerically equal.
If the end of alist isreached, vI - every returns anon-nil value.

_$ (setq listl (list 1 2 3 4))
(123 4

_$ (setq list2 nil)

nil

_$ (vl-every "= list2 listl)

T

Thereturn valueis T because vl - ever y responds to the nil list asiif it has reached
the end of the list (even though the predicate hasn't yet been applied to any
elements). And since the end of alist has been reached, v - every returns a non-
nil value.

65



Chapter 10 -Working with Namespaces

Developing Visua LISP VLX applications can include the use of Separate Namespaces
in order to provide added performance controls and better security. However, there are
some added costs in terms of coding changes that must be used to avoid problems and
provide proper results. This includes importing and exporting functions and symbols, as
well as passing valuesin and out of the local namespace.

Because a separate namespace VL X application can be isolated, it can aso be queried
and unloaded if desired, unlike norma LISP functions which are loaded into the
document namespace and are not identifiable or capable of being unloaded by name.
This very much like ObjectARX applications, and it provides added capabilities to the
developer that were not available to LISP until Visual LISP came along.

AutoCAD Application NameSpace

Document NameSpace

VLX NameSpace 1

VLX NameSpace 2

Figure 10-1 — Namespace relationships

In the world of ActiveX or COM (Component Object Model) development, every
application is normally run in its own namespace within Windows. This is a common
part of how multitasking is enabled. Other processes that are started by a given
application may or may not run within the application’s namespace. They may in fact
run in their own isolated namespaces. The advantages are many, but there are tradeoffs
aswell.

Referring to Figure 10-1 we can use some people examples to describe how namespaces
work and how processes within them behave. The two VLX applications running inside
of the Document namespace are each running in their own separate namespaces. Thisis
alittle misleading, as they are not really running within the Document namespace, but are
actually running within the AcadApplication namespace. Because they were loaded into
the Document namespace however, they are referenced only within that Document
namespace. The third VLX is not a separate-namespace application and is running
entirely within the Document namespace as would any traditional AutoL ISP application.

66



Namespace Scoping

Note in this example, that there are three objects (function definitions) named Bob.
While each is loaded into the same Document namespace, they cannot see or affect each
other. This results in something like having three distinct Bob objects, sort of like Bob
Smith, Bob Jones and Bob Doe. Unless you incorporate some specific Visual LISP
functions, they cannot communicate with each other or affect each other at all. So any
objects that refer to a Bob object in this Document will only get access to the one that is
in their same namespace.

The same is true for global symbols, if any are used. If we set a symbol G$BOB to a
value of “A” from the command line in the Document session, any G$BOB symbols
running within VLX1 or VLX2 will not be affected. From a function within VLX1, we
could assign G$BOB to a vaue of “B”. If a function within VLX1 displays (princ
G$BOB) it will return “B”, but from the command prompt a request for (princ G$BOB)
will still return “A”.

This type of protection results in what are commonly called private functions or private
symbols, since they are private to that VL X namespace. Functions and symbols defined
in the Document namespace however are not private since they are accessible by all other
applications running in that namespace. To put it more accurately, private and public are
relative to where the calling process is located (inside or outside of the respective
namespace). In other words, object Sue is public to any functions defined and running
within the VLX2 namespace, but Sue is considered private in the sense that VLX1 and
other namespaces cannot access it by default.

Namespace Functions

When you intend to compile your LSP code into separate namespace VL X modules you
need to make use of some specia functions to get your code to communicate with other
VLX modules that run outside the namespace of your new VLX module. Thisis true of
whether the other VL X modules are within the document namespace or are compiled into
their own namespaces respectively. However, it bears noting that for each VLX that is
compiled into its own separate namespace, that you need to rely upon these functions in
every file, not just some, at least if you need them to communicate with each other or
with the document session namespace.

(vl-1ist-I|oaded-vlx)

Returns a list of all loaded separate-namespace VL X applications. If none are
loaded this returns nil.

(vl -unl oad- vl x appnane)

Unloads a separate-namespace VLX application by name (appname is a string
vaue). This works like the (arxunl oad) function does with ObjectARX
applications.

67



Arguments.

AppName A symbol or string representing the string name of the VLX
application to be unloaded, for example “myapp.vix”.

(vl -vl x-1 oaded- p appnane)

Returns T if the specified separate-namespace VL X application is loaded in the
current drawing session. Otherwise, it returns nil.

(vl -doc-export ‘function)

Exposes a function from within a separate namespace VL X application for use by
applications or functions outside of its namespace. This must be declared at the
top of a given LSP file, above any function definitions, prior to compiling into a
separate namespace VLX application. Functions that are not exported from a
given VLX are private to that VLX and cannot be accessed from outside of its
namespace.

(vl-doc-inport filenanme [‘function])

Imports a function from another VLX application for use within the current
separate-namespace VL X application. If you don’t import such functions that are
exposed from other VLX applications, they are not accessible within a VLX
application acting as a consumer of that function. If filename is specified, but
‘function is omitted, all functions from the VLX module (filename) are imported.

Arguments.

Filename A symbol or string representing aVLX filename.
Function (Optional) A quoted symbol representing a function name.

If you want to limit the functions being imported, you must use the function
argument to name those functions, one at atime. The filename argument does not
use a file extension, only the base filename of the external VLX application file,
and that file must reside in the default search path, or the full path and filename
must be specified.

(vl-arx-inport [‘function | “appnanme” ])

Imports a function or group of functions from a specified loaded ARX file. If
function and appname are omitted, all ARX-defined functions from the current
document namespace are imported. This function should be used within a (defun)
function definition. The ARX application must be loaded into the current
document session in order for this function to work.

Arguments.

68



Function (Optional) A quoted symbol representing a function name.

AppName  (Optional, but must be included when Function is used) A symbol
or string that represents the ARX file to be imported from.

For example, if you wanted to use the DOSlib ARX function (dos_getstring) for
use within your separate-namespace VLX application, you would have to import
it asfollows:

(vl-arx-inmport ‘dos_getstring “doslib2k.arx”)

If you wanted to import all functions from doslib2k.arx, you would ssmply leave
off the function name as follows:

(vl -arx-inmport “doslib2k.arx”)
(vl -doc-set ‘synbol val ue)

Sets a symbol in the document namespace from within a separate-namespace
VLX application. If used outside of a separate-namespace VLX application, this
behaves like the (set) function. This function can be used to copy a symbol
defined within a separate-namespace VLX application to the document
namespace for public access. The symbol is copied by value, not by reference,
meaning that the symbol within the VLX application cannot be modified from the
document namespace. To import a document namespace symbol, you must use
the (vl-doc-ref) function from within your separate-namespace VLX application.

Arguments.
Symbol A quoted symbol name.

Value Any value to assign to the symbol.

Examples:

Defined example function, compile into separate-namespace VL X and load into
AutoCAD:

(defun DOCSET ()
(vl -doc-set ‘ GBNAMEL “Joe”)
)

From the document namespace, via the command prompt:
Conmmand: ( DOCSET)

Command: ! GSNAMEL
“Joe”

(vl -doc-ref *‘synbol)

69



Imports a symbol from the document namespace into a separate-namespace VL X
application namespace. The symbol is copied by value, not by reference,
meaning that the document namespace symbol cannot be directly modified from
within the VLX namespace. To export or set a document namespace symbol from
within the VLX namespace, you must use the (vI-doc-set) function.

Arguments.
Symbol A quoted symbol name.
(vl-load-all filenane)

Loads a named VLX file into all opened documents at the same time. It also
loads into any documents opened thereafter within the same AutoCAD
application session.

Arguments.
Filename A symbol or string representing avalid filename.
(vl - propagate ‘synbol)

Copies a symbol and its associated value to all opened documents within the
AutoCAD application namespace, and to all documents opened afterwards during
the same AutoCAD session.

Arguments.
Symbol A quoted symbol name.
(vl -bb-set ‘synbol)

Posts a symbol and its associated value to the blackboard namespace. The
blackboard namespace is part of the AcadApplication namespace and is accessible
by al opened documents in the Documents collection. This provides similar
functionality to the Windows Clipboard, except that it is used for posting and
retrieving LISP symbols only.

Arguments.
Symbol A quoted symbol name.
(vl -bb-ref ‘synbol)
Retrieves a symbol and its associated value from the blackboard namespace.
Arguments.
Symbol A quoted symbol name.

70



(vl-11ist-exported-functions)

Returns alist of all functions that have been exposed to the document namespace
from any loaded VLX applications.

(vl ax- add-cnd “gl obal nanme” ‘function [“l ocal nanme” | fl ags])

Defines a command-line function from a (defun) that is not defined as a C:
function within aVLX application. Y ou must specify at least the globalname and
function options. The localname and flags options are optional. Y ou cannot use
(vlax-add-cmd) to expose functions as commands that create reactor objects or
serve as reactor callbacks. Returns the globalname value if successful, otherwise
returns nil if not successful.

It is suggested that (vlax-add-cmd) be used within a separate-namespace VL X and
that you load the VLX using the APPLOAD command instead of from within a
LISP startup routine.

Arguments.

GlobalName A string that specifies the command name for use at the command
prompt.

Function A quoted symbol representing a function name.

LocalName (Optional) Command name internal to the VLX application
namespace. If omitted, defaults to GlobalName.

Flags (Optional) Modify the behavior of the command with respect to
transparency, pickset and pickfirst options and so forth.

Primary Flag Options:

ACRX_CMD_MODAL (0) — Command cannot be invoked while another command is active.

ACRX_CMD_TRANSPARENT (1) — Command can be invoked while another command is
active.

Secondary Flag Options:

ACRX_CMD_USEPICKSET (2) — When the Pickfirst set is retrieved, it is cleared within
AutoCAD. Command will be able to retrieve the Pickfirst set. Command cannot retrieve or set
Grips.

ACRX_CMD_REDRAW (4) — When the Pickfirst set or grip set is retrieved, neither will be
cleared within AutoCAD. Command can retrieve the Pickfirst set and the Grip set.

If both ACRX _CMD_USEPICKSET and ACRX_CMD_REDRAW are set, the
effect isthe same asif just ACRX_CMD_REDRAW is set. For more information

71



on these flag options, refer to the Command Sack topic in the ObjectARX
Reference manual.

Examples:
Function defined in Transparent.VLX and loaded into AutoCAD:

(vl -1oad-com
(vl -doc-export *‘exanplel)
(defun exanpl el ()
(princ “\nThis is an exanple transparent function.”)

(princ)

(vl ax-add-cnmd “exanpl el” ‘exanpl el “exanpl el” ACRX_CMD_TRANSPARENT)
(princ)

Command: LI NE
Specify first point: ‘EXAVPLEL
This is an exanpl e transparent function.
Resum ng LI NE command.
Specify first point:
(vl ax-renmove-cnd “gl obal nane”)

Removes a command definition that was previously defined using (vlax-add-
cmd). The function is not affected, but the command-prompt interface is removed
from the commands group.

Arguments.
GlobalName A string naming a command to be removed.

Examples:

(vl ax-renmove-cnd “exanpl el”)
T
(vl ax-renmpve-cnd “exanpl e2”)
ni

(vl -acad-defun ‘function)

Enables a (defun) LISP function to be used as a c: function from an ObjectARX
application. This makes the function accessible to ObjectARX applications.

Arguments.

Function A quoted symbol representing a function name.

Examples:

(vl -acad-defun ‘ exanpl el)

72



(vl -acad-undefun ‘function)

Undefines a command that was previously exposed using the (vl-acad-defun)
function. Returns T if successful, otherwise returns nil.

Arguments.

Function A quoted symbol representing a function name.

Examples:

(vl -acad-undefun * exanpl el”)
T

73



Chapter 11 —Registry Functions

Visua LISP provides specia functions for accessing and modifying the Windows
registry. You can query and modify keys within the HKEY_LOCAL_MACHINE, and
HKEY_CURRENT_USER hives of the local registry using these functions. Y ou cannot
obtain remote registry access using Visual LISP registry functions. Nor can you access
the HKEY_USERS, HKEY _CLASSES ROOT or HKEY_CURRENT_CONFIG registry
hives from Visual LISP.

Note that even in registry hives that Visual LISP can access, you are still bound by the
access controls imposed by the security context of the process owner. In other words, if
the Visual LISP application is being executed by a user that has limited permissions on
that machine, some registry keys may not be accessible or may not be modifiable by
Visual LISP. Thisissue is particularly important to consider in networked environments
where group policies are used to modify registry access permissions.

(vl-registry-read regkey [val ue-nane])

Returns the value assigned to either an explicit registry key or a registry value-
name (symbol) if defined in the registry. If no such registry key or value-name is
found, the result is nil.

Arguments.

RegKey Name of a registry key in HKEY_LOCAL_MACHINE or
HKEY_CURRENT_USER hives.

Value-Name Name of a subordinate value symbol beneath the specified registry
key. (Optional)

Examples:
(vl-registry-wite “HKEY_CURRENT_USER\ \ Exanpl el” “FOO *“123")
“123”
(vl -registry-read "HKEY_CURRENT_USER\\ Exanpl el" “FOO)
“123”
(vl -registry-read “HKEY_CURRENT_USER\\ Exanpl el”)
ni |
(vl-registry-wite "HKEY_CURRENT_USER\ \ Exanpl e2" "" " ABCDEF")
" ABCDEF"
(vl -registry-read "HKEY_CURRENT_USER\ \ Exanpl e2")
" ABCDEF"

(vl-registry-wite regkey [val ue-nane] val ue)

Writes value to registry key or registry key value-name and returns value if
successful. Returns nil if not successful.

Arguments.

74



RegKey Name of registry key

Value-Name Name of a subordinate value symbol beneath the specified
registry key. (Optional)

Value Value to write to the named registry key or value-name.
Examples:

(vl-registry-wite “HKEY_CURRENT USER\\ Exanpl el” “TEST1” “123")
(\1/I2-3regi stry-wite “HKEY_CURRENT_USER\\ Exanpl el” “” “456")

“ 456"

(vl -registry-del ete regkey [val ue-nane])

Deletes aregistry key and its associated values from the specified location in the
registry. Returns T if successful, nil if it fails. If value-name is supplied and is
not nil, the specified value will be purged from the registry. If value-name is
absent or nil, the function deletes the specified key and all of its values. If any
sub-keys exist, regkey cannot be deleted. To remove keys that have sub-keys,
you must use (vl -registry-descendents) to collect the sub-keys and delete
them first.

Arguments.
RegKey Name of registry key

Value-Name Name of a subordinate value-name (symbol) beneath the specified
registry key. (Optional)

Examples:

(vl-registry-wite "HKEY_CURRENT_USER\\ Exanpl el" "TEST1" "123")
"123"

(vl -regi stry-del ete "HKEY_CURRENT_USER\ \ Exanpl el")

T

(vl -regi stry-descendents regkey [val ue-nanes])

Returns alist of subkeys or value-names beneath the specified registry key. |If
value-names is supplied and is not nil, the specified value names will be listed
from the registry. If value-name is absent or nil, the function displays all subkeys
of regkey. Note also that the return value is often in reverse sorted order.

Arguments.
RegKey Name of registry key
Value-Names A string containing the values for the regkey entry.

75



Examples:

(vl -regi stry-descendents "HKEY_LOCAL_MACHI NE\ \ SOFTWARE")

("WexTech Systens" "Voice" "Synaptics" "Symantec" "Secure"
"Program G oups" "Policies" "ODBC' "N co Mak Conputi ng"
"McroVision" "Mcrosoft” "MetaStreant "MNeel" "MAfee"
"JavaSoft" "Intel Corporation” "INTEL" "InstalledOptions”

"Hel i os" "DOSLi b" "Dell Computers" "Dell Conputer Corporation”
"Del|l Computer” "DanmeWare Devel opnent” "dients" "C asses" "BVRP
Sof tware" "BigFi x" "Autodesk™ "ATI Technol ogi es” "Apple Conputer,
Inc.” "Anerica Online" "Adobe" "Adaptec" "3Coni)

You can see more examples of registry functions by opening the RegDump.LSP file
located in the Visual LISP Samples directory of your AutoCAD 2002 installation. In this
file, you will find a useful function named (regi stry-tree-dunp) that performs a
recursive search of all subkeys and value-names beneath a specified registry key.

.fil"
You can create a pair of Get and Set functions to store and retrieve registry

values with some control over standardized locations and error trapping. You might find
the following two functions helpful:

(set g GPREGROOT "HKEY_CURRENT_USER\ \ Sof t war e\ \ MyAppl i cation\\")

(defun RegGet (key default / val)
(if (=nil (setq val (vl-registry-read (strcat GBREGROOT key))))

(progn
(regset key default)
(setq val (vl-registry-read (strcat GPREGROOT key)))

)

(if val val default)

)

(defun RegSet (key val)
(vl-registry-wite (strcat GPREGROOT key) "" wval)

)

76



Chapter 12 — Reactors and Call-Backs

Note: Parts of this section were derived from the AutoCAD 2002 online Help
documentation with some modifications to provide additional examples or clarity.

While reactors are indeed extremely powerful and useful to developers, they
should be used with careful moderation. Depending upon the types and volume of
reactors you define in a given situation, you can easily and quickly deplete system
resources and cause AutoCAD to become unresponsive and even unstable or crash. Be
careful in choosing how you will apply reactors to your applications devel opment.

Reactors are smply links between AutoCAD and your applications that allow you to
make functions that respond to events that occur within AutoCAD. For example, you can
create a reactor to notify your applications that an entity was erased. The application
could then perform some action in response to this event. A button on aform isasmple
example of event-driven programming that uses an Event and a Response to perform an
action. When you pick the button, it fires an event, much like asignal or broadcast. This
event is detected by a Reactor of sorts that performs some action as a result by using what
isknown as a call-back process.

In AutoCAD terms, you might consider a scenario such as using the ConmandW | | St ar t
event to fire a Command Reactor call-back to perform some action based on what
command was executed. Maybe the user initiated the HATCH command, and you want
to react to that by firing a call-back function that sets a specia layer active before the
Hatch is placed in the drawing, and then restore the previous layer state when the
command finishes. Maybe you'd like it to aso restore the previous layer state if the
command fails due to an error? Or what if the user simply cancels the command in
midstream? Thisis possible using Reactors and Visual LISP programming.

What you need to do firg is define the function that will be used in the call-back. Be
careful not to use (conmand) or (vl - cndf) anywhere in that function if it will be called
upon as the result of a Command Reactor as this may start an endless cycle and crash
AutoCAD. Sounds like common sense, huh? Sometimes things like this are not so
obvious and can cause big problems. This is but one reason for developers to be VERY
careful when considering Reactors.

The next thing you need to do is define the Reactor and construct it to call your call-back

function if the proper condition is met by the event detected (the command is HATCH or
BHATCH, ignoring al others).

Figure 12-1 demonstrates how you might use a Command Reactor to respond to the
HATCH or BHATCH command by defining and setting layer “HATCHING” active until

77



the command has either finished (via the ConmandEnded event), or aborted due to error
(viathe ConmandFai | ed event), or user cancellation (viathe CommandCancel | ed event).

Visual LISP Reactor Functions

( vl-load-com)

( vlr-acdb-reactor data
callbacks)

(vIr-add obyj)
( vIr-added-p obj)
( vlr-beep-reaction [args])

( vlr-current-reaction-name)

(vlr-data obj)
( vlr-data-set obj data)

( vlr-deepclone-reactor obyj
data)

( vlr-docmanager -reactor
obj data)

( vlr-dwg-reactor obj data)

( vlr-dxf-reactor obj data)

( vlr-editor-reactor data
callbacks)

(vlr-linker-reactor data
callbacks)

( vlr-miscellaneous-reactor
data callbacks)

( vlr-mouse-reactor
data callbacks)

(vlr-notification reactor)

( vlr-object-reactor owners
data callbacks)

( vlr-owner-add reactor owner)

( vlr-owner-remove
reactor owner)

( vlr-owners reactor)

L oads AutoL ISP reactor support functions and other AutoL ISP extensions
Constructs aglobal “database” reactor object

Enables a disabled reactor object
Tests to determine whether a reactor object is enabled
Produces a beep sound

Returns the name (symbol) of the current event, if called from within a
reactor's callback

Returns application-specific data associated with a reactor

Overwrites application-specific data associated with a reactor

Constructs an editor reactor object that notifies of deep clone events

Constructs areactor object that notifies of MDI-related events

Constructs an editor reactor object that notifies of a drawing event (for
example, opening or closing adrawing file)

Constructs an editor reactor object that notifies of an event related to
reading or writing of a DXF file

Constructs aglobal “editor” reactor object

Constructs aglobal “linker” reactor object

Constructs an editor reactor object that does not fall under any of the other
editor reactor types

Constructs an editor reactor object that notifies of a mouse event (for
example, adouble-click)

Determines whether or not areactor's callback function will executeif its
associated namespace is not active

Constructs an object reactor object
Adds an object to the list of owners of an object reactor
Removes an abject from the list of owners of an object reactor

Returnsthe list of owners of an object reactor

78



( vlr-pers reactor)
(vlr-pers-list [reactor])

( vlr-pers-p reactor)
(vlr-pers-release reactor)

( vlr-reaction-name reactor -
type)

(vlr-reaction-set reactor event
function)

(vlr-reactions reactor)
(vlr-reactors|[reactor-type...])
( vlr-remove reactor)

( vlr-remove-all reactor-type)

( vlr-set-notification reactor
“range)

( vlr-sysvar-reactor data
callbacks)

( vlr-toolbar-reactor data
callbacks)

( vlr-trace-reaction)

( vlr-type reactor)

(vlr-types)

( vlr-undo-reactor data
callbacks)

( vlr-wblock-reactor data
callbacks)

( vlr-window-reactor data
callbacks)

( vlr-xref-reactor data
callbacks)

Reactor Types

Makes a reactor persistent between sessions (not transient)
Returns alist of persistent reactors in the current drawing
Determines whether or not areactor is persistent

Makes a reactor transient (not persistent)

Returnsalist of al callback conditions for this reactor type

Adds or replaces a callback function in areactor

Returns alist of pairs (event-name . callback function) for the reactor
Returns alist of reactors of the specified types

Disables areactor object

Disables all reactors of the specified type

Defines whether or not areactor's callback function will execute if its
associated namespace is not active

Constructs an editor reactor object that notifies of a change to a system
variable

Constructs an editor reactor object that notifies of a change to the bitmaps
in atoolbar

A pre-defined callback function that prints one or more callback arguments
in the Trace window

Returns a symbol representing the reactor type

Returns alist of al reactor types (see next section)
Constructs an editor reactor object that notifies of an undo event

Constructs an editor reactor abject that notifies of an event related to
writing a block

Constructs an editor reactor object that notifies of an event related to
moving or sizing an AutoCAD window

Constructs an editor reactor object that notifies of an event related to
attaching or modifying XREF

There are many types of AutoCAD reactors. Each reactor type responds to one or more
AutoCAD events. The different types of reactors are grouped into one of the following

five categories:

Database Reactors

79



Database reactors notify your application when specific events occur to the drawing
database, such as when an object has been added to the drawing database.

Document Reactors

Document reactors notify your application of a change to the current drawing document,
such as opening a new drawing document, activating a different document window, and
changing a document's lock status. This does not include of all the events covered by
Editor reactors.

Editor Reactors

Editor reactors notify you each time an AutoCAD command isinvoked; adrawing is
opened, closed, or is saved; a DXF fileisimported or exported; or a system variable
setting is modified.

Linker Reactors

Linker reactors notify your application every time an ARX application is loaded or
unloaded.

Object Reactors
Object reactors notify you each time a specific object is changed, copied, or deleted.

With the exception of Editor reactors, there is one type of reactor for each reactor
category. The following table lists the name by which each reactor typeisidentified in
the Visual LISP environment:

General reactor types
Reactor typeidentifier Description

:VLR-AcDb-Reactor A Database reactor

'VLR-DocManager-

Reactor A Document management reactor

/L R-Editor-Reactor A General Editor reactor-maintained for backward-

compatibility
:VLR-Linker-Reactor A Linker reactor
'V LR-Object-Reactor An Object reactor

The Editor reactor class is broken down into more specific reactor types. The : VLR-
Edi tor- React or type is retained for backward-compatibility, but any new Editor

80



reactors introduced with AutoCAD 2000 cannot be referenced through : VLR- Edi t or -
React or . The following table lists the types of Editor reactors available beginning with

AutoCAD 2000.

Reactor type
:VLR-Command-Reactor
:VVLR-DeepClone-Reactor
'VLR-DWG-Reactor
'VLR-DXF-Reactor
‘VLR-Insert-Reactor
:'VLR-Lisp-Reactor
:VLR-Miscellaneous-Reactor
:'VLR-Mouse-Reactor
'VLR-SysVar-Reactor
:VLR-Toolbar-Reactor
:VLR-Undo-Reactor
:VLR-Whblock-Reactor
:VLR-Window-Reactor
'VLR-XREF-Reactor

Editor reactor types
Description
Notifies of acommand event
Notifies of a deep clone event
Notifies of adrawing event (for example, opening or closing adrawing file)
Notifies of an event related to reading or writing of a DXF file
Notifies of an event related to block insertion
Notifies of aLISP event
Does not fall under any of the other editor reactor types
Notifies of a mouse event (for example, a double-click)
Notifies of a change to a system variable
Notifies of a change to the bitmaps in a toolbar
Notifies of an UNDO event
Notifies of an event related to writing a block
Notifies of an event related to moving or sizing an AutoCAD window

Notifies of an event related to attaching or modifying XREFs

Note: Usethevl r - t ypes function to return the complete list of reactor types.

For each reactor type there are a number of events that can cause the reactor to notify
your application. These events are known as callback events, because they cause the
reactor to call a function you associate with the event. For example, when you issue the
SAVE or QSAVE commands to save adrawing, a: vl r - begi nSave event occurs. When
you complete the save process, a : vl r-saveConpl ete event occurs. In designing a
reactor-based application, it is up to you to determine the events you are interested in, and
to write the callback functions to be triggered when these events occur.

Thevl r-reacti on- names function returns alist of all available eventsfor a given
reactor type:

(vlr-reaction-names reactor type)

For example, the following command returns a list of al events related to Object
reactors:

81



$ (vlr-reaction-nanmes : VLR (bj ect - React or)

(: VLR-cancel l ed : VLR-copi ed : VLR erased : VLR-unerased : VLR
goodbye : VLR-openedFor Modify :VLR-nodified : VLR subObj Modi fi ed
: VLR- nodi f yUndone : VLR- nodi fi edXDat a : VLR-unappended : VLR

r eappended : VLR- obj ect Cl osed)

NOTE: If thisor any other vi r - * command fails with a"no function definition"
message, you may have forgotten to call vl - | oad- com the function that loads AutoL ISP
reactor support functions.

To print out alist of al available reactor events, sorted by reactor type, load and execute
the following example function:

(defun print-reactors-and-events ()
(foreach rtype (vlr-types)
(princ (strcat "\n" (vl-princ-to-string rtype)))
(foreach rnanme (vlr-reaction-nanes rtype)
(princ (strcat "\n\t" (vl-princ-to-string rnane)))

)
(princ)
)

Verifying Reactor Types

The AutoLISP Reference lists each event available for a reactor type. For each reactor
type, you can find this information by looking up the description of the function you use
to define areactor of that type. These functions have the same name as the reactor type,
minus the leading colon. For example, vl r-acdb-react or creates a database reactor,
vl r-tool bar-react or creates atoolbar reactor, and so on.

(vlr-type reactor)
Iterates member objects of collection and performs expressions on each member
object. If second argument is not a collection object, an error is generated.
Reference to symbol is localized and temporary, just as with (foreach).
Arguments.
reactor A reactor object.

Return Values

A symbol identifying the reactor type. The following table lists the types that may
be returned by the vir-type function:

Reactor types

82



Reactor type
'VLR-AcDb-Reactor

:VLR-Command-
Reactor

:'VLR-DeepClone-
Reactor

‘VLR-DocManager -
Reactor

'VLR-DWG-Reactor

'VLR-DXF-Reactor
:VLR-Editor-Reactor
‘VLR-Insert-Reactor
:'VLR-Linker-Reactor
:'VLR-Lisp-Reactor

:VLR-Miscellaneous-
Reactor

‘VLR-Mouse-Reactor
VL R-Object-Reactor
'VLR-SysVar-Reactor

:VLR-Toolbar-
Reactor

:VLR-Undo-Reactor

:VLR-Whblock-
Reactor

:VLR-Window-
Reactor

'VLR-XREF-Reactor

Examples

Description
A drawing database reactor.

An editor reactor notifying of acommand event. This does not include C:
commands defined by LISP expressions, only native AutoCAD commands.

An editor reactor notifying of a deep clone event.

A document management reactor.

An editor reactor notifying of a drawing event (for example, opening or closing a
drawing file).

An editor reactor notifying of an event related to reading or writing of a DXF file.
A genera editor reactor; maintained for backward-compatibility.

An editor reactor notifying of an event related to block insertion.

A linker reactor.

An editor reactor notifying of aLISP event.
An editor reactor that does not fall under any of the other editor reactor types.

An editor reactor notifying of a mouse event (for example, a double-click).
An object reactor. (any object, e.g. vla-object type)

An editor reactor notifying of a change to a system variable.

An editor reactor notifying of a change to the bitmapsin atoolbar.
An editor reactor notifying of an undo event.

An editor reactor notifying of an event related to writing a block.

An editor reactor notifying of an event related to moving or sizing an AutoCAD
window.

An editor reactor notifying of an event related to attaching or modifying X REFs.

~$ (vlr-type circl eReactor)
: VLR- bj ect - React or

There are various ways to obtain information about reactors. Visual LISP supplies
AutoL | SP functions to query reactors, and you can use standard Visual LISP data
inspection tools to view information on them.

83



Touse AutoLISPto list all reactorsin adrawing, call the vl r - r eact or s function. The
function returns alist of reactor lists. Each reactor list begins with a symbol identifying
the reactor type, followed by pointers to each reactor of that type. For example:

_$ (vlr-reactors)
((: VLR Obj ect- Reactor #<VLR- (bj ect-Reactor>) (:VLR-Editor-Reactor

#<VLR- Edi t or - React or >))

In thisexample, vi r - r eact or s returned alist containing two lists, one identifying a
single object reactor and one identifying a single Editor reactor.

To list al reactors of agiven type, supply vi r - r eact or s with an argument identifying
the reactor type. Specify one of the values returned by the vi r - t ypes function; these are
listed in the section on Reactor Types. For example, the following lists all DWG reactors:

_$ (vlr-reactors :vlr-dwg-reactor)

((: VLR- D\G React or #<VLR- DG React or > #<VLR- DWG React or >))

In this case, the return value is alist containing one list. The one list identifies pointers to
two DWG reactors.

Using Object Reactors

Unlike other AutoCAD reactors, object reactors are attached to specific AutoCAD
entities (objects). When you define an object reactor, you must identify the entity the
reactor isto be attached to. The vi r - obj ect - r eact or function, which creates object
reactors, requires the following arguments:

A list of VLA-objects identifying the drawing objects that are to fire notifications
to the reactor. These objects are referred to as the reactor owners.

AutoL | SP data to be associated with the Reactor object.

A list of pairs naming the event and the callback function to be associated with
that event (event-name . callback function).

[]
m,nlngl
Y ou cannot modify an object in a callback function if it is included in the object
reactor’s owner list. Attempts to do so will generate an error message and can crash
AutoCAD. This is a very esoteric concern with using reactors. To carefully plan your
implementation strategy so that you avoid the possibility of circular references where a
reactor callback affects one of the sources of the reactor itself.



For example, the following statement defines an object reactor with a single owner (the
object identified by myCircle), then attaches the string " Circle Reactor” to the reactor and
tells AutoCAD to invoke the print-radius function when a user modifies myCircle:

(setq circleReactor (vlr-object-reactor (list nyCrcle)

"Circle Reactor” '"((:vlr-nodified . print-radius))))

The Reactor object is stored in variable circl eReact or; you can refer to the reactor
using this variable. When defining a list of owners, you must specify VLA-objects only;
Ename objects are not allowed. VLA-objects are required because callback functions can
only use ActiveX methods to modify AutoCAD objects, and ActiveX methods require a
VLA-object to work on.

Note that, although you cannot use objects obtained through functions such as entlast and
entget with callback reactors, you can convert these Ename objects into VLA-objects
using the vl ax- enane- >vl a- obj ect function. See the AutoLISP Reference for more
information on vlax-ename->vla-object.

The following code example draws a circle and applies a reactor to the circle to notify of
any change made to the entity thereafter. Load the code, draw the circle and then go back
and either move or resize the circle using SCALE or grip editing to see how it works.

(vl -1oad-com
(setq oAcad (vl ax-get-acad-object)

oDoc (vl a-get-activedocunent oAcad)
)

(cond
( (and
(setq ctrPt (getpoint “\nCenter point: "))
(setq rad (distance ctrPt (getpoint ctrPt “\nRadius: “)))
)
(setq Circl eObject
(vla-addCrcle
(vl a- get - Model Space oDoc)
(vl ax-3d-point ctrpt)
radi us
)
)
)
)

(if GircleObject
(setq circl eReactor

(vlr-object-reactor (list Circleject) “Crcle Reactor”
“((:vlr-nodified . rShowRadi us))

)
)

(defun r ShowRadi us

85



(notifier-object reactor paraneter-1list)
(cond
( (vl ax-property-avail able-p notifier-object "Radius")
(princ "*** The radius is ")
(princ (vla-get-radius notifier-object))
)
)
)

Attaching Data to Reactor Objects

The object reactor creation example in Using Object Reactors included a string, "Circle
Reactor," in the call to vI r - obj ect - react or . You do not have to specify any datato be
included with the reactor; you can specify nil instead. However, an object may have
severa reactors attached to it. Include an identifying text string, or other data your
application can use, to allow you to distinguish among the different reactors attached to
an object.

Inspecting Reactors Within the VLIDE

Y ou can examine reactors using the VLIDE I nspect tool. For example, the object reactor
defined in Using Object Reactors was returned to the variable circleReactor. If you open
an Inspect window for this variable, VLISP displays the following information:

@‘E Inzpect: ¥LR-Object-Reactor il
| #<VLR-0biect-Feactor:

O wnerzt [Hew Lo DBE LT cadiircle U1 s
{Reactons} [[VLR-modified . PRINT-RADIIS]
{added-p} T

[Data] "Circle Reactor

{Ranget 0

{Document} #<VLA-OBJECT lAcadD ocument

The following information is revealed in the Inspect list:
Objects owning the reactor

Event and associated callback function
Whether or not the reactor is active:
o Yesif added-pisT
o Noif added-pisnil
User data attached to the reactor
Document range in which the reactor will fire:
o 0- Reactor responds only in the context of the drawing document it was
created in.
o 1 - Reactor responds in the context of any document
o Seethe section “Reactors and Multiple Namespaces”

86



The AutoCAD document attached to the object reactor

Double-click on the item that begins with { Owners} to view alist of the owner objects:

@ inspect: LIST x|
|i#<WLA-OBJECT IAcadCincle 012589043

FI By LA LBJE L Jacadticle 0] enndids

Y ou can drill down to find the owner by double-clicking on alist item in the Inspect list
box.

Querying Reactors

VLISP aso provides functions to inspect a reactor definition from within an application
program, or at the Console prompt:

vir-type returns the type of the specified reactor. For example:

$ (vlir-type circl eReactor)
: VLR- bj ect - React or

vl r-current-reacti on- name returns the name of the event that caused the
callback function to be called.

vl r - dat a returns the application-specific data value attached to the reactor, as
shown in the following example:

$ (vlir-data circl eReactor)
"Circle Reactor™

Y ou can use this data to distinguish among multiple reactors that can fire the same
callback function.

vir-owners returns alist of the objectsin an AutoCAD drawing that fire
notifications to an object reactor. The following function call lists the objects that
fire notifications to circleReactor:

_$ (vlir-owners circl eReactor)
(#<VLA- OBJECT | AcadCircl e 03ad077c>)

vl r-reactions returns the callback list of condition-function pairs of the
specified reactor. The following example returns information about circleReactor:

$ (vlr-reactions circleReactor)
((:vlr-nodified . PRI NT-RADI US))

87



Transient and Persistent Reactors

Reactors may be transient or persistent. Transient reactors are lost when a drawing closes;
this is the default reactor mode. Persistent reactors are saved with the drawing and exist
when the drawing is next opened. If you use persistent reactors that invoke custom
applications via a callback, the custom applications must be loaded for the callback to
work properly. See the next section for more on peristent reactors.

Use the vi r - per s function to make a reactor persistent. To remove persistence from a
reactor and make it transient, use vir-pers-release. Each function takes a Reactor object as
its only argument. For example, the following command makes a reactor persistent:

_$ (vlr-pers circl eReactor)
#<VLR- Obj ect - React or >

If successful, vi r - per s returns the specified Reactor object.

To determine whether a Reactor object is persistent or transient, issue vl r - per s- p. For
example:

% (vlr-pers-p circl eReactor)
#<VLR- Obj ect - React or >

Thevl r - per s- p function returns the Reactor object if it is persistent, ni | if it isnot.
Opening Drawings with Persistent Reactors

Since a reactor is only a link between an event and a callback function. While this link
remains, the callback function itself is not part of the reactor, and is normally not part of
the drawing. The reactors saved in the drawing are only usable if their associated callback
functions are loaded in AutoCAD. You can cause this to occur automatically when a
drawing is opened if you define the reactor and callback functions in a separate-
namespace VLX.

If you open a drawing containing VLISP reactor information and the associated callback
functions are not loaded, AutoCAD displays an error message. You can usethe vl r -
pers-1ist functionto return alist of al Persistent reactors in a drawing document.

Reactors and Multiple Namespaces

The current implementation of AutolL|1SP supports working in one drawing document at a
time. Some AutoCAD APIs, such as ObjectARX and VBA, do support the ability of an
application to work simultaneously in multiple documents. As a result, an application
may modify an open drawing that is not currently active. This is not supported in
AutoL I SP.

88



Guidelines for Using Reactors

As | mentioned at the start of this chapter, Reactors demand careful attention to planning
and consderation for performance and stability. The following guidelines are provided in
the AutoCAD online Help documentation and are very good points to consider.

When using reactors, try to adhere to the following guidelines. Reactors that violate these
guidelines can result in unpredictable results for your application if the internal
implementation of reactors changes.

Do not rely on the sequence of reactor notifications.

It is recommended that, with afew exceptions, you do not rely on the sequence of reactor
notifications. For example, an OPEN command triggers BeginCommand, BeginOpen,
EndOpen, and EndCommand events. However, they may not occur in that order. The
only event sequence you can safely rely on is that a Begin event will occur before the
corresponding End event. For example, commandWillStart() always occurs before
commandEnded(), and begininsert() aways occurs before endinsert(). Relying on more
complex sequences may result in problems for your application if the sequence is
changed as a result of new notifications being introduced in the future and existing ones
being rearranged.

Do not rely on the sequence of function calls between notifications.

It is not guaranteed that certain functions will be called between certain notifications. For
example, when you receive :vir-erased notification on object A, al it meansis that object
A is erased. If you receive :vilr-erased notification on A followed by a :vir-erased
notification on B, all it means is that both objects A and B are erased; it does not ensure
that B was erased after A. If you tie your application to thislevel of detail, thereisavery
high probability of your application breaking in future releases. Instead of relying on
sequences, rely on reactors to indicate the state of the system.

Do not use any interactive functions in your reactor callback function (for
example, do not use getPoint, entsal).

Attempting to execute interactive functions from within a reactor callback function can
cause serious problems, as AutoCAD may still be processing a command at the time the
event istriggered. Therefore, avoid the use of input-acquisition methods such as getPoint,
entsel, and getkword, as well as selection set operations and the command function.

Do not launch a dialog box from within an event handler.
Dialog boxes are considered interactive functions and can interfere with the current

operation of AutoCAD. However, message boxes and alert boxes are not considered
interactive and can be issued safely.

89



Do not update the object that issued the event notification.

The event causing an object to trigger a callback function may still be in progress and the
object still in use by AutoCAD when the callback function is invoked. Therefore, do not
attempt to update an object from a callback function for the same object. You can,
however, safely read information from the object triggering an event. For example,
suppose you have a floor filled with tiles and you attach a reactor to the border of the
floor. If you change the size of the floor, the reactor callback function will automatically
add or subtract tiles to fill the new area. The function will be able to read the new area of
the border, but it cannot attempt any changes on the border itself.

Do not perform any action from a callback function that will trigger the same
event.

If you perform an action in your reactor callback function that triggers the same event,
you will create an infinite loop. For example, if you attempt to open a drawing from
within a BeginOpen event, AutoCAD will simply continue to open more drawings until
the maximum number of open drawingsis reached.

Verify that areactor is not already set before setting it, or you may end up with
multiple callbacks on the same event.

Remember that no events will be fired while AutoCAD is displaying a modal
diaog.

[]
m,nlllgl
A VLX may run in a separate-namespace from the document it is loaded from,
but it is still associated with that originating document and cannot manipulate objects in
other documents.

Visual LISP provides limited support for reactor calback functions executing in a
document that is not active. By default, a reactor callback function will execute only if a
notification event occurs when the document it was defined in is the active document.
Y ou can alter this behavior using the vl r - set - not i fi cat i on function.

To specify that areactor should execute its callback function even if the document it was
defined in is not active (for example, if an application in another namespace triggers an
event), issue the following function call:

(vlr-set-notification reactor-object '"all-docunents)
This can be useful to notify all instances of your gpplication (that is, if not a separate

namespace VL X application propagated to all sessions) that an event occurred in one of
the sessions.

90



To modify areactor so it only executes its callback function if an event occurs when the
document it was defined in is active, issue the following:

(vlr-set-notification reactor-object 'active-docunent-only)

Thevl r-set-notification function returns the specified reactor object. For example,
the following sequence of commands defines a reactor and sets it to respond to events
whether or not its associated document is active:

_$ (setq circleReactor (vlir-object-reactor (list nyCrcle)
"Circle Reactor” '"((:vlr-nodified . print-radius))))
#<VLR- Obj ect - React or >

_$ (vlr-set-notification circleReactor 'all-docunents)
#<VLR- Obj ect - React or >

To determine the notification setting of areactor, usethe vl r-noti fi cati on function.
For example:

_$ (vlr-notification circleReactor)
al | -docunent s

Thevl r-set-notification function affects only the specified reactor. All reactors are
created with the default notification set to active-document-only.

[]
m,nm!’

If you choose to set areactor to execute its callback function even if triggered
when its document is not active, the callback function should do nothing other than set
and read AutoL I SP system variables. Performing other types of actions may cause
AutoCAD to become unstable or crash!

91



Chapter 13 — Making Visual LISP Applications

Probably the most significant feature provided by Visual LISP is the capability to build
and manage applications. In this context, we are really talking about VLX applications,
but you could consider FAS output to be applications as well. The building of Visua
LISP applicationsis closely tied to the use of Projects, but they are not inseparable.

Why Make VLX Applications?

The main reasons for making VLX applications are improved security and performance.
Security isimproved because the Visual LISP compiler encrypts and compiles the source
L SP code into binary output that is unreadable to the human eye. It aso can combine
multiple LSP files into a single VLX output further improving security and providing a
single output for delivery to users. Performance is improved because the compiled code
is actually more efficient to execute at runtime.

Unlike many other programming languages, Visual LISP does not truly “compile’ its
output, but more accurately performs an encryption and partial compilation. This is
somewhat like what a Java compiler does to produce “p-code” output, which is then
compiled at runtime by the VM (Java Virtual Machine) compiler on the client. Visual
LISP VLX code is compiled to binary output but not to machine level language, meaning
it must be interpreted at runtime by the client. It still provides some measure of
performance improvement over raw L SP source code though.

FAS files are an intermediate output during the VLX compilation that are the product of
the LSP file compilation. The VLX module combines FAS files and any other file types
to wrap it al up as a single loadable module on the client. VLX applications can include
other file types such as LISP, Dialog Control Language files (.DCL), Compiled LISP
code (.FAS), VBA compiled files (.DVB), ASCIlI TEXT (.TXT) and even other VLISP
Projects (.PRV).

One of the most useful features of making VLX applications is that you can combine
multiple files into the single VLX output. This makes for easy loading and management
aswell as keeping your deliverable product clean and compact. Let’stry an example.

Building a Simple Application

Open the FirstApplication.LSP file in Visua LISP from the book samples CD. Then
open the FirstApplication.DCL file in Visua LISP as well. Now, pick File/Make
Application/New Application Wizard from the pulldown menu. There are two modes for
compiling VLX applications: Simple and Expert. Simple used when you are only going
to compile LSP files and do not intend to compile a separate namespace VLX. Expert
mode alows you to include additional Resource files such as DCL, DVB, VLX and
others within the VLX as well as make it a separate namespace application.

92



Since in this exercise we will be compiling a LSP file with a DCL file into a single,
separate namespace VLX application, you have to select the Expert mode from the
Wizard Mode panel (Figure 13-1). Pick the Next button.

Ul wizard Mode |

— Choosze Wizard Mode

Y'ou may zelelct the simple or expert ™ Simple
wizard application mode. The zimple ~

mode prompts pou galely for the LISP * Eupet
zource files o include, and the
application name to create. The
expert mode should be zelected if you
need to include additional rezource
filez [zuch az .dcl or .dvb files] or if
you hieed to modify the default
compilation options.

< Back I MHext = I Cancel

Figure 13-1 — Make Application Wizard

The Application Directory panel (Figure 13-2) is where you specify the VLX filename
and target output location. The Application Location is where you want the VLX file to
be created at the end of the process. The Application Name is the name you want to call
the VLX file (don't include the extension, only the base filename). You will see that
while you type in the Application Name box, the Target File window shows the actual
VLX filename result. Once you've specified the Application Location, and entered the
Application Name “FirstApplication”, pick the Next button to continue on.

Ul Application Directory |
— Chooze Application Location —Application Location
Select the lozation and narme for pour IE:a"

application. n addition ko the compiled
application which iz given a vl file Browse, |
extenzion, an application make file

[.prv] iz created, containing wour

zelectionz fram the wizard. This iz uzed —Application Mame
for zubzequent rebuilds of the Firsths
applization. I Irsl=pp
— Target File
Firstépp L=

< Back I Mest = I Cancel

Figure 13-2 — Specifying the output location and VLX filename

93



The Application Options panel (Figure 13-3) prompts you to make this a Separate
Namespace application, as well as use ActiveX Support. For this example, check both
options, and pick Next to continue.

Ul Application Options

— Select Application Options

At thiz step, select if your application W &ctiveX Suppart
will ran within the defaulk namespace
[i.e.. your application function names
and glabal variable names are part of
the primary LISF enviranment within
each drawing.] Choozing a separate
namezpace means that anly selected
funchions from pour application will be
made publicly available from the
primary LISP enviranment,

¥ Separate Namespace

¢ Back | Mewt » I Cancel |

Figure 13-3 — Application Options form (Separate Namespace checked)

The LISP Files to Include panel (Figure 13-4) is where you select the LISP code files
(*.LSP) to include in your VLX application. Pick the Add button to browse for, and
select the FirstApplication.LSP file. Then pick Next to continue.

L LISP Files to Include |

— Select Files to Inchude

dep G342 AFirstApplication. lsp
Select the LISP files to include in Top

wour application. vou can select

AutalISP source files [zp), Up |
compiled LISP filez [ faz], ar Yisual

LISF project files [.pr], or ary

combination. Ml

B Dttu:uml

ILisp zource files j

Bemove |

< Back | Mext » | Cancel

Figure 13-4 — LISP Filesto Include form

The Resource Files to Include panel (Figure 13-5) is where you select additional resource
files, such as DCL diaog form files, DVB (VBA) files, and other types of files. Change
the file type selection to DCL Files and pick the Add button to locate and select the
FirgApplication.DCL file. Then pick the Next button to continue on.

94



|'.___.]$Resnurce Files to Include

— Select Additional Resource Filesz ‘DCL C:4.. /Firstépplication.dcl

Select additional rezource files, such as
Yizual B azic for Application files [ dvb) or
Dialog Control Language files [.del).
These filez are auxiliany files for your
application and may be lnaded from paur
progran.

|DCL files =l

Bemove. . |

I
< Back | Ment » | Cancel |

Figure 13-5 — Resource Files Include form

The next panel prompts you to choose either Standard or Optimized compilation. For
this example, use the Standard option and pick Next to continue.

|'.___.]$A.pplicatiun Compilation Options

— Select Application Compilation O ptions — & Srandard
andar
Chooze the compilation made far your ' o @ ]
application. Standard mode iz sufficient Bigfimiz =i i

for mozt applicationz. The optimize
mode can reduce pour executable file
zize by eliminating internal function and
warable symbolz. The link mode can
optimize pour program's speed by
zubstituting references to functions'
harmes with a direct references to the
funchion's compiled body.

< Back | Cancel |

Figure 13-6 — Application Compilation Options form

The final form asks if you want to save the Make Application settings and go ahead and
compile the VLX application. If you choose not to compile, the settings you just
configured are saved to a make file that uses a .PRV file extension. Y ou can reuse make
files a any time to recompile using the stored settings and save a lot of time. For this
example, go ahead and compile your VL X application by picking the Finish button.

95



uJ;RE?iEW Selections / Build Application

—Review Selections: and Build

At thiiz final step, wou can review ¥ Build &pplication
wour gelections and complete the
pracess by building the application.
Yigual LISP will zave your zettings
in an application make file [pry).
¥'ou can zubzequently rebuild or
modify the: appliczation uzsing the
application make file.

< Back | Einizh I Cancel

Figure 13-7 — Review selections and build application form.

Now that you've compiled FirstApp.VLX you can load it into AutoCAD and try the
FIRSTAPP command to see how it works. Y ou should see a dialog form with one OK

button and a message displayed saying “ Congratulations!” in the middle.

If this doesn’t happen, review this chapter to make sure you followed al steps correctly
and compile and load it again. To reload a separate namespace VL X you first have to

unload the existing definition by using the (vl-unload-vix) function.

a AutoCAD 2002 - [C:Documents and Settings'steind,My Documents' My Drawings'StephenHarris-751... [H[=] B3
File Edit ¥iew ShipWorks Piping Insert Format Tools Draw Dimension Modify

Express Window Help -7 =l

D@ gha imrad -~ Eoeede L 8 e

H = %I GO0 j =2 ||I:| BylLayer j” Byl aper j” Byl ayer j

|BnomasnzrTaoussddrdremFaen  |[rx

e | !

A

253

ﬁ ﬂ"& My First ¥isual LISP Application

— | Congratulations!

< | B8

O

O

GR

o~ L

) (B

]| =

o

Command : =

Command: FIRSTAPP hd
e &

|92.8717, 27457 , 0.0000 | sMAP| GRID| ORTHO|[POLAR [OSMAR [OTRACK [LwT [MODEL

Figure 13-8 — Results of running the FIRSTAPP command.

To unload
FIRSTAPP, you would use (vI-unload-vix “firstapp.vix”) at the command prompt.

96



PRV Files

The Make Application Wizard creates a PRV file to store the settings for your
application. If you open a PRV file in notepad, you will see that it is actually a LISP
formatted file in which the properties are stored as dotted-pair lists. The example below
shows a PRV that compilesa LSP and aDCL file into the ASW_PM.VLX output.

;;; Visual LISP rmake file [V1.0] asw_pm saved to:[C./ASW SYS]
at : [ 3/15/02]

(PRV-DEF (:target . "asw_pm VLX")

cactive-x . T)

: separ at e- nanespace)

:protected . T)

:load-file-list (:1sp "source/asw pmlsp"))
crequire-file-list (:DCL "sourcel/asw_pm DCL"))
:ob-directory)

ctnp-directory)

;optimzation . st)

NN AN AN AN AN S~

. ECF

mmiﬂ!

Although you might be tempted to “tweak” PRV filesin atext editor, you
should instead use the “Existing Application Properties’ feature to modify the PRV
configuration settings. Editing the PRV file manually may corrupt the file and cause
errors when you attempt to recompile.

File Edit Search Yiew Project Debug Tools Window Help

New File Ctrl-N + JJ B & | B W 5% ()

Open File... Ctrl-D
— M3
Reopen =y oy = 2@
Save Cirl-5
Save As... Ctrl-Alt-5
Save All Alt-Shift-5
Close Ctrl-F4
Revert
Close All
Print... Ctrl-pP
Print Setup...

Make Application New Application Wizard...
Existing Application Properties...
rMake Application...

Exit Alt-0 Rebuild Application...

Load File... Ctrl-Shift-L

97



Chapter 14 — Using ObjectDBX with Visual LISP

Visual LISP can interface with any ActiveX-enabled resources available to the user.
ObjectDBX is yet another resource provided within AutoCAD that can be tapped by
Visua LISP to perform specia tasks that are not possible with any other technologies.
First, we need to start off by explaining what ObjectDBX really is.

What is ObjectDBX?

ObjectDBX is a subset of ObjectARX, well, sort of. It's a C++ object-oriented API for
manipulating AutoCAD and it's related objects, collections, properties, methods and
events. While ObjectDBX is capable of many powerful feats of daring, it does have
some limitations compared to ObjectARX and Visual LISP. Aside from the limitation, it
also provides some nice advantages over them as well. Confused? | know | was at first.
But, one place where ObjectDBX really shines is in the world of remote document
access, in particular, mining drawings other than those that are open.

Recently, Autodesk released the ObjectDBX SDK for developers to use for mining and
manipulating drawing data without having AutoCAD installed. Free? Of course not. In
fact, there's a steep price tag and licensing royalty to contend with if you want to pursue
this baby. You could opt for OpenDWG alternatives, but since ObjectDBX is built by
Autodesk, you can be fairly certain it's going to be reliable when it comes to recognizing
all the subtle thingsin a DWG file.

For the sake of this chapter however, | am going to focus on ObjectDBX as an integral
service within AutoCAD, and how it can be used from Visua LISP to perform certain
tasks that VLISP alone cannot do. Sound interesting? Let’s see how this works.

How to Use ObjectDBX within Visual LISP

In order to use ObjectDBX within Visual LISP, you must first load the ObjectDBX
TypelLib interface as shown in Figure 14-1. Then you must invoke the interface using a
gpecia function (vl a- get I nterfaceject) as shown in Figure 14-2. Figure 14-1
shows a few example functions for loading the ObjectDBX TypelLib interface within
Visual LISP.

Let’s suppose for example, that you would like to be able to search a directory of drawing
files to find those that contain a specific block insertion. While you could open each
drawing and fetch the Blocks table or do a (ssget) search, there is another way to do
this without ever opening the drawings in the AutoCAD editor: ObjectDBX.

;; Calls REGSVR32 to register a DLL silently via the /S option

(defun DLLRegister (dll) (startapp "regsvr32.exe" (strcat "/s \"" dll "\"")))

;; Calls REGSVR32 to un-register a DLL silently via the /U /S options

(defun DLLUNnRegi ster (dll) (startapp "regsvr32.exe" (strcat "/u /s \"" dlIl "\"")))
;; Returns the ProglD for a given ClassIDif found in registry

(defun Progl D->C assl D (Progl D
(vl-registry-read (strcat "HKEY_CLASSES ROOT\\" progid "\\CLSID"))

98




;; Registers ObjectDBX (if not already), Returns ProglD if successfu
(defun DBX-Register ( / classnane)
(setq classnanme " Obj ect DBX. AxDbDocument ")
(cond
( (Progl D->C assl D cl assnane) )
( (and
(setq server (findfile "AxDbl5.dl1"))
(DLLRegi ster server)
(Progl D->C assl D cl assnane)

(Progl D->d assl D cl assnane)

)
( (not (setq server (findfile "AxDb15.dl1")))
(alert "Error: Cannot |ocate CbjectDBX Type Library (AxDb15.dll)...")
)
(T
(DLLRegi ster "Onj ect DBX. AxDbDocunent ")
(or
(Progl D->C assl D " Obj ect DBX. AxDbDocunent ")
(alert "Error: Failed to register ObjectDBX ActiveX services...")
)
)
)
)

Figure 14-1 —Visua LISP functionsto load the ObjectDBX interface.

The (dlIregister) function is a general-purpose tool you can use to perform a
Windows DLL registration on a client using the REGSVR32 command through a shell
operation. The /S parameter denotes a silent registration which suppresses any
notifications during the registration process.

The (dl I unregi ster) function performs the opposite of (dl I register), whereby it
removes a DLL’s registration from a local machine. Thisis often useful for removing a
DLL when you need to register an updated version of the sasme DLL.

The (progi d->cl assi d) function performs a look-up of a given class registration in the
Windows Registry and returns the GUID, which is a lengthy encoded unique identifier
for agiven ActiveX component. No two GUID values are the same as they are generated
by a complex hashing algorithm during compilation. This particular function verifies that
agiven DLL has been registered by checking for its GUID in the registry. If no GUID is
found, the DLL has not been registered yet, and this returns nil. Then you can use
(dl I register) toregister the DLL on the client machine.

The following function in Figure 14.1A opens a remote drawing document and returns
the DBX document object if successful, otherwise it returns nil. You can use this
function to take care of the messy stuff and ssmply use the returned document object to
perform any operations you desire.

(def un DBX-doc-open (filename / dbxdoc)
(cond
( (findfile filenane)
(if (not (DBX-Register))
(exit)

)
(setq dbxdoc
(vl a-getinterfaceobject
(vl ax- get - acad- obj ect) "Obj ect DBX. AxDbDocunent "))

99




(cond
( (vl-catch-all-error-p
(vl -catch-all-apply
"vla-Open (list dbxdoc (findfile filenane))

)

(princ "\'nUnable to open drawi ng.")
(exit)

)
( T dbxdoc )
)
)
)
)

Figure 14.1A — ObjectDBX Document Opening Function

Now you have anice little black-box function to open drawings remotely, so you can
move on to wrapping inside bigger and better things, like returning table lists and so
forth. You can also modify certain properties of remote drawings through DBX.

(def un DBX- Get Tabl eLi st
(filename tblname / dbxdoc out nane)
(cond
( (setq dbxdoc (DBX-doc-open filenane))
(vl ax- For tblltem (DBX- Tabl eGet tbl Nane dbxdoc)
(setq name (vla-get-Name tbllten))
(if (/= (substr nane 1 1) "*")
(setq out (cons nane out))

)

(vl ax-rel ease-obj ect dbxdoc)

)
(T
(strcat (princ "\nUnable to open file: " filenane))

)

(if out (reverse out))

)

(def un DBX- Tabl eGet (tNane object)

(cond
(strcase tNane) "BLOCKS") (vl a- get - Bl ocks object) )
(strcase tNane) "LAYERS") (vl a- get - Layers object) )
(strcase tNane) "TEXTSTYLES') (vla-get-textstyles object) )
(strcase tNane) "Dl MSTYLES") (vla-get-dinstyles object) )
( )

(
(
(
( strcase tNanme) "LINETYPES') (vla-get-linetypes object)
(

A~~~ —~

(strcase tNane) "PLOTCONFI GURATI ONS")
(strcase tNane) "PAGESETUPS")

-
~—~ O aaann
=

(vl a-get - pl ot confi gurations object)

strcase tNanme) "LAYOUTS") (vl a-get-Layouts object) )

= (
= (strcase tNanme) "GROUPS') (vla-get-Goups object) )

(
(
T
(vl-exit-with-error "\ n(dbx-dwgscan error): Invalid table name specified.")

)
)

Figure 14-2 —Visual LISP functions for using ObjectDBX to inspect drawing tables.

The functions shown in Figure 14-2 use the ObjectDBX “Open” method to access a given
drawing file and access a given table collection within it. Among the limitations of using
ObjectDBX is that you cannot access tables within any drawings you have opened in
your AutoCAD Documents collection, as this will generate an error. ObjectDBX enables

100




access even if adrawing is opened by another user, aslong as it is not opened by the user
that is requesting to open the drawing through an ObjectDBX interface.

(def un DWGSCAN
($table $name $dwgfiles / $files $dwgs $path $col l ection n out)
(cond
( (and $table $name $dwgfil es)
(princ
(strcat
"\'nScanning "
(itoa (length $dwgfiles))
" draw ngs for "
(strcase (substr $table 1 (1- (strlen $table))) t)
" [" $nanme "]..."

)

)
(foreach n $dwgfiles
(cond
( (setq $collection (DBX-GetTableList n $table))
(cond
( (menber (strcase $nane) (mapcar 'strcase $collection))
(setq out (cons n out))

)
(setq $collection nil)

( T (princ "\nUnable to query table collection in target drawing.") )

)
)

)
( T (princ "\nUsage: (DWGSCAN tablenane itemane drawi ngfiles)"))

(if out (reverse out))

)

Figure 14-3 - Sample Visual LISP function using ObjectDBX methods

Figure 14-3 shows a function that uses the functions in Figures 14-1 and 14-2 to perform
asearch of alist of drawings for a specified table item. If you load the example file dbx-
dwgscan.lsp into your AutoCAD session, you can use the (dwgscan) function to search
for itemsin other drawings. The example below demonstrates using (dwgscan) to search
alist of drawings for ablock named “Chair123”.

Command: (dwgscan "Bl ocks" "Chair123" dwgfil es)
Scanni ng 51 drawi ngs for bl ock [Chair123]...
("c:\\draw ngs\\pl an003. DW5'

"c:\\draw ngs\\ pl an004. DW\G'
"c:\\draw ngs\\ pl an005. DWG")

Some things to note about using ObjectDBX services from Visua LISP:

Y ou cannot perform selection set operations on drawings through DBX. Only
table operations can be used.

Y ou cannot open any documents that are opened in the Documents collection of
the AutoCAD session performing the DBX operation.

ObjectDBX does not support using any “command’ operations on documents.

101




Be sureto release a DBX object when finished using it, and use (gc) following
any object release of an external process (external to the AutoCAD namespace).

The document interface exposed through ObjectDBX is quite a bit more restrictive than
that of a document object internal to a given AutoCAD editing session. Below isatable
of the exposed properties and methods of an ObjectDBX Document object. Y ou can see
this yourself by performing (vlax-dump-object) on an active DBX document object, such
asthat returned by the (DBX-Doc-Open) function shown above.

Some interesting notes. Document-centric system variables are not exposed. The
Application object is also not present as the document is not actually opened in the
Application namespace in a manner like a drawing opened for editing. The Name
property is NOT read-only. Notice the methods that are available.

| AxDbDocunent : | AxDbDocunent | nterface
Property val ues:
Application (RO = Exception occurred
Bl ocks (RO = #<VLA- OBJECT | AcadBl ocks 037aad64>
Dat abase (RO = #<VLA- OBJECT | AcadDat abase 037ac634>
Di ctionaries (RO = #<VLA-OBJECT | AcadDictionaries 037a8a34>
DinStyles (RO} = #<VLA- OBJECT | AcadDi nStyl es 037a8954>
El evati onMbdel Space = 0.0
El evati onPaper Space = 0.0
Groups (RO = #<VLA- OBJECT | AcadG oups 037acd24>
Layers (RO = #<VLA- OBJECT | AcadLayers 037acc44>
Layouts (RO = #<VLA- OBJECT | AcadlLayouts 037acba4>
Limts = (0.0 0.0 12.0 9.0)
Li netypes (RO = #<VLA- OBJECT | AcadLi neTypes 037a8e84>
Mbdel Space (RO) = #<VLA- OBJECT | AcadMbdel Space 037a8dd4>
Name = "C:\\Docunents and Settings\\steind\\M/ Docunents\\DRAW NG3. dwg"
Paper Space (RO) = #<VLA- OBJECT | AcadPaper Space 037a8d24>
Pl ot Confi gurations (RO = #<VLA- OBJECT | AcadPI ot Confi gurations 037a8bf 4>
Preferences (RO = #<VLA- OBJECT | AcadDat abasePref erences 037ac694>
Regi st eredAppl i cations (RO = #<VLA- OBJECT | AcadRegi st eredApplications 037a8b34>
Text Styl es (RO = #<VLA- OBJECT | AcadText Styl es 037a93a4>
User Coor di nat eSystens (RO = #<VLA- OBJECT | AcadUCSs 037a92f 4>
Viewports (RO = #<VLA- OBJECT | AcadVi ewports 037a9le4>
Views (RO = #<VLA- OBJECT | AcadVi ews 037a9124>
Met hods supported:
CopyObj ects (3)
Dxfln (2)
Dxf Qut (3)
Handl eToObj ect (1)
Obj ect | dToObj ect (1)
Open (1)
Regi st er Li censeObj ect (2)
RevokelLi censeObj ect (1)
Save ()
SaveAs (1)

102



Chapter 15 — XDATA and XRECORDs

AutoCAD provides a few ways to store information in drawings that is non-graphical.
This can include a variety of data types such as numbers, text and so forth. Of these, the
two most common are Extended Entity Data (EED) and Dictionaries. The most common
form of EED is XDATA, which is an extension of all graphical entities as well as many
table objects such as Layers and Linetypes. This alows you to store hidden (non-
graphical) information within these entities or table objects and retrieve the information
when required.

Another form of storing non-graphical information is through the use of XRECORD
objects. XRECORD objects are part of the Document object and allow you to store
string information within a Dictionary collection.

The advantages of using XDATA are that the information is attached to a specific entity
or table member. The advantages to using XRECORD objectsis that they are attached to
the Document itself, and not to any particular entity or table object. In addition, XDATA
has certain limits on the size of the data that can be stored on a given entity or table
member. XRECORD objects do not impose any size limitation on data storage, but it
does affect the DWG file size, and memory requirements when the drawing is opened.

Working with XDATA

Xdata can be attached to and retrieved from any graphical entity in a drawing, as well as
many table objects, such as layers, layouts and linetypes. Xdata divides information
storage by the data type, so you have to be aware of the type of information you intend to
store whenever you attach it to anything, as well as when you attempt to retrieve it. For
example, if you attach an integer value to an entity and attempt to retrieve it as though it
were a string value, you will not get the desired results.

Working with XRECORD Objects

XRECORD objects are maintained as a Dictionary, meaning they have a unique name
and are accessed by that name. They are attached to the document object itself, not to
any graphic objects or tables as is the case with Xdata. Xrecords are stripped from a
drawing if it is saved back to R12 or often when converted to another CAD format that
does not support them.

Because XRECORD objects are attached to the document, they are safe from casual
deletion by users. For example, if you attach XDATA to alayer, and that layer is purged,
the XDATA is then released as well. You can attach XDATA to layer “0” to prevent
this, however, XDATA still imposes limits on data type and data size that can be stored.

Xrecords can only be created, renamed or deleted. There are no direct methods for
modifying them. The only way to modify an Xrecord is to retrieve its contents, delete the
Xrecord from the dictionary object, and recreate a new Xrecord with new data. The
following functions demonstrate how to do this using standard AutoL | SP.

103



(defun Xrecord-Rebuild (nanme dat)
(Xrecord-Del et e nane)
(Xrecord- Add nane dat)

)

(defun Xrecord-Get (name / xlist)
(if (setq xlist (dictsearch (nanmedobjdict) nane))
(cdr (assoc 1 xlist))

)

(defun Xrecord-Del ete (nane)
(di ctrenpve (nanedobjdict) nane); renove fromdictionary

)

(defun Xrecord-Add
(name sdata / xrec xnane)
(setq xrec
(list
(cons 0 " XRECORD')
(cons 100 "AcDbXrecord")
(cons 1 sdata)
(cons 62 1)

)

(setqg xnane (entnakex xrec)); rebuild xrecord
(di ctadd (nanedobjdict) nane xnane); return to dictionary
(princ)

)

The problem with the above form is that it uses (entmake) and can sometimes cause
problems in AutoCAD when mixed with certain other ActiveX functions. A more
appropriate form would be the ActiveX approach as shown in the examples below.

(vl -1oad-com

(defun Xrecord-Rebuild (dict nane data)
(Xrecord-Del ete di ct name)
(Xrecord- Add dict nane data)

)

(defun Xrecord- Get
(dict name / acad doc dcs odc xrec #typ #dat out)
(setq acad (vl ax-get-acad-object)
doc (vl a-get -acti vedocunent acad)
dcs (vl a-get-dictionaries doc)
)
(cond
( (setq odc (dsx-itemdcs dict))
(cond
( (setq xrec (dsx-itemodc nane))
(vl a-get XrecordData xrec '#typ '#dat)
(setq #typ (vl ax-safearray->list #typ)
#dat (vl ax-safearray->list #dat)

(setq out (mapcar 'vlax-variant-val ue #dat))
(vl ax-rel ease-obj ect odc)

)
)
(vl ax-rel ease-obj ect dcs)

)

104



)

out

)

(defun Xrecord-Del ete (dict name / dcs odc xr)
(setq dcs (vla-get-dictionaries active-doc))
(cond

( (setq odc (dsx-itemdcs dict))
(cond
( (setqg xr (dsx-itemodc nane))
(vl a-del ete xr)
(vl ax-rel ease-obj ect xr)

)

(vl ax-rel ease-obj ect odc)

)

(vl ax-rel ease-obj ect dcs)

)

(defun Xrecord-Add
(dict nanme data / acad doc dicts dict xrec #typ #dat)
(setq acad (vl ax-get-acad-object)
doc (vl a-get -acti vedocunent acad)
dicts (vla-get-Dictionaries doc)
dict (vlax-invoke-nethod dicts "Add" dict)
xrec (vl a-AddXrecord di ct name)

)
(if (not (listp data)) (setq data (list data))); ensure |ist!
(vl a-set XrecordDat a xrec
(Li st->Variant Array
(List->IntLi st data)
" vl ax- vbl nt eger

(List->VariantArray data 'vl ax-vbVariant)

)

(vl a-get XrecordData xrec '#typ '#dat)
(setq #typ (vl ax-safearray->list #typ)

#dat (vl ax-safearray->list #dat)
)

(mapcar 'vlax-variant-val ue #dat)

)

The two functions (List->variantArray) and (List->IntList) are used to define the
safearray contents and dimension respectively. They can be used for much more than
this obviously. The second argument to (Li st->Vari ant Array) must be a single-quoted
ActiveX datatype declaration such as vi ax- vbStri ng.

(defun List->VariantArray (lst datatype / arraySpace sArray)
(setq arraySpace
(vl ax- make- saf earr ay
(eval datatype)
(cons 0 (1- (length Ist)))
)
)
(setq sArray (vl ax-safearray-fill arraySpace |Ist))
(vl ax- make-vari ant sArray)

)

(defun List->IntList (Ist / n)

105



(setg n 0)
(mapcar (function (lanmbda (x) (setq n (1+ n)))) Ist)

The other function (dsx-i tem isused to fetch (or attempt to fetch) an item using the Item
method of a collection. This function includes error catching in case the fetch fails,
which returns an ActiveX error instead of something like nil. In this case, we trap an
error and return nil if the fetch fails. Otherwise, we return the object from the collection.

(defun DSX-lItem (collection item/ out)
(if
(not
(vl-catch-all-error-p
(setqg out
(vl-catch-all-apply 'via-item (list collection item)
)
)
)

out ; return object or nil

)
)

To demonstrate how to use this stuff we'll save an Xrecord in our current drawing with
some information such as the current username (assuming we're on Windows NT, 2000
or XP) and some other information.

(setqg usernane (getenv “usernane”); |ogged on user ID
machi ne (getenv “conputernane”); NETBIOS conputer nane
)

(Xrecord-Rebui |l d “PERSONAL” “UserData” (list usernane machine))
_$ Returns (“DSTEI N1234” “W2K-1234")

(Xrecord-Get “PERSONAL” “UserData”)
_$ Returns (“DSTEI N1234” “W2K-1234")

(Xrecord-Rebuil d “PERSONAL” “UserData” “1234")
_$ Returns (“1234")

So, what can you do with Xrecords? Anything you want. They are very useful for
storing information in a drawing that is not tied directly to any particular entity or table.
If you are used to storing information in Xdata, you are probably aware that if the entity
or table item is deleted the Xdata is lost. Of course, you can attach Xdata to things like
Layer “0” or the like, so it never gets deleted. However, Xdata imposes limitations on
contents that might be alleviated by switching to Xrecords instead.

106



Chapter 16— The AutoCAD Application Object

The AcadApplication object is the root of everything Visual LISP can address relating to
ActiveX. This includes collections, properties, methods, events and derived objects that
inherit from this base object. Remember, the ActiveX object model is a hierarchy of
classes that allow for lower level classes to be derived that contain properties and
methods of their parent classes. In order to gain access to anything within AutoCAD,
you must first start by gaining access to AutoCAD itself, and then work your way down
into whatever you need.

For example, if you want to access the Layers collection and fetch a particular layer, you
must first get the AcadApplication object, then the ActiveDocument object, and then get
the Layers collection from that object. One way to begin understanding the
AcadApplication object is by dumping the object using the (vl ax- dunp- obj ect)
function. This function takes one required argument (the object) to request a list of its
properties, and an optional flag, which if provided (and non-nil) requests a list of methods
aswell.

Commrand: (vl ax- dunp-obj ect (vl ax-get-acad-object) T)

; | AcadApplication: An instance of the AutoCAD application

; Property val ues:

; Acti veDocunment = #<VLA- OBJECT | AcadDocunment 00Oed7e0Oc>
Application (RO = #<VLA- OBJECT | AcadApplication 00a8a730>
Caption (RO = "AutoCAD 2002 - [C \\Docunments and Settings\\...\\Draw ngl.dwg]"
Docurments (RO) = #<VLA- OBJECT | AcadDocunents 00f 20ef 0>
Ful Il Nane (RO} = "C:\\Program Fil es\\ Aut oCAD 2002\ \ acad. exe"
Hei ght = 723
Localeld (RO = 1033
MenuBar (RO) = #<VLA- OBJECT | AcadMenuBar 053247f 4>
MenuG oups (RO) = #<VLA- OBJECT | AcadMenuG oups 01433208>

Name (RO = "AutoCAD"

Path (RO) = "C:\\Program Fil es\\ Aut oCAD 2002"

Preferences (RO = #<VLA- OBJECT | AcadPreferences 053277fc>
Statusld (RO = ...lndexed contents not shown...

VBE (RO = #<VLA- OBJECT VBE 03d618f 4>

Version (RO = "15.06"

Visible = -1

Wdth = 1032

W ndowLeft = -4
W ndowState = 3
; W ndowTop = -4
; Met hods supported:
; Eval (1)
Get AcadState ()
GetlInterfaceObject (1)
ListArx ()
LoadArx (1)
LoadDVB (1)
Quit ()
RunMacro (1)
Unl oadArx (1)
Unl oadDVB (1)
Update ()
ZoomAl | ()
ZoonCenter (2)
ZoonExtents ()
ZoonPi ckW ndow ()
ZoonPr evi ous ()
Zoonfcal ed (2)
ZoomAN ndow ( 2)

107



Figure 16-1 — (vlax-dump-object) results on the AcadApplication object.

While you might expect the list of Properties, Collections and Methods to be much larger
for the AcadApplication object, remember that the Object Model is a tree structure. This
means that much of the complexity is delegated at multiple levels, such as down into the
Documents collection, the Preferences collection and so forth. The items shown in
Figure 16-1 apply only to the AcadApplication object and nothing else.

To demonstrate a tiny bit of what you can do with the AcadA pplication object, load and
run the following sample of code. Thiswill minimize the AutoCAD session window and
then maximize it after a short pause.

(defun M nMax ( / acad)
(vl-1oad-com
(setqg acad (vl ax-get-acad-object))
(vl a- put -wi ndowst ate acad acM n)
(vl -cmdf “DELAY” 1000)
(vl a- put -wi ndowst at e acad acMax)
(vl ax-rel ease-obj ect acad)

)

Minimizing AutoCAD can come in handy when you intend to write a program that
launches another application. Quite often, AutoCAD will jump back to the front and hide
the other application window because it attempts to regain “focus’ from the Windows
application stack. This doesn’t aways happen, but it happens frequently. One way to
avoid thisisto hide AutoCAD after you launch the other application. Thiswill prevent it
from popping back in front of the other application window.

(defun ShowNot epad (filenane / acad fn)
(vl-1oad-com
(cond
( (setq fn (findfile filename)); nake sure file exists first

(setqg acad (vl ax-get-acad-object))
(vl a- put -wi ndowst at e acad acM n)
(vl ax-rel ease-obj ect acad)
(startapp “notepad. exe” fn)

( T (princ (strcat “\nFile not found: “ filenane)) )

)

Another solution is to use a third-party function such as the DOSlib 6 function
(dos_exewai t) Which launches another application and suspends AutoCAD until the
other application session is terminated (closed).

1‘“’!
The Path property of the AcadApplication object shows the path to where
ACAD.EXE resides on the local machine. This can be used to get the actual installation

path when performing modifications to the support files path list within the
AcadPreferences Files collection.

108



Here'satwist. Let'ssay you have aLISP or VLX program that needs to interface with a
VBA application. The VBA application is loaded as a DVB project macro or macro
collection. Maybe you'd like to be able to query AutoCAD to seeif the DVB is currently
loaded and available for use. How can this be done? Easy. If you look at the properties
list above, you'll see one named VBE. What's this? VBE is the Visua Basic
Environment object. Y ou can access this object and request alist of loaded projects from
itusing VLISP:

(defun VBA-Loaded ( / vb vbp vbc out vbe i vbl vbn)
(setq vb (vl a-get-vbe (vl ax-get-acad-object))
vbp (vl ax-get-property vb “vbprojects”)

)
(if (> (vla-get-count vbp) 0)
(progn
(setqg i 1)
(repeat (vla-get-count vbp)
(setq vbe (vla-itemvbp i)
vbn (vl ax-get-property vbe "fil ename")
vbl (strcat
(vl -fil enanme-base vbn)
(vl -fil enanme-extension vbn)
)
out (cons vbl out)
i (1+ i)

(vl ax-rel ease-obj ect vbe)

)
)

(vl ax-rel ease-obj ect vb)
(if out (acad_strlsort out))

)

Note that you can only access the “vbprojects’ property using (vl ax- get - property) . For
some reason, this is one of the few properties within AutoCAD that won't work with
(vl a-get-property). This function will return as list of loaded DVB projects in the
following manner:

_$ (VBA-Loaded) Returns: ("nanel.dvb" "nanme2.dvb"...)
If you inspect the VBE object you'll find some interesting properties...

(vl ax- dunp-obj ect (vl a-get-vbe (vl ax-get-acad-object)) t)
: VBE: nil
Property val ues:
Acti veCodePane = ni l
ActiveVBProject = nil
Acti veW ndow (RO) = nil
Addi ns (RO = #<VLA- OBJECT _Addl ns 046alad44>
CodePanes (RO = #<VLA- OBJECT _CodePanes 001846f 8>
CommandBars (RO = #<VLA- OBJECT _ConmmandBars 0510a9f 0>
Events (RO = #<VLA- OBJECT Events 046a1984>
Mai nW ndow (RO) = #<VLA- OBJECT W ndow 046al1b84>
Sel ect edVBConponent (RO = nil
VBProj ects (RO = #<VLA- OBJECT _VBProjects 046a1934>

Version (RO = "6.03"
W ndows (RO = #<VLA- OBJECT _W ndows 046ala04>
No net hods

109



1«ir’
Get the Act i veCodePane object and drill down into the CodeMbdul e object and
continue on from there. Very powerful stuff if you find away to put it to use.

110



Chapter 17 — AutoCAD Entities

AutoCAD Entities are graphical objects such as ARC, CIRCLE and LINE objects. The
term entity is synonymous with graphical object in the context of ActiveX programming
within AutoCAD. All entities are derived from the base class named AcDbEntity, which
provides certain default properties and methods to al entitles. Some default properties
are Layer and Color, while some default methods are Copy and Delete.

Some properties are common to all objects. Some properties are common to groups of
objects, but not all objects. Some properties are specific to a given object type. To
access or modify object properties using Visual LISP, use the following examples:

(vla-get-propertyname obj ect) where propertyname might be color or linetype. You can
also use the alternate form (vlax-get-property object propertyname) if desired. These
are interchangeable when it comes to working with AutoCAD objects.

(vla-put-propertyname obj ect value) where propertyname might be color or linetype and
value might be acRed or “dashed”. You can also use the aternate form (vlax-put-
property object propertyname value) if desired. Again, these are interchangeable when
working with AutoCAD objects.

All Objects — Common Properties

Property Description Data Type DXF
Application (RO) AutoCAD session Object (pointer)

Color Entity color Integer/Enum 62 (transient)
Document (RO) Parent document Object (pointer)

Handle Entity Handle ID String 5
HasExtensionDictionary Has XDATA attached Boolean

(RO)

Hyperlinks (RO) Web links Object (collection)

Layer Entity layer String 8

Linetype Entity linetype String 6 (transient)
LinetypeScale Entity linetype scale Real/Double

Lineweight Entity lineweight Integer/Enum

ObjectID (RO) Object ID value Integer

ObjectName (RO) Name of Entity type String 0

OwnerlD (RO) Parent object Integer

Normal Extrusion Vector Array 210
PlotStyleName Name of PlotStyle String

Thickness Entity thickness Real/Double 39 (transient)
Visible Toggles display Boolean

Layout-Name (N/A) 410

** Depends upon use of Color-Based or Named plotstylesin active drawing.

The ARC object

Property Description Data Type DXF
ArcLength (RO) Perimeter length Double

Area Enclosed area Double

Center Center Point Array 10
EndAngle Ending Angle Double 52
EndPoint End Point Array

Radius Radius value Double 40
StartAngle Starting Angle Double 51
StartPoint Start point Array

TotalAngle (RO) Total angle in radians Double

111



Specia notes about ARC objects:

Y ou cannot change the start point of an arc or ellipse. To edit an arc, use the EndAngle
and Radius properties. To edit an elipse, use the EndAngle, MgorAxis, and RadiusRatio

properties.

The Area property is calculated in square drawing units as though it were closed by a

vector from the startpoint to the endpoint. Thisis not the same as the area of acircular

segment, which would include the area from the centerpoint out to the perimeter asa
portion of the total circular area.

The CIRCLE entity

Property
Area
Center
Diameter
Radius

Enclosed area

Diameter value

DXF

10

40

The RotatedDimension (LinearDimension) entity

Property
AltRoundDistance

AltSuppressLeadingZeros
AltSuppressTrailingZeros

AltSuppressZeroFeet
AltSuppressZerolnches
AltTextPrefix
AltTextSuffix
AltTolerancePrecision

AltToleranceSuppressLeadingZeroes
AltToleranceSuppressTrailingZeroes

AltUnits
AltUnitsFormat
AltUnitsPrecision
AltUnitsScale
Arrowhead1Block
Arrowhead1Type
Arrowhead2Block
Arrowhead2Type
ArrowheadSize
DecimalSeparator
DimensionLineColor
DimensionLineExtend
DimensionLineWeight
DimLinelSuppress
DimLine2Suppress
DimLinelnside
ExtensionLineColor
ExtensionLineExtend
ExtensionLineOffset
ExtensionLineWeight
ExtLinelSuppress
ExtLine2Suppress

Fit

ForceLinelnside
FractionFormat
HorizontalTextPosition
LinearScaleFactor
Measurement (RO)
PrimaryUnitsPrecision
Rotation
RoundDistance

Data Type DXF
Double

Integer

Integer

Integer

Integer

String

String

Integer

Integer

Integer

Integer

Integer

Integer

Double

String

Integer

String

Integer

Double

String

Integer

Double
Integer/Enum
Integer/Boolean
Integer/Boolean
Integer
Integer/Enum
Double

Double
Integer/Enum
Integer/Boolean
Integer/Boolean
Integer

Integer
Integer/Enum
Integer/Enum
Double

Double

Integer

Double

Double

112



ScaleFactor
StyleName
SuppressLeadingZeroes
SuppressTrailingZeroes
SuppressZeroFeet
SuppressZerolnches
TextColor

TextGap

TextHeight

TextInside
TextInsideAlign
TextMovement
TextOutsideAlign
TextOverride
TextPosition
TextPrefix
TextRotation
TextStyle

TextSuffix
ToleranceDisplay
ToleranceHeightScale
ToleranceJustification
ToleranceLowerLimit
TolerancePrecision

ToleranceSuppressLeadingZeroes
ToleranceSuppressTrailingZeroes

ToleranceSuppressZeroFeet
ToleranceSuppressZerolnches

UnitsFormat
VerticalTextPosition

DimStyle name

Text color
Gap distance
Text height

Text movement

Override string
Text position

Notes Regarding Rotated Dimension Objects:

Double

String

Integer

Integer

Integer

Integer
Integer/Enum
Double

Double

Integer
Integer/Enum
Integer

Integer

String

Array

String

Double

String

String

Integer

Double
Integer/Enum
Double

Integer
Integer/Boolean
Integer/Boolean
Integer/Boolean
Integer/Boolean
Integer/Enum
Integer/Enum

Control points for extension lines and dimension lines are not exposed through ActiveX.

To obtain these control points you must use the DXF entity codes 10, 11, 13, and 14.

They are described as follows:

13 = Start point of first extension line (first control point)

14 = Start point of second extension line (second control point)
11 = Middle-Center point of MTEXT label
10 = Arrowhead point of second dimension line

1 Pick Point

OING

IRONGd

The ELLIPSE entity

Property
Area

Center
Diameter
EndAngle
EndParameter
EndPoint (RO)

Description
Enclosed area
Center Point
Diameter value
End Angle (Arc)
End Parameter
Endpoint (Arc)

Data Type
Double
Array
Double
Double

Array

2" Pick Point

DXF

10

113



MajorAxis
MajorRadius
MinorAxis
MinorRadius
RadiusRatio
StartAngle
StartParameter
StartPoint (RO)

Axis Endpoint

Major Radius

Axis Endpoint

Minor Radius

Ratio of Major/Minor
Start Angle (Arc)
Start parameter
Start Point (Arc)

Notes regarding EL L |PSE objects:

If the Ellipse is closed, the StartAngle value is 0 and the EndAngle value is 2* Pi.

Array
Double
Array
Double
Double
Double

Array

Y ou cannot change the Startpoint or Endpoint properties of an Ellipse.

The LEADER entity

Property
StartPoint

The LINE entity

Property
Angle (RO)
Delta (RO)
EndPoint
Length (RO)
StartPoint

Description
Start Point

Description
Angle

Offset X and Y
End Point
Length

Start Point

The LWPOLYLINE entity

Property

Area

Closed
ConstantWidth
Coordinate
Coordinates
Elevation

LinetypeGeneration

Type

Description
Enclosed Area
Closed flag
Default width

Vertices List
Z-elevation
Linetype Gen flag
Curve Fit Type

Notes regarding LwPolyline entities:

Breaking a LwPolyline results in the remaining pieces being converted into PolyLine

Data Type DXF
Array

Data Type DXF
Double

Array

Array 11
Double

Array 10

Data Type DXF
Double

Integer/Boolean

Double 40
Array

Array/Doubles 10
Double

Integer/Boolean

Integer/Enum

entities. The TY PE property is transient, meaning that if the entity has not been curve-
fitted (spline, bezier, cubic) this property is not exposed. Once a curve-fitting is applied,
the TY PE property is available.

The MLINE entity

Property
Angle (RO)
Coordinates
Delta (RO)
EndPoint
Length (RO)
StartPoint
StyleName

Description

Angle

Vertices List

Offset X and Y

End Point

Length

Start Point

Name of MLINE style

The MTEXT entity

Property

Description

Data Type DXF
Double

Array/Doubles 10
Array

Array

Double

Array

String

Data Type DXF

114



AttachmentPoint Basepoint Array 10

DrawingDirection Text Flow Integer/Enum

LineSpacingFactor Row Spacing Factor Double

LineSpacingStyle Mode to apply factor Integer/Enum

Rotation Rotation Angle Double 50
StyleName Style Name String 7
TextString String Value String 1
Width Frame Width Double

Notes Regarding MTEXT objects:

Linespacing is factored using the base Height value. When varying heights are used in a
given string, the LineSpacingFactor property is applied against the base Height property
value only.

Fraction stacking behavior is controlled by the TSTACKSIZE and TSTACKALIGN
system variables. TSTACKSIZE isan integer that denotes “per 100” or percentage of
text height the size of the fraction is. A value of 70 denotes (0.7 * Height).
TSTACKALIGN controls how stacking is applied. 0=no stacking, 1=diagonal (e.g. ¥4),
2=vertical (e.g. horizontal bar).

Formatting Control Codes:

“\\P” denotes line-feed/carriage return
“\\S” denotes fraction stack begin grouping

“\\A” denotes relative height change (using relative factor against base Height property)

The POINT entity

Property Description Data Type DXF
Coordinates Basepoint Array 10

Notes Regarding POINT Entities:

The display of POINT entities is controlled by the PDMODE system variable. A setting
of 1 hidesthem. A setting of O or another positive number displays them with various
symbol types. The PDSIZE system variable controls the relative size of POINT symbols
with respect to the zoom factor.

The POLYLINE entity

Property Description Data Type DXF
Area Enclosed Area Double

Closed Closed flag Integer/Boolean

ConstantWidth Default width Double 40
Coordinate Array

Coordinates Vertices List Array/Doubles 10
Elevation Z-elevation Double

LinetypeGeneration Linetype Gen flag Integer/Boolean

Type Curve Fit Type Integer/Enum

The RAY entity

Property Description Data Type DXF
BasePoint Base point Array/Doubles

115



DirectionVector
SecondPoint

The SOLID entity

Property
Coordinate
Coordinates

Vector Axis Point
Pick Point

Description
?

Verticies List

The SPLINE entity

Property
Coordinates

The TEXT entity

Property
Alignment
Backward

Height
InsertionPoint
ObliqueAngle
Rotation
ScaleFactor
StyleName
TextAlignmentPoint
TextGenerationFlag
TextString
UpsideDown

Description
Basepoint

Description
Alignment Type
Backwards flag
Text Height
Base Point
Oblique angle
Rotation Angle
Width Factor
Text Style Name
Alignment Point
Generation Flag
String Value

The TRACE entity

Property
Coordinate
Coordinates

Description

Verticies List

The VIEWPORT entity

Property
ArcSmoothness
Center

Clipped (RO)
CustomScale
Direction
DisplayLocked
GridOn

Height
LensLength
RemoveHiddenLines
SnapBasePoint
SnapOn
SnapRotationAngle
StandardScale
Target
TwistAngle
UCSIconAtOrigin
UCSlconOn
UCSPerViewport
ViewportOn
Width

The XLINE entity

Property
BasePoint
DirectionVector
SecondPoint

Description

View Resolution
Center Point
Clipped Boundary
Scale in Mspace
View direction vector
Locked zoom/pan
Grid display

Height in Paperspace
Lens length value
Hide lines

Snap basepoint
Display snap

Snap rotation angle
ZoomXP factor
Target vector point
Twist Angle

Show UCS origin
Show UCS icon
UCS per viewport
Display Viewport
Width in Paperspace

Description
Pick Point 1
Axis Direction Point
Pick Point 2

Array/Doubles
Array/Doubles

Data Type
Array
Array/Doubles

Data Type
Array

Data Type
Integer/Enum
Integer/Boolean
Double
Array/Doubles
Double

Double

Double

String
Array/Doubles
Integer/Enum
String
Integer/Boolean

Data Type

Array/Doubles

Data Type
Integer
Array/Doubles
Integer/Boolean

Array/Doubles
Integer/Boolean
Integer/Boolean
Double

Double
Integer/Boolean

Array/Doubles (2D)

Integer/Boolean
Double
Integer/Enum
Array/Doubles
Double
Integer/Boolean
Integer/Boolean
Integer/Boolean
Integer/Boolean
Double

Data Type

Array/Doubles
Array/Doubles
Array/Doubles

DXF

DXF

DXF

40

50
41

11

DXF

DXF

-1 (:vlax-True)
-1 (:vlax-True)

DXF

116



Chapter 18 — Documents

Drawings are considered Documents in a general sense and this is how they are referred
to from a programmatic point of view within AutoCAD as well as within most other
ActiveX-enabled applications. Document objects are members of the Documents
collection within AutoCAD.

To access the current drawing session you can request the ActiveDocument property of
the AcadA pplication object, without having to go to the Documents collection. However,
if you need to access another document or iterate through all opened documents, you will
need to access the Documents collection.

The Documents Collection

The Documents collection contains all opened documents in the active AutoCAD session.
Each time you create or open another drawing, it isimmediately added to this collection.
Documents are normally entered into the Documents collection in the order they were
opened. To navigate a collection, you can use the (vl ax-for) function to process all
members, or use the (vl a-1tem) method to access an individual member by index
location or name if desired.

[ AcadApplication ]
Documents
—[ Document ]
—[ Document ]
—[ Document ]

Figure 18-1 — The Documents collection and Document objects.

(defun Docunents-ListAll ( / out)
(vl ax-for each (vl a-get-documents (vl ax-get-acad-object))
(setq out (cons (vla-get-nanme each) out))

(if out (reverse out))

)

Figure 18-2 — Listing all opened documents by name

Figure 18-2 shows an example code snippet for retrieving a list of all opened document
names in the current AutoCAD session. Using the (vl ax- f or) iteration function, which
is amost identical to the AutoLISP (foreach) function, we can loop through the
Documents collection and fetch the Name property of each document and produce a list
output.

117




Y ou could adapt this piece of code very easily to perform other tasks on each document,
or to search the documents for a particular condition and act on them as aresult.

What else can you do with the Documents collection? Well, let’s begin by inspecting
what properties and methods the Documents collection supports:

_$ (setq docs (vla-get-docunents acad))
#<VLA- OBJECT | AcadDocunent s 00f 20440>

_$ (vl ax-dunp- obj ect docs T)

;1 AcadDocunents: The collection of all AutoCAD drawi ngs open in the
current

session

; Property val ues:

; Application (RO = #<VLA-OBJECT | AcadApplication 00a8a730>
; Count (RO =1

; Met hods support ed:

; Add (1)

; Cose ()

; ltem (1)

; Open (2)

There are only two properties, but there are four methods. As| mentioned earlier, VLISP
does not provide a means for modifying collection properties. It usually sports a set of
methods for adding, accessing and deleting members within them however. In this case,
the Add method is synonymous with the command NEW, and the Open method is, well,
the same as the command OPEN.

To access an individual drawing that you have opened, you can use the Item method with
either the name of the document or the index number (its position in the collection). 1'll
get the object for the “Drawingl.dwg” document that | happen to have opened right now:

_$ (setq dwg (vl a-itemdocs "Draw ngl.dwg"))
#<VLA- OBJECT | AcadDocunent 00OedleOc>

Now | can inspect this document object to see what properties and methodsit provides:

_$ Command: (vl ax-dunp-object dwg T)

; | AcadDocunent : An Aut oCAD dr awi ng

; Property val ues:

; Active (RO = -1

; ActiveDinStyle = #<VLA- OBJECT | AcadDi nttyl e 00f 20034>

; ActivelLayer = #<VLA- OBJECT | AcadLayer 00f21c44>

; ActivelLayout = #<VLA-OBJECT | AcadLayout 00f21c04>

; ActiveLinetype = #<VLA- OBJECT | AcadLi neType 00f 228d4>

; ActivePViewport = AutoCAD: No active viewport in paperspace
; ActiveSel ectionSet (RO = #<VLA- OBJECT | AcadSel ecti onSet 00f21le4>
; ActiveSpace = 1

; ActiveText Style = #<VLA- OBJECT | AcadText Styl e 00f 22554>

: ActiveUCS = #<VLA- OBJECT | AcadUCS 00f 22234>

; ActiveViewport = #<VLA- OBJECT | AcadVi ewport 00f22014>

; Application (RO = #<VLA-OBJECT | AcadApplicati on 00a8a730>

; Blocks (RO = #<VLA- OBJECT | AcadBl ocks 00f 23c04>

; Database (RO = #<VLA- OBJECT | AcadDat abase 00f 202f 4>

; Dictionaries (RO = #<VLA OBJECT | AcadDictionaries 00f23814>
; DinBStyles (RO = #<VLA-OBJECT | AcadDi nStyl es 00f 23544>

; El evati onModel Space = 0.0

118



; El evati onPaper Space = 0.0

; Full Namre (RO = ""

; Goups (RO = #<VLA OBJECT | AcadG oups 00f 23304>
. Height = 571

; HVND (RO = 393946

; Layers (RO = #<VLA OBJECT | AcadLayers 00f23114>
; Layouts (RO = #<VLA-OBJECT | AcadLayouts 00f24e94>
; Limts = (0.0 0.0 12.0 9.0)

; Linetypes (RO = #<VLA-OBJECT | AcadLi neTypes 00f 24c44>
; Mbdel Space (RO = #<VLA- OBJECT | AcadMbdel Space 00f 249e4>

; MBpace = Aut oCAD. |nvalid node

; Name (RO = "Draw ngl.dwg"

; Obj ect SnapMbde = 0

; Paper Space (RO = #<VLA- OBJECT | AcadPaper Space 00f 244d4>

; Path (RO = "C\\Program Fi |l es\\ Aut oCAD 2002"

; PickfirstSelectionSet (RO = #<VLA-OBJECT | AcadSel ecti onSet 00f24024>

; Plot (RO = #<VLA OBJECT | AcadPl ot 00f 25f 5¢>

; Plot Configurations (RO =#<VLA- OBJECT | AcadPI ot Confi gurati ons 00f25ea4>
; Preferences (RO =#<VLA- OBJECT | AcadDat abasePr ef er ences 00f 203b4>

; ReadOnly (RO =0

; Regi steredApplicati ons(RO =#<VLA- OBJECT AcadRegi st eredApplications

00f 259d4>

; Saved (RO =0

; SelectionSets (RO = #<VLA- OBJECT | AcadSel ecti onSets 00f 22764>
; TextStyles (RO = #<VLA- OBJECT | AcadText Styl es 00f 25794>

; User Coor di nat eSystenms (RO = #<VLA- OBJECT | AcadUCSs 00f 25554>
; Uility (RO = #<VLA-OBJECT | AcadUtility 00f25384>

; Viewports (RO = #<VLA-OBJECT | AcadVi ewports 00f 252f 4>

; Views (RO = #<VLA- OBJECT | AcadVi ews 00f 25014>

; Wdth = 978

: WndowState = 3

; WndowTitle (RO = "Draw ngl. dwg"

; Met hods supported:

; Activate ()

; Auditinfo (1)

; Close (2)

; CopyQbj ects (3)

; EndUndoMar k ()

; Export (3)

; GetVariable (1)

; Handl eToObj ect (1)

; Inport (3)

; LoadShapeFile (1)

; New (1)

; Obj ectldToObj ect (1)

; Open (1)

; PurgeAll ()

; Regen (1)

; Save ()

; SaveAs (2)

; SendConmand (1)

; SetVariable (2)

; StartUndoMark ()

; Wbl ock (2)

Wow! If you're not used to working with Visual LISP or ActiveX, you should be able to
see how powerful thisis for you as a software developer. A careful review of the above
results will reveal all of the things you can get and modify with respect to a given
document. This was simply not possible with AutoLISP prior to Visual LISP. Asyou

119



can see, you now have direct access to all the tables, actually collections, within this
document, as well as system variables, methods and so forth.

Note that the Plot property is not amethod at all. Thisis because the Plot property of the
Document object, is actually a pointer to the Plot object. The Plot object is how you
configure and execute printing within the ActiveX world in AutoCAD.

Let’s use some of these methods in conjunction with the Documents collection to see
how we can iterate all opened documents and perform a simple task on each one. How
about if we want to run the AUDIT command on all of our opened drawings:

(defun Al |l Docs-Audit ( / docs)
(vl ax-for dwg (vl a-get-docunents (vl ax-get-acad-object))
(vla-auditinfo dwg T); T denotes fix errors = Yes
)

)

We can also Save all opened documents as follows:

(defun Al | Docs-Save ( / docs)
(vl ax-for dwg (vl a-get-docunents (vl ax-get-acad-object))
(vl a- save dwg)
)

)

How about running the PURGE command on all opened documents?

(defun Al | Docs-Purge ( / docs)
(vl ax-for dwg (vl a-get-docunents (vl ax-get-acad-object))
(vl a-purgeal | dwg)

)
[]

m,nlllgl

Be careful when iterating the Documents collection to perform certain tasks.
Keep in mind that LISP operates in a document context, not an application context. This
means that while you can operate on other opened documents within the same application
namespace, you are still calling your changes from the document in which your function
was executed. You should aways try to have your code return focus to the originating
document when it completes or when it fails due to an error. Thisis especially important
if you plan to implement reactors and invoke their callbacks from other drawing sessions
than the one in which you instantiated the reactors and callbacks.

120



Chapter 19 — The Preferences Objects

That's not a misprint, the title of this Chapter mentions Objects (plural). The reason is
simply that there are two main Preferences collection objects within AutoCAD. The first
is the AcadPreferences collection object, which applies to AutoCAD itself. The second is
the Document Preferences collection object, adso caled the DatabasePreferences
collection object. The latter applies only to Document objects, not to AutoCAD.

To give you a better example, if you open the OPTIONS dialog form and browse
throughout all the available tabs, you'll notice that many settings have a small drawing
icon symbol beside them. This denotes settings that are saved to the drawing only and do
not carry across to other drawing sessions. These items are actually part of the
DatabasePreferences collection.

[ AcadApplication ]

AcadPreferences
Documents
—[ Document ]
DatabasePreferences
[ Object ] Collection

Figure 19-1 — The AcadPreferences and DatabasePreferences collection objects
The AcadPreferences Collection Object

The AcadPreferences collection is actually a container for other collections, each having
their own objects. The graphical nature of the OPTIONS dialog form is not aways
correct in how it represents these collections and should not be used as a guide or map for
understanding these collections. Some objects have different names and some are shown
as collectionsin OPTIONS but stored as a single object in the AcadPreferences object.

For example, the Support Path list shown in the OPTIONS File tab is displayed as a list
of sub items, string values of pathnames. This could easily be mistaken for being a
collection of paths. But in actuality it is a single string value with a semi-colon delimiter
between each path value and stored as the SupportPath property within the Files
collection. Confusing? It can be. Another example is the Data Sources Location path
setting on the Files tab of the OPTIONS dialog form. This is actually stored as the

121



WorkSpace property under the Files collection, not as DataSourcesPath or something
more intuitively named.

aopons g |
Current profile: azw2k-po Current drawing: StephenHa... 144618 dwg

Files IDispIa_l,ll Open and Savel Plottingl Systeml Uzer F'leferencesl Dlaftingl Selectionl F'rofilesl

= Browse... |

Add...

Search paths, file names, and file locations:

------ = Chaswkhaswzk-p

------ -y ChaswiZkicombaps

------ - ChaswZkicomiimages Bl |

------ = Chaswlkhcomimenu

------ = C:MProgram FileshAutoCal 2002%eupport &I
------ = LC:Program Files\autoCAD 20024 fonts

------ C:4Program Files'butoCAD 20024help

------ = C:\Program Files\AutoCaD 2002\express b Set Current |
H- % Warking Support File Search Path

- % Device Diiver File Search Path

- Project Files Search Path

&0

- ﬁ Teuxt Editor, Dictionary, and Fant File Hames

- ) Print File, Spoaler. and Prolog Section Mames LI

Menu, Help, and Mizcellaneous File Mames

Specify the folders in which AutaCAD should look for text fonts, menus, plug-ing, drawings to
inzert, linetypes, and hatch patterns that are nat in the current folder.

QK I Cancel | Lpply | Help |

Figure 19-2 — The AutoCAD OPTIONS dialog form, Files tab displayed.

The AcadPreferences object has nine collection objects within it, one Property (the
Application property) and no Methods. The AcadPreferences collections roughly
correspond to the OPTIONS dialog tabs, sort of. Below is alist of the collection names
and their corresponding tabs in the OPTIONS dialog form:

Display = Display
Drafting = Drafting
Files=Files

OpenSave = Open and Save
Output = Plotting

Profiles = Profiles
Selection = Selection
System = System

User = User Preferences

Figure 19-3 shows a dump of the AcadPreferences object using (vlax-dump-object (vla-
get-preferences (vlax-get-acad-object)) T).

(vl ax- dunp- obj ect (vl a-get-preferences (vlax-get-acad-object)) t)
| AcadPreferences: This object specifies the current AutoCAD settings
Property val ues:
Application (RO = #<VLA- OBJECT | AcadApplication 00a8a730>
Di splay (RO = #<VLA- OBJECT | AcadPref erencesDi spl ay 04c5df 7c>
Drafting (RO = #<VLA- OBJECT | AcadPreferencesDrafting 04c5df 78>

122



Files (RO = #<VLA- OBJECT | AcadPreferencesFil es 04c5df 80>
OpenSave (RO) = #<VLA- OBJECT | AcadPr ef erencesOpenSave 04c5df 84>
Qut put (RO = #<VLA- OBJECT | AcadPref er encesCQut put 04c5df 88>
Profiles (RO = #<VLA- OBJECT | AcadPreferencesProfil es 04c5df8c>
Sel ection (RO = #<VLA- OBJECT | AcadPreferencesSel ecti on 04c5df 90>
System (RO = #<VLA- OBJECT | AcadPr ef er encesSyst em 04c5df 94>
User (RO) = #<VLA- OBJECT | AcadPreferencesUser 04c5df 98>

No net hods

Figure 19-3 — Dump of the AcadPreferences collection object.

To go deeper, we'll examine the Files collection to see what it contains...

(vl ax- dunp- obj ect (vla-get-files (vla-get-preferences (vlax-get-acad-object))) T)
| AcadPreferencesFiles: This object contains the options fromthe Files tab on

the Options dial og
Property val ues:
AltFontFile = "sinpl ex. shx"
Al t Tabl et MenuFile = ""
Application (RO = #<VLA- OBJECT | AcadApplication 00a8a730>
Aut oSavePath = "C: \\ TEMP\\ "

ConfigFile (RO = "C \\Program Fil es\\ Aut oCAD 2002\\ acad2002. cf g"
CustonDi ctionary = "C:\\Program Fi | es\\ Aut oCAD 2002\ \ support\\ sanpl e. cus"
DefaultInternet URL = "http://anmsecweb. ansec. conl cad/ sw'

DriversPath = "C \\Program Fi |l es\\ Aut oCAD 2002\ \ drv"
FontFil eMap = "C:\\ Program Fi | es\\ Aut oCAD 2002\ \ support\\acad. f mp"
Hel pFil ePath = "C:\\ Program Fi | es\\ Aut oCAD 2002\ \ hel p\\ acad. chnt
Li censeServer (RO = ""
LogFil ePath = "C:\\program files\\autocad 2002\\"
Mai nDi ctionary = "enu"
MenuFile = "C:\\Program Fil es\\ Aut oCAD 2002\ \ support\\acad"
Obj ect ARXPath = ""
Post ScriptPrologFile = ""
Pri nt er Confi gPat h = "C:\\Program Fi | es\\ Aut oCAD 2002\ \plotters"
PrinterDescPath = "C:\\Program Fil es\\ Aut oCAD 2002\ \drv"
Printer Styl eSheet Path = "C: \\ Program Fi | es\\ Aut oCAD 2002\\ Pl ot Styl es"
PrintFile = ".
Print Spool erPath = "C:\\ TEMP\\"
Pri nt Spool Executable = ""
SupportPat h= "C:\\ Program Fi | es\\ Aut oCAD 2002\ \ support; C:\\ Program
F| | es\\ Aut oCAD 2002\\fonts; C:\\ Program Fi | es\\ Aut oCAD 2002\ \ hel p; C:\\ Program
F| | es\\ Aut oCAD 2002\\express
TenpFil ePath = "C: \\TEI\/P\\
Tenpl at eDwgPath = "C:\\ Program Fi | es\\ Aut oCAD 2002\ \t enpl at e"
TenpXref Path = "C:\\ TEMP\\"
TextEditor = "Internal"
TextureMapPath = "C:\\ Program Fi |l es\\ Aut oCAD 2002\ \t ext ur es"
Wor kspacePath = "C:\\ Program Fi | es\\ Aut oCAD 2002\ \ Dat a Li nks"
Met hods supported:
Get Proj ectFilePath (1)
Set Proj ectFil ePath (2)

Figure 19-4 — Dump of the Files collection object within AcadPreferences

Note that the Files collection has many Properties and only two methods available. Also,
you'll notice here that the SupportPath setting shows the search path list as a single string

with semi-colon delimiters between each path value.

The most important understanding to come away from this is that you can use the (vla-
get-xxx) and (vla-put-xxx) functions to get and modify any properties shown anywhere
throughout the A cadPreferences collection objects as long as they are not read-only (RO).
Think about this for a few minutes and it should dawn on you that this exposes an
enormous amount of power and flexibility to you as the developer.
programmatically manipulate the AutoCAD configuration with very little effort. Taking

You can


http://amsecweb.amsec.com/cad/sw

this farther, when you begin working with Profiles, you will find this opens up a whole
world of possibilities to manage desktops remotely in a networked environment.

Let’s demonstrate how this might be put to practical use with Visual LISP. Suppose you
want to modify al the AutoCAD installations on your network to change a default path
setting for where each client looks for Drawing Template files. Maybe you want them to
al use a standard set of customized templates stored in a folder on a shared server over
the network. To do this, you only need to push out a change to the TemplateDwgPath
property under the Files collection. Sure, you could do this using a profile (ARG file) or
aregistry hack, but deploying those are difficult without some additional tools or some
scripting to help it work.

One solution is to push the update through AutoCAD using ActiveX with Visual LISP
coding and the AcadPreferences object interface. Figure 19-5 shows an example function
for doing just that and shows an example of how it might be used within a program
function. This could be deployed by using a hook from within the acaddoc.Isp
(s::startup) function that you could deploy to al clients once, and be able to deploy code
changes from then on with very little effort. The code in Figure 19-5 could be loaded
from the (s::startup) routine and fire off automatically after it loads on the client.

(defun Updat eTenpl at ePat h ( pat hnane)
(vl a- put - Tenpl at eDwgPat h
(vla-get-Files
(vl a- get - AcadPr ef er ences
(vl ax- get - acad- obj ect)

)

pat hnane

)

)
(Updat eTenpl at ePath “J:\\acad\\configs\\tenpl ates”)

Figure 19-5 — Updating the TemplateDwgPath property via the AcadPreferences/Files interface

You might want to embellish this code a little to make it more robust and flexible. For
example, you could add a check to make sure the existing path setting is not already
correct before changing it, saving unnecessary work at the start of every drawing session
on every client.

The DatabasePreferences Object

The DatabasePreferences object is a collection of preferences that apply to the active
document only. As stated previously, they appear in the OPTIONS dialog with a small
drawing icon symbol beside them to indicate this.

Below isadump of the collection from a drawing session to show what itemsit contains:

Commrand: (setq dbprefs (vl a-get-preferences activedocunent))
Commrand: (vl ax- dunp-obj ect dbprefs t)
; | AcadDat abasePref erences: This object specifies the current AutoCAD draw ng
specific settings
; Property val ues:
Al'l owLongSynbol Nanes = -1
Application (RO = #<VLA- OBJECT | AcadApplication 00a8a730>
Cont our Li nesPer Surface = 4

124



Di spl aySi | houette = 0
Li newei ght = -1
Li newei ghtDisplay = -1
MaxAct i veVi ewports = 64
Obj ect SortByPlotting = 0
Obj ect Sort ByPSQut put = 0
Obj ect Sort ByRedraws = 0
Obj ect Sort ByRegens = 0
Obj ect Sort BySel ection = -1
Obj ect SortBySnap = -1
OLELaunch = 0
Render Snoot hness =
Segnent Per Pol yl i ne
SolidFill = -1
Text FranmeDi spl ay =
XRefEdit = -1

; XRef LayerVisibility = -1

; No net hods

Figure 19-6 — The DatabasePreferences collection object

5
8

no

o

You'll notice that there are no methods to this object. Just as with the AcadPreferences
object, you can access and manipulate these properties using the same approach with
VLISP. For example, to toggle Lineweight display on or off:

(vl a- put - Li neWei ght Di spl ay activedoc :vlax-true);; turns LW on
(vl a- put - Li neWei ght Di spl ay activedoc :vlax-false);; turns LW off

Reloading a Profile

AutoCAD R14.01 added a nice feature that allows you to specify a profile .ARG filein
the shortcut parameters using the /p start-up switch. However, AutoCAD will not allow
you to reload an .ARG file when the target profile name is aready defined. AutoCAD
sees the name in the ARG file and sees an existing profile already defined and simply
points to the existing profile and ignores the ARG file. The only workarounds are to...

Set the active profile to some other profile, and then delete the target profile.
Then import the ARG file to redefine the profile again.

Rename the existing profile and import the ARG file to define the profile again.
Import the ARG file such that it defines a new (unique) profile name.

Why would you want to be able to “force reload” a profile? Well, there is also another
undocumented “feature” of AutoCAD that affects network profile configurations in a bad
way. What happens is that if your profile includes network pathing settings, and the
network paths happen to be inaccessible at the point when a user launches AutoCAD with
that profile, AutoCAD handily strips out the pathing entirely and continues on.
Obvioudly, thisis not good, especialy since it will not add the pathing back in even when
the network is back on line and accessible.

So, now what? Well, since you have the means to access and manipulate the
AcadPreferences object through Visual LISP, you can easily work your way around this
under the hood. Check out the example code functions below.

125



;;; Reloads a profile froman ARG file
;;; Replaces existing profile if defined
;;; Returns profile name if successful, otherw se returns nil

(defun Profil e-Rel oad (nane ARGnane / bogus)
(cond
( (and
(Profil e-Exists-p nanme)
(findfile ARGhane)

)
(if (/= (strcase nane) (strcase (vla-get-ActiveProfile (AcadProfiles))))
(Profile-Del ete nane)
(progn
(setq bogus "bogus")
(Profil e-Renane nane bogus)

)

(Profile-lnport name ARGnhane)

(vl a-put-ActiveProfile (AcadProfil es) nane)
(if bogus (Profile-Del ete bogus))

namne

( (and
(not (Profile-Exists-p nane))
(findfile ARGhane)

)

(Profile-lnport name ARGnhane)

(vl a-put-ActiveProfile (AcadProfil es) nane)
nane

( (not (findfile ARGhane))
(princ (strcat "\nCannot |ocate ARG source: " ARGhane)) nil

)
)

;;; Renanes an existing profile
;;; Returns new profile name if successful, otherw se returns nil

(defun Profile-Renane (fromto / result)
(if (Profile-Exists-p from
(if (not (Profile-Exists-p to))
(cond
( (not
(vl-catch-all-error-p
(setq result

(vl -catch-all-apply

‘vl a- RenaneProfile
(list (AcadProfiles) fromto)

)
)
)

to ; Return new nanme if successful!
)
)
); end if
); end if
)

;;; Deletes an existing profile
;:, Returns T if successful, otherw se returns nil

126



(defun Profile-Delete (strNane / result)
(if (Profile-Exists-p strNane)
(cond
( (not
(vl-catch-all-error-p
(setq result
(vl -catch-all-apply
‘vl a-Del eteProfile
(list (AcadProfiles) strNang)

)
)
)

T ; return T for success!

)

)
); endif
)

;;; lnports a profile froma given ARG file
;;; Returns profile nane if successful, otherw se returns nil

(defun Profile-lnport (argFile strNanme / result)
(cond
( (findfile argFile)
(cond
( (not
(vl-catch-all-error-p
(setq result
(vl -catch-all-apply
‘vla-InportProfile
(list (AcadProfiles) strNanme argFile vlax-True)
)
)
)
)

strName ; return new profile nane if successful!

;5 Determine if profile name is already defined (exists)
v+, Returns T or nil

(defun Profil e-Exists-p (nane)
(get-item (AcadProfil es) nane)
;;; Return Profiles collection object

(defun AcadProfiles ()
(vla-get-profiles (vla-get-preferences (vl ax-get-acad-object)))

Last but not least, here is a simple function to return alist of all defined profile names:

(defun Profiles-ListAll ( / hold)
(vla-GetAll Profil eNanes (AcadProfiles) *hold)
(if hold (vlax-SafeArray->List hold))

)

127



Chapter 20 — Menus and Toolbars

Just as AutoCAD drawing entities are part of the AutoCAD object model, so are menus
and toolbars. Menus are organized into a root MenuGroup collection, containing one or
more MenuGroup objects. Each MenuGroup object in turn contains a collection of
“popmenus’ (pull-down), and a collection of toolbars. You can add MenuGroups using
the (vl a-1 oad) method on the MenuGroups object. This performs the same task as
using the AutoCAD MENULOAD command.

The coolest thing about this is that you can add, modify and delete menu items and
configurations programmatically. This enables you to build menus with complete control
from within your VLISP programs. The only thing not exposed from the menugroups or
menubar objects is the screen menu from ancient days. For this you must resort to the
standard AutoLISP (menucmd) function to manipulate the screenmenu and the
AcadPreferences collection to control the display (toggle it on or off).

The MenuBar Object

The MenuBar object contains all of the currently displayed pulldown or “pop” menu
items in the AutoCAD session. It is a member of the AcadApplication object. If you
have stub menus loaded that have any pop menu groups spliced in with the AutoCAD
pop menus, the MenuBar object will return all of them in the order from left to right in
the collection.

(setqg acad-app (vl ax-get-acad-object))
#<VLA- OBJECT | AcadApplication 00a8a730>

(setq mbar (vl a-get-nmenubar acad-app))

To access individual pop menus, use the Item method as follows:

(setq popnenul (get-item nbar 0))
#<VLA- OBJECT | AcadMenuBar 00e8ae24>

To see more menubar info, dump the object as follows:

Conmand: (vl ax-dunp-obj ect nbar T)
; | AcadMenuBar: A coll ection of PopupMenu objects representing the
current
Aut oCAD nenu bar
; Property val ues:
Application (RO = #<VLA-OBJECT | AcadApplicati on 00a8a730>
Count (RO = 14
Parent (RO = #<VLA- OBJECT | AcadApplication 00a8a730>
; Met hods supported:
Item (1)

128



Getting MenuBar Items

To access a MenuBar item or check if a popmenu exists in the collection you can iterate
the collection. To check for a particular popmenu, search for a matching name value in
the MenuBar collection as follows:

(defun PopMenu-MenuBar-p (name / nbar i found)
(setqg nbar (vl a-get-nenubar (vl ax-get-acad-object)) i 0)
(while (and (not found) (< i (1- (vla-get-count nbar))))
(if (= (strcase nane) (strcase (vla-get-nane (get-itemmnbar i))))
(setq found T)

)
(setq i (1+1i))
)

(vl ax-rel ease-obj ect nbar)
found

)

If you know the name of the pop menu, you can access it directly using Item and the
name property in string form as follows:

(setq poprenu (get-itemnbar “&File”))

1«ir'

Be aware that the name property includes the mnemonic character & as part of
the name string.  If you try to fetch the menu ssimply by the logica name of “File”, the
(vl a-item) method will fail to return it from the MenuBar object. Thisistruein generd

for using the Item method with any collection where you are fetching by string name
values.

Inserting PopMenus into the MenuBar collection

To insert a popmenu of aloaded menugroup into the MenuBar collection, use the (vi a-
I nsert | nvenuBar) method of the popmenu object itself.

(defun PopMenu-Insert (ngroup name [oc / pmmu)
(if (not (PopMenu-MenuBar-p nane))
(if (setq pmu (PopupMenu ngroup namne))
(progn
(vl a-insertinnenubar pmmu | oc)
(vl ax-rel ease-obj ect pmmu)

=
)
(princ (strcat "\nMenugroup or popnenu not |oaded: " nane))
)
(princ (strcat "\nPopnenu al ready | oaded: " nane))

129



Removing PopMenus from the MenuBar collection

To remove a named popmenu from the MenuBar collection, use the (vl a-
removef r ormenubar) method of the popmenu object itself.

The MenuGroups Collection Object

AcadApplication

MenuGroups
—[ MenuGroup ]
— PopMenus
MenuBar
\—[ PopMenu ]
— Toolbars

L[ Toolbar ]

The MenuGroups collection object contains all the menugroups found in the AutoCAD
session. Each menugroup is a source menu that has been loaded. Normally, you will see
the menugroup “Acad’, but you might aso see “Express’ for the Express Tools
menugroup if it has been installed.

Figure 20-1 — The MenuGroup collection object

(defun MenuG oups-ListAll ( / out)
(vl ax-for each (vl a-get-nenugroups acad- app)
(setq out (cons (vla-get-nane each) out))

out

)

To add a new menugroup to the menugroups collection, you use the Add or Load
methods and specify the appropriate arguments. To remove a menugroup, you must first
get the menugroup object and then invoke its Delete method.

The MenuGroup Object

The menugroup object contains all the popmenus and toolbars for a given menugroup. It
isamember of the MenuGroups collection object. To get the Acad menugroup, use the
following:

(setqg ngroups (vl a-get-nenugroups acad-app))
#<VLA- OBJECT | AcadMenuG oups 01433208>

(setqg ng-acad (get-item ngroups “Acad”))
#<VLA- OBJECT | AcadMenuG oup 00e9b38c>

130



The PopMenus Object

The PopMenus collection object contains all the popmenus, or pull-down menus, for a
given menugroup. To access the popmenus collection for the Acad menugroup, use the
following:

(setq pmu (vl a- get- popnmenus ng- acad))
A dump of the popmenus object shows its properties and methods:

The PopMenu Object

The PopMenu object represents a single popmenu or pull-down menu. Y ou can use the
PopMenu object to insert itself into the MenuBar object as well as to accessitsinternal
objects, properties and methods.

The Toolbars Collection Object

The Toolbars object is a collection of al toolbars for a given menugroup. Use the (vla-
get-toolbars) method to access the root of this collection from the menugroup object. For
example, to get the Toolbars collection for the Acad menugroup, use the following:

(setqg tbars (vl a-get-tool bars ng-acad))
#<VLA- OBJECT | AcadTool bars 00ef a7c4>

Y ou may want return alist of all the toolbar names for a given toolbars collection. To do
this you ssimply need to iterate through the toolbars and return alist of their respective
Name property values...

(progn
(vl ax-for each tbhars
(setq out (cons (vla-get-nane each) out))

)

(if out (reverse out))

)
The Toolbar Object

The Toolbar object represents a single toolbar and it buttons. The buttons are contained
as a collection which can be iterated using the (vl a-i temy method, instead I'll use the
(get-item function suggested earlier. For example, to access the “Dimension” toolbar
object from the Acad menugroup, use the following:

(setg tbl (get-itemtbars "D nension"))
#<VLA- OBJECT | AcadTool bar 00eb6a7c>

Conmand: (vl ax-dunp-object thbl T)

;| AcadTool bar: An Aut oCAD t ool bar

; Property val ues:
Application (RO = #<VLA-OBJECT | AcadApplicati on 00a8a730>
Count (RO = 22
DockStatus (RO = 4

131



Fl oati ngRows = 1

Hei ght (RO = 52

Hel pString = "Di nensi on Tool bar"
LargeButtons (RO =0

left = 255

Nane = "Di nensi on"

Parent (RO = #<VLA- OBJECT | AcadTool bars 00efa7c4>
TagString (RO = "I1D _TbDi nensi"

top = 218

: Visible = -1

; Wdth (RO = 565
; Met hods support ed:
; AddSepar ator (1)
; AddTool bar Button (5)
; Del ete ()

; Dock (1)

; Fl oat (3)

; Item (1)

The following example functions demonstrate how to get the Toolbars collection from a
given menugroup object, and how to get a specified toolbar object by name from a
specified menugroup object.

(defun get-MenuG oups ()
(vl a- get - menugr oups (vl ax- get - acad- obj ect))

)

(defun get-MenuG oup (nane)
(i f (nenugroup nane)
(get-item (get-MenuG oups) nane)

)

(defun get-Tool bars (nmgroup / ng result)
(if (setq ng (get-MenuG oup ngroup))

(progn
(setq result (vla-get-Tool bars ng))
(vl ax-rel ease- obj ect ng)

)

resul t

)

(defun get-Tool bar (nmgroup nanme / tbs result)
(if (setq tbs (get-Tool bars ngroup))

(progn
(setq result (get-itemtbs nane))
(vl ax-rel ease-obj ect tbs)

)
)
resul t

)

The following example function docks a specified toolbar to the Left, Right, Top or
Bottom. If the side argument is not “LEFT”, “RIGHT”, “TOP” or “BOTTOM” then it
defaultsto “LEFT”. The argument is not case sensitive.

(defun Tool bar -Dock (ngroup nane side / tb |oc)

(cond
( (= (strcase side) “LEFT") (setq |oc acTool bar DockLeft))

132



( (= (strcase side) “RIGHT") (setqg | oc acTool bar DockRi ght))
( (= (strcase side) “TOP") (setqg | oc acTool bar DockTop))
( (= (strcase side) “BOITOM ) (setqg | oc acTool bar DockBot t om))
( T (setq | oc acTool bar DockLeft))
)
(if (setq tb (get-Tool bar ngroup nane))
(progn
(vla-Dock tb | oc)
(vl ax-rel ease-obj ect tbh)

)

(princ (strcat "\nTool bar (" nanme ") not found."))

)
)

The following example function floats a toolbar at a specified location (x and y offset
values from top-left of screen). The arguments are the menugroup name, the toolbar
name, y-coordinate, x-coordinate and toolbar row layout. The x and y coordinates are
from the top-left corner of the screen. ThisisaWindows standard practice for dialog
forms and toolbars. This function ignores toolbars that are hidden.

(defun Tool bar-Fl oat (ngroup nanme top left rows)
(if (setq tb (get-Tool bar ngroup name))
(if (= (vla-get-Visible tbh) :vlax-True)
(progn
(vla-Float tb top left rows)
(vl ax-rel ease-obj ect tbh)
1;; float and visible

)

-1 ;; tool bar not visible

0 ;; tool bar not found

)
)

Creating a Toolbar

Let’s assemble some code covered above and add some new ingredients to make a new
toolbar and assign afew buttonsto it. In this case, we'll add a new toolbar to the ACAD
menugroup and name it MYTOOLBAR. The first function adds a button object to a
toolbar object with some supplied property values. In this example, | use the same
bitmap property for both large and small icon bitmap properties.

(defun Tool bar - AddBut t on
(tb nanme nmacro bitmapl tagstring hel pstring / newButton index)
(setqg index (vla-get-Count tbh))
(cond
( (setq newButton
(vl a- AddTool barButton tb
(vl ax- make-vari ant index vl ax-vblnteger)
nane hel pstring macro

)

(vl a-put - TagString newButton tagstring)
(vl a- Set Bi t Maps newButton bitmapl bitnmapl)
newBut t on

133



Now, we'll see how to create a new toolbar and assign a new button to it. This function
will create a new toolbar named “MyToolbar” and add one button to it that invokes the
LINE command. Load the sample file Toolbars.Isp from the book CD samples and run
the function (toolbar-make) at the AutoCAD command prompt.

(defun Tool bar-Make ( / tb)
(cond
( (setq tb (vla-add (get-tool bars "acad") "M/Tool bar"))
(if (Tool bar-AddButton thb
"Li ne" "\003\003\020\nLi ne"
"1 CON_16_LI NE" "MyButton001" "Draws a |line: LINE"

(alert "I just added a button to ny tool bar!™")
(alert "Un oh! ...")
)

(vl ax-rel ease-obj ect tbh)

)
)
)

You can continue much further with this by tapping the other methods such as Add,
Delete and so on to build out your toolbars. You can also manipulate toolbar row
configurations, change button ordering and hide or display the toolbar. When you
combine this with your program code you can create some very sophisticated menu
management features.

1«ir’

One very common request | get from instructors involves how to automatically
“reset” menu and toolbar configurations after students mess them up during a class.
Profiles are one way, but even profiles can be unreliable when it comes to menus,
because menus rely upon MNS and MNC files as well as the registry for their
configurations. The more reliable method is to combine the examples show above into a
comprehensive menu manager that steps through all the menu items and sets them to a
desired property setting (location, display, docking, etc.).

134



Chapter 21 — Interfacing with Other Applications

While Visual LISP is abit more cumbersome to use for dealing with external applications
than VBA, it does have the capability to do some very powerful things. While it is very
common to use ObjectARX applications from within Visua LISP, such as DOSlib, it is
only a small taste of what more can be done. Some examples might be passing data
between AutoCAD and Microsoft Office applications, sending E-mail messages in the
background using CDONTS, and performing specialized desktop, file, folder and
network tasks using the Windows Scripting Host.

Microsoft Excel

The example code below shows how to initialize the Excel Type Library (for Excel 2000
or XP) and create a new Excel spreadsheet file in Excel from Visual LISP. Be careful of
one particular aspect of Visual LISP: TypeLib interfaces. Why would | say this? Well,
while VB and VBA give you the nice auto-complete feature called Intellisense®, Visual
L1SP does not.

When working in VB or VBA and setting a reference to a component library, it takes
care of mapping the syntax awareness and pop-up help strings. Visua LISP does not.
Even though you may be familiar with Excel 2000 from a Visual LISP standpoint, don’t
assume everything is the same when it comes to Excel 10 (also called XP).

There' s not enough space to cover this in detail, but be assured that it’'s well worth the
time to investigate changes anytime you intend to use your code with a newer version of
an external application.

(defun Excel - TypeLi b-2000 ( / sysdrv officepath)
(setq sysdrv (getenv "systendrive"))
(setq officepath (strcat sysdrv “\\program files\\mcrosoft office\\office”))
(findfile (strcat officepath “\\excel 9.0l b"))

)

(defun Excel - TypeLi b-XP ( / sysdrv of ficepath)
(setq sysdrv (getenv “systendrive”))
(setq officepath (strcat sysdrv “\\program files\\m crosoft offices\\officel0"))
(findfile (strcat officepath “\\excel.exe"))

)
(defun Excel -Load-TypeLib ( / tIbfile tlbver out)
(cond
( (nul'l msxl -xl 24Hour C ock)
(if (setqg tlbfile (Excel-TypeLib-2000))

(progn
(vlax-import-type-library
ctlb-filenanme tlbfile
: et hods- prefix "mexl| -"

cproperties-prefix "nsxl-"
:constants-prefix "nsxl-"

)
(i f nsxl-xl24Hour C ock (setq out T))

)
)

)
(T (setq out T) )
out

)

(defun Excel - New Spreadsheet (dnpde / appsession result)

135



(princ "\nCreating new Excel Spreadsheet file...")
(cond
( (vl-catch-all-error-p
(setq appsession
(vl -catch-all-apply
' vl ax- creat e- obj ect
' ("Excel . Application")
)
)

(vl-exit-with-error

(strcat “Error: “ (vl-catch-all-error-nessage appsession))
)
)
(T
(princ "\ nOpeni ng Excel Spreadsheet file...")
(cond

( (vl-catch-all-error-p
(setq result
(vl -catch-all-apply
" vl ax-i nvoke- net hod
(list
(vl ax-get - property appsessi on "Wrkbooks")
" Add"
)
)
)
)

(princ (strcat "\nError: " (vl-catch-all-error-nmessage result)))

)
(T
(if (= (strcase dnode) "SHOW)
(vl a- put - Vi si bl e appsession 1)
(vl a- put - Vi si bl e appsession 0)
)
)
)
)
)

appsessi on

Y ou should pay special attention to the section in the () function above that defines the
type library interfaces. This is not very clearly documented actually, but the string
prefixes assigned to the properties, methods and constants is arbitrary. In this example, |
used the same value for all three, but other examples you'll find will use unique prefixes
such asmsxp- nmsxm and nsxc- to differentiate each of the types of interface objects.

(vl ax-inmport-type-library
ctlb-filenane tlbfile
: met hods- prefix "nex| -"
cproperties-prefix "msxl-"
:constants-prefix "msxl-"

)

Theoreticaly, you could aso forego assigning a prefix by using “” for each property in
the declaration expression above. But doing so will make it difficult to work with
multiple application type library interfaces, such as Word and Excel, that might be used
within the same Visua LISP code. Yes, you can define and use as many type library
interfaces as you need to do the job. It's usually better to modularize your Visua LISP
code to avoid this if possible, and keep each type library reference isolated. Debugging
and testing will be much easier to manage by keeping things orderly and organized.

136



m,,.in!’
There is a known defect in AutoCAD 2000-2002 when releasing objects created

using (vl ax- get - or - cr eat e- obj ect) aswell as (vl ax- creat e- obj ect) whereby the
external process is not terminated when the object is released.

You can verify this by using the Windows Task Manager and watching the Processes list
for a given application. For example, if you open a session of Excel 10 (part of Office
XP) and call the Quit method of the Excel .Application object, you would expect that after
you release the object in VLISP that the process would terminate, but it usually will not.
The following example code can be used to test this on your computer:

(defun excel -test ( / xlapp)
(cond
( (setq xlapp (vl ax-create-object “Excel.Application”))
(vl ax-put-property xlapp “Visible” T); show Excel
(vl ax-invoke-nethod xlapp “Qit”); close Excel
(vl ax-rel ease-obj ect xlapp); rel ease object
(gc); force garbage collection

)
( T (princ “\'nUnable to open Mcrosoft Excel.”) )

)

Load the above code into the VLIDE edit window and load it into AutoCAD. Open the
Windows Task Manager and pick the Processes list tab. Go back to AutoCAD and run
the function (excel-test) and watch the Task Manager process list for Excel.exe to appear
in thelist.

Proper behavour would be that the Excel.exe process would appear and then disappear,
which it may do in your case. But in the majority of cases it will not disappear. The
problem this creates is if you attempt to reopen a given spreadsheet and the Excel process
has not let go of it. The spreadsheet file may often be opened in Read-Only mode since it
thinks someone else has the file already opened.

Autodesk suggests using (gc) after releasing such objects to force a termination, however,
(gc) simply places a call to the garbage collection service on a stack which is managed by
the Windows resource services. In other words, regardless of how you try to terminate
the session from VLISP, it may often not terminate at al. Be careful when manually
terminating the process using Task Manager as it can often break the RPC channel to
AutoCAD and make subsequent calls to Excel fail with errors.

Windows Scripting Host

Microsoft's Windows Scripting Host (WSH) is a powerful, yet often overlooked free
service available as part of Windows 98/ME/2000/XP operating systems. It is aso
available for free download to install on Windows 95 and NT 4.0 systems. Basicaly,
WSH is a script engine that runs scripts either from a command line interface or from a
GUI interface. The command line interface command is CSCRIPT, while the GUI

137



interface command is WSCRIPT. You can view the available runtime options by typing
CSCRI PT /?, 0r WsCRI PT / ? at the Windows Command Shell (DOS Window).

The example below demonstrates how to use the WSH Shell object to create shortcuts in
the Favorites collection. You can also access the Desktop and Start Menu shortcuts
repositories, for both the current user and the AllUsers group profiles (depending upon
the local rights of the current user).

(def un AddFavoritesShort cut
(target title / oWwh spfolders favorites shortcut)
(cond
( (setq oWwsh (vl ax-create-object "Wscript.Shell"))
(setq spfolders (vlax-get-property oWh "Speci al Fol ders")
favorites (vla-item spfolders "Favorites")
shortcut (vl ax-invoke-nmethod oWh
“CreateShortcut”
(strcat favorites “\\” title “.1nk")

)

(vl ax- put-property shortcut "TargetPath" target)

(vl ax-i nvoke-net hod shortcut "Save")

(vl ax-rel ease- obj ect oWh)

(gc);; forced garbage collection after object rel ease
(princ "\nShortcut created in Favorites...")

( T (alert "Failed to obtain shortcut class object..."))

)

)
(defun C. FAV ( / target nane)
(setq target (getstring “\nURL for Favorite shortcut: “)
name (getstring t “\nNanme for Favorite: )

(AddFavori teShortcut target nane)
(princ)

)

Figure 22-1 —Using WSH to add a Favorites shortcut link
The FileSystem Object

The FileSystem object is a powerful tool for interfacing with, and manipulating files, and
folders through the Windows operating system. For example, we can use it to iterate all
drive mappings and return a list of drive mappings.

(defun ListDriveMappings (/ fso drive drives |st pth grp)
(setq fso (vlax-Create-Object "Scripting.FileSystenbject"))
(vlax-for drive (setq drives (vlax-get-Property fso "Drives"))
(setq Itr (strcat (vlax-get-property drive "DriveLetter") ":")
pth (vl ax-get-property drive "ShareNane")
grp (cons ltr pth)
Ist (cons grp Ist)
)

(vl ax- Rel ease- Obj ect drives)
(vl ax- Rel ease- Obj ect fso)
(reverse |st)

)

Figure 22-2 — Using the FileSystem abject to list drive mapping properties

138



The above function returns a list of drive mappingsin paired sub-listssuch as ((“C:” . *”)
¢“D: ") (B “\\Wserver\\share”) ...). This can be useful for building lists and for
validating ausers configuration to support your application drive mapping needs.

We can also use the FileSystem object to see if a particular UNC path is mapped as a
drive letter, and if so, return the actual drive letter.

(defun get - MappedShare (share / fso drives drive letter)
(setqg fso (vl ax-create-object "Scripting.FileSystenCbject"))
(vlax-for drive (setq drives (vlax-get-property fso “Drives”))
(if
(:
(strcase (vlax-get-property drive "ShareNane"))
(strcase share)

(setq letter (strcat (vlax-get-property drive "DriveLetter") ":"))
)
)
(vl ax-rel ease-obj ect drives)
(vl ax-rel ease- obj ect fso)
letter

)

Figure 22-3 — Using the FileSystem object to resolve a UNC path to a drive letter mapping

Using the above example, you can resolve UNC paths to actual drive letters if they have
been mapped by the current user. The syntax is as follows:

(get - MappedShare “\\\\nyserver\\nyshare”) could return “F:.”

The FileSystem object provides many other methods and accesses to various object
properties. For instance, you can copy, rename and delete files and folders. You can
even use it to copy a file directly to a named port, such as when performing direct-port
printing with plot files:

(defun CopyFil eToLPT1 (filename / file fso)
(setqg fso (vl ax-create-object "Scripting.FileSystenCbject"))
(setq file (vlax-invoke-nmethod fso "GetFile" filenane))
(vl ax-invoke-nethod file "Copy" "LPT1")
(vl ax-rel ease-object file)
(vl ax-rel ease-obj ect fso)

)

Figure 22-4 — Using the FileSystem object to copy afile to the LPT1 port

Windows Messaging and CDONTS

CDONTS s an API provided by Microsoft Windows that enables applications to perform
various messaging functions programmatically. A subset of CDO, collaboration data
objects, CDONTS is a stripped-down, but very useful collection of functions, properties
and methods which can be derived from and used to create, and send messages with
various options.

139



Using an example from an Active Server Page (ASP) script, you can see how wecan
create an instance of a CDONTS object and use it to send a message directly from the
web server. Thisrequires that the web server aso has SMTP mail services running.

<%

Set obj Mai | =Cr eat ebj ect (" CDONTS. NewiVai | ")
obj mai | . Fr om="davi dnst ei n@ahoo. cont

obj mai | . To="davi dnst ei n@ahoo. cont

obj mai | . Subj ect =" CDONTS Enmmi | Test Message"
obj mai | . Body="1 | ove your book!”

obj mai | . Send

Set obj Mai | =Not hi ng

%

Figure 21-3 — ASP CDONTS example code.

The code in Figure 21-3 performs a ssimple email send from within an ASP web page
when loaded and run from a Microsoft 11S web server. Ignoring the syntax and specifics
of ASP code, you should be able to see that the first thing you do is create an object
instance of the CDONTS.NewMail class to use for making and sending your email

message.

To do thisin a Visual LISP environment, you would use something like the translated
code in Figure 21-4.

No error checking provided!

(defun SendMail ( / cdoMail)
(cond
( (setq cdoMail (vlax-create-object "CDONTS. NewMail "))
(vl ax- put-property cdoMail 'From “davi dnst ei n@ahoo. coni)
(vl ax- put-property cdoMail 'To “davi dnst ei n@ahoo. cont)
(vl ax- put-property cdoMail ' Subject “CDONTS Test Message”)

(vl ax- put-property cdoMail 'Body “I |ove your book!”)
| mportant property: O=low, 1=nornal, 2=high

(vl ax- put-property cdoMail 'Inportance 1)

(vl ax-invoke-net hod cdoMail ' Send)

(vl ax-rel ease-obj ect cdoMail)
(setq cdoMail nil)
)
)
(princ)

)

Figure 21-4 —Visua LISP CDONTS example code

The code example in Figure 21-4 does not use any TypeLib interfaces, which is why the
Importance property is assigned an integer value instead of something more intuitive like
cdo-Normal.

The first line requests an object to be created from the CDONTS.NewMail class. Once
that succeeds, the object is assigned properties for the From, To, Subject, Body and
Importance values. Then the Send method is called to release the message. Finadly, the
object is released and set to nil to clear it from memory.

140



If you are familiar with the CDO class object, you might want to consider using it instead
of CDONTS, as it provides much more granularity and flexibility.

Windows Management Instrumentation (WMI)

The Microsoft Windows Management Instrumentation (WMI) service is an abstraction
layer that provides programmatic interfacing with system resource data. This includes
hardware and software but also includes security and security context features. For a
quick example of what WMI enables, open the Computer Management utility in
Windows 2000 or Windows XP. Just about everything you can find in that collection of
information is exposed by the WMI interfaces. WMI is accessible by any ActiveX
programming language, including Visual LISP.

Invoking WMI from within Visual LISP is painful stuff. This doesn’t mean that you
can’'t make use of its mighty power from VLISP though. One very painless route is to
invoke WMI operations from something that is built to handle them: VBScript. This
makes it possible to place the code into a VBS file and execute it using WSH via the
CSCRIPT command.

Let’s start by building a WMI script in VBScript named ClearLogs.VBS. This script will
clear al the local event logs and display a success or failure message at the end. Be
careful if you enter this code manually in an editor! Not only are the property names
rather long, but the wrapping caused by this printing produces incorrect results. Refer to
the sample files included with this book to get the source code for this and other code
shown throughout this book. The symbol = indicates a word-wrap that should not be
used when coding, but was required due to book formatting limitations.

Di m LogFi |l eSet 1, LogFileSet2, LogFileSet3, LogFile, RetVal, strinfo
strinfo = ""

Set LogFileSetl = ®»
Get Obj ect ("wi nmgnt s: {i mper sonati onLevel =i nper sonat e, (Backup) }"). ExecQuery(" SELECT * FROM
W n32_NTEvent LogFi | e WHERE Logfi | eName=' Application'")

For each Logfile in LogFileSetl
Ret Val = LogFile. d earEventl og()
If RetVal = 0 Then
strinfo = strinfo & "The Application Log Has Been Cl eared" & vbCrlLf
End I f
Next

set LogFileSet2 = ®
Get Obj ect ("wi nmgnt s: {i mper sonati onLevel =i nper sonat e, (Backup) }"). ExecQuery(" SELECT * FROM
W n32_NTEvent LogFi | e WHERE Logfi | eName=' Systenm ")

For each Logfile in LogFil eSet2
Ret Val = LogFile. d earEventl og()
If RetVal = 0 Then
strinfo = strinfo & "The System Log Has Been Cl eared" & vbCrlLf
End I f
Next

set LogFileSet3 = ®
Get Obj ect ("wi nmgnt s: {i mper sonati onLevel =i nper sonat e, (Backup) }"). ExecQuery(" SELECT * FROM
W n32_NTEvent LogFi | e WHERE Logfi | eName=' Systenm ")

For each Logfile in LogFileSet3

141



Ret Val = LogFile. d earEventl og()
If RetvVal = 0 Then
strinfo = strinfo & "The Security Log Has Been C eared"
End | f
Next
MsgBox strinfo, , "Event Log Status"

Now, to call this script from Visual L1SP open a shell process and execute a concatenated
request using CSCRIPT.

(setq scriptfile “c:\\nyscripts\\clearlogs.vbs”)
(startapp (strcat “CSCRIPT.EXE //nologo “ scriptfile))

This example only barely covers WSH and WMI capabilities. You can combine such
powerful features as Remote Scripting, Network Scripting and WMI to perform some
incredible feats of daring that no manager could resist rewarding you with lavish pay
increases and stock options. OK, so that’s going a bit far, but trust me, when you start
combining Visual LISP with other language tools and interfaces, there's no end in sight.

For more information on scripting using Microsoft VBScript or the Windows Scripting
Host, check out http://www.microsoft.com/scripting , as well as great web sites like
http://www.swynk.com , http://www.adminscripts.net and http://www.15seconds.com .

Working with Services

1‘“’!

When invoking Windows services, you normally use the GetObject method
(vlax-get-object) with the explicit prog-id identifier. One problem exists in that Visual
LISP cannot invoke certain services using this interface. Examples include the
LanmanServer service, and Windows Management Instrumentation (WMI) mentioned
above.

The only available workaround at the time of this publication is to provide a “wrapper”,
or intermediate component to perform the desired operations and return the results to
VLISP in a variant form. You can develop wrapper DLL’s for aimost any exposed
service using Visual Basic and invoke that DLL from Visua LISP or VBA and do
whatever you need to do.

142


http://www.microsoft.com/scripting
http://www.swynk.com
http://www.adminscripts.net
http://www.15seconds.com

Chapter 22 —Using Visual Basic DLLs with Visual LISP

Now that you've seen how to use interfaces to other applications, it's time to consider
making your own custom tools. More accurately, this involves developing your own
services as components that can be referenced by Visua LISP (or other ActiveX
language options like VB or VBA). For example, you can develop your own ActiveX
controls or DLLs and use them from Visual LISP. This opens up an unlimited potential
for creating efficient pathways to other resources from within Visual LISP.

One such example might be to define a set of database interface routines that execute
stored procedures and returns them as a list to your Visua LISP application. Then the
DLL can take care of the ADO connections and doing the commands and recordset
management itself. This frees you from having to worry about doing thisin Visual LISP,
which athough can be done, it is much more tedious to do than with more suitable
languages like Visual Basic or Delphi. Conversely, the use of a VLX application
function library allows you to provide a similar purpose for other LISP or Visua LISP
applications. Huh? Yes, you can wrap DLL functionality within VLX applications so
that even your callsto your DLL’sremain private and protected.

As an example, we'll create an ActiveX DLL that performs a simple function of
concatenating strings and returning a combined string result. This will involve using
Microsoft Visual Basic 6.0 and a new ActiveX DLL project (see Figure 22-1 below).

New Projeck I

icrosoft E - |

\ #h
Mew |E:-:isting| Recent |

e ':o -
H o —_—
Re Za F
Standard EXE  Activel EXE Ackivel WE Application
Contral Wizard
e A A L A
a\,
T —
WB Wizard Ackivey Activex Addin Data Project
Manager Document DIl Document Exe
P 4 Pea 4 Pea 4

Open
Cancel

Help

P,

[T Don't show this dislog in the future

Figure 22-1 — The Microsoft Visual Basic 6.0 New Project form.

143



Once you pick the Open button, the Visual Basic 6.0 development environment will open
and a default code window will be displayed. Change the name of the default project
from Projectl to vbStringClass, and change the name of the default class module from
Classl to vbStrings. Then, enter the code shown in Figure 22-2 in the code window to
define three distinct Public Functions. A public function is one that can be exposed to
any ActiveX consumer when the vbStringClass class is loaded.

i, vhstringClass - vbstrings (Code) =] 3

I(General} j IStrRt:u j

Public Function 2trConcat (strl As String, stri2 Ls String) As Variant
StrConcat = strl & str
End Function

s

Pubhlic Function 3trRevistr A= 3tring) As VWariant
StrRewv = ZtrReverse(str)
End Function

Pulblic Function 3ItrWer () A= Variant —
Jcrer = "1.00"

End Function
w

== il 1

Figure 22-2 — Creating a public function in the class module code window.

Once you have entered the code to define the class function, save the class module as
vbStrCat.cls and the project itself as vbStringClass.vbp. Then pick the File pulldown
menu and select the Make vbSringClass.DLL option. Pick the OK button on the form
that appears and Visual Basic will compile your class module into a DLL and register it
on the local operating system. ThisDLL isnow ready for use by any other program, be it
Visual LISP, Visual Basic, C/C++, Delphi, ASP or whatever. The next step is to load
thisDLL using its TypeLib interface within Visual LISP and try it out.

0}
1iP
Y ou should avoid using the variable/symbol name “acad” in your program code.
Some third-party VL X applications will apply symbol protection to this name and it may

cause you to experience an error message when you try to use that name in your code.

Open the Visua LISP editor, create a new code window and enter the following code,
with these three distinct LISP functions.

(vl -1oad-com
(defun vbStrCat (stringl string2 / $acad vbstrcls out)
(setq $acad (vl ax-get-acad-object))
(setq vbstrcls
(vla-GetlnterfaceChject $acad "vbStringCd ass. vbStrings")
)
(setq out (vlax-invoke-nmethod vbstrcls "StrConcat" stringl string2))
(vl ax-rel ease-obj ect vbstrcls)
(vl ax-rel ease-obj ect $acad)
out

144



)

(defun vbStrRev (string / $acad vbstrcls out)
(setq $acad (vl ax-get-acad-object))
(setq vbstrecls
(vla-GetlnterfaceObject $acad "vbStringC ass. vbStrings")

(setqg out (vlax-invoke-nmethod vbstrcls "StrReverse" string))
(vl ax-rel ease-obj ect vbstrcls)

(vl ax-rel ease-obj ect $acad)

out

)

(defun vbStrVer ( / $acad vbstrcls out)

(setq $acad (vl ax-get-acad-object))

(setq vbstrcls (vla-Getlnterfaceject $acad
"vbStringd ass. vbStrings"))

(setqg out (vlax-invoke-nethod vbstrcls "StrVer"))

(vl ax-rel ease-obj ect vbstrcls)

(vl ax-rel ease-obj ect $acad)

out

)

Figure 22-3 —Visual LISP code to implement the DLL class functions.

Each (def un) function uses the AcadApplication object method “ GetInterfaceObject” to
fetch your registered DLL from the operating system and expose the class functions
within your Visual LISP code. Notice how the objects are explicitly released before
returning result values.

1«ir'

When working with Visua Basic, it is important to be careful about defining
Functions as opposed to Sub routines. Functions can return values, Subs cannot. Also, if
you fail to use the Function=Result return at the end of a given function, the return will
be nil to your LISP expressions. Y ou might expect an ActiveX error to be generated, but
this is not the case. Also, you must define the return data type as a Variant for all
Functions in order to use them with VLISP. If you retrun some other data type, it will
cause an ActiveX error in your LISP code because it expects a Variant data type.

Now, load this Visual LISP code into AutoCAD and test it by entering these function
examples following at the AutoCAD command prompt:

Command: (vbStrCat “THE " “DOG')

This should return something like the following result:

Initializing VBA System..“THE DOG’
Command: (vbStrRev “THE DOG BARKED') returns “DEKRAB GOD EHT”
Command: (vbStrVer) returns “1.00"

This is a very smple example and is only intended to demonstrate that you can develop
components in other language tools and use them from Visual LISP and other language

145




environments to get the job done. Note that the first time you reference an imported
function like this, you will see a notice saying “Initializing VBA System...” just before
theresult isreturned. Thisis because AutoCAD uses the VBA system services to interact
with ActiveX DLL components that involve certain ActiveX functions. After the first
invocation in a given drawing session, you will not see that message again, only the
return value.

Registering DLLs

If you plan to use this approach, you need to be aware of how DLL components are used
and how to register them on a given computer. When you compile an ActiveX DLL in
Visual Basic, it handles this chore for you on your local machine. But other users on
other machines will have to register the DLL another way before it can be used on their
machine. The Windows REGSVR32 command is used to manually register DLL
components a given machine. The syntax is REGSVR32 filename.dll where filename.dl|
is the full path and filename to where the DLL resides (it can be local or on a network
share).

For example, if you were to deploy this DLL we created above on another machine, and
you had copied the vbStringClassDLL file to a network folder named
G:\acadsupport\components\vbStringClass.DLL you would use the following command
on each client computer:

C.\ >REGSVR32 G \ ACADSUPPORT\ COMPONENTS\ VBSTRI NGCLASS. DLL

This can be done from any command prompt (on that local machine), or through a
SHELL operation from within AutoCAD (again, on that local machine), or
programmatically within Visual LISP using some code to check for the registration and
taking care of registering the DLL if it hasn’'t already been registered on the machine.

Re-Registering DLLs

Whenever you release an updated version of your custom DLL it will also receive a new
GUID identifier. This lets other applications know what specific version of your DLL
they are using. In order to update a DLL on another machine, you must first un-register it
using REGSVR32 /U and then reregister it using REGSVR32 to instal the newer
verson and register the new GUID. The function shown in figure 14-1
(dl lunregister) can be used from within VLISP to unregister a known DLL. Then
you can usethe (dI | regi st er) function to register a newer version.

This type of approach is very common and forms the basis of how many web
development environments work. One example is with ASP web programming and the
use of MTS (Microsoft Transaction Server) with Visual Basic DLLs. The ASP code can
invoke the DLL just as we can do with Visual LISP, in order to hand off complex
processing tasks to a dedicated component, which in turn returns the result to ASP for use
within rendering a web page to the user. DLL libraries provide their functionality to all
ActiveX languages at once. So when you create a new DLL, remember that it can

146



normally be used by VLISP, VBA, VB, C/C++, C#, Delphi, Java, ActivePerl, WSH and
many more languages.

Finaly, if you do decide to pursue creating custom DLL components, you should
seriously consider using the Class Builder Wizard add-in for Visua Basic 6.0. This
handy utility helps you define a new class and develop an object model for your own
DLL classes. This opens up yet greater possibilities to you as well as other programmers
using other ActiveX-enabled languages in your organization.

14?'

Now, would be a good time to start taking your VB programming buddies out to
lunch and buying them a beer or two. While it's cool to learn other programming
languages, it's even cooler to form partnerships or teams where each member can
contribute a unique skill set to help solve complex tasks in creative ways. Most
experienced VB programmers, like programmers of all language tools, have built
libraries of powerful gadgets that could unlock enormous potential for you as an
AutoCAD developer. While you're out scouting for talent, don’t forget the folks the
work with other powerful tools like Delphi, C++, Scripting, SQL, Java, XML, and even
web developers.

147



Chapter 23 — Working With Dialog Forms

Since Visua LISP hasn't added anything new to the world of DCL interfacing from
LISP, this chapter will instead focus on how DCL can be used within VLX applications.
There are quite a few methods for dealing with callbacks from dialog forms. | am not
going to preach any particular method to you. The methods shown herein are only my
own habitual ways of working with DCL callbacks. If you have other preferences, please
continue on your merry way unless you feel like changing habits now.

Referencing DCL Definitions

In the old days of AutoLISP, you had two files for any application that used a dialog
form. You had the LSP file and the DCL file, and both had to be present and available to
the user at runtime to execute the application successfully. With the new VLISP
Application features, you can now compile the LSP and DCL source code files into a
single VLX application file to provide to your users. This not only protects your source
code somewhat, but it makes for easier deployment and maintenance, especially in a
networked or distributed environment.

For example, in AutoLISP you might setup a L SP application to access the DCL source
asfollows (again, your style may be different. Thisisfor example only):

(cond
( (setq dcfl (findfile “nydialog.dcl”))
(setqg dcid (load_dialog dcfl))
(cond
( (new_di al og “nyforni dcid)
...do sonmething with dialog callbacks here. ..
(action_tile “accept” “(done_dialog 1)")
(action_tile “cancel” “(done_dialog 0)")
(start_di al og dl gstatus)
(unl oad_di al og dci d)
)
)

( T (princ “\'nUnable to locate DCL formfile!”) )
)

You can still use this “legacy” code with only very minor changes to enable it to be
compiled into a Visual LISP VLX application file. Simply remove the check for the file
location and assume it is aways there (because, when you compileit into the VLX it will
be). You would only need to check for the form loading itself, which is aready being
donein the origina code.

(setq dcid (load_dial og “mnydial 0g”))
(cond
( (new_di al og “nyforni dcid)
...leave the rest as-is...
)
)

148



As you can see, it also shortens your code a bit. You can use this to help guide you in
porting your older AutoL ISP dialog form applicationsinto Visual LISP VLX applications
by referring to chapter 13 for how to build VLX applications.

Dynamic Dialog Interaction

A very common feature requirement in dial og-based applications is the need to have form
features dynamically change in response to user interaction. Such things as changing an
image or edit box values based upon selections in other parts of the form. Probably the
most common is the need to enable or disable features based upon user selections.

The following example will step through how to make a dialog form that enables or
disables certain features based upon selections in another part of the form. First, we'll
show the example dialog form definition:

nyform: dial og {
|l abel = “My Dialog Fornt;
orow {
: boxed_radio_col um {
key = "“viewpoint”;
| abel = “ViewPoint Options”;

: radio_button {key = “TOP"; |abel = “Top”; }
: radio_button {key = “SIDE"; label = “Side”; }
: radio_button {key = “FRONT”; |abel = “Front”; }
}
: boxed_col um {
| abel = “Cther Options”;
: edit_box {key = “TOP2"; label = “Top Scale”; edit_width = 6; }
: edit_box {key = “SIDE2"; |abel = “Side Scale”; edit_width = 6; }
: edit_box {key = “FRONT2”; l|label = “Front Scale”; edit_width = 6; }

}

ok _cancel ;

}

Now, we'll see how to enable only one of the edit-boxes at a time, with respect to which
of the radio-buttons are selected on the left-hand side of the form. To do this, we'll
define a few functions. The first will handle the dialog form and the call-backs using an
(action_tile) cal-back for theradio_column “viewpoint”, which will receive the key-
name of the radio button selection within its collection. Then we can use that key name
to perform a conditional action using the other two functions to manipulate the other tiles.

(defun CMWform( / *error* dcid ok choice)
(defun *error* (s)
(princ (strcat "\nError: " s))
(vl-bt)
(princ)
(setqg dcid (load_dial og "nydial og"))

(if (null $MYFORML) (setq $MYFORML "TOP"))
(cond

149



( (new_di al og "nyfornt dcid)
(set_tile "viewoint" $MYFORML)
(change- f or m $MYFORML)
(action_tile "viewpoint" "(setq choice (change-form $val ue))")
(action_tile "accept” "(setq ok 1)(done_dialog)")
(action_tile "cancel" "(setq ok 0)(done_dialog)")
(start_dial og)
(unl oad_di al og dci d)
(if (= ok 1)
(if choice (setq $MYFORML choice))
)

( T (princ "\nUnable to load formfromdial og definition.") )

)
(princ)

(defun change-form (val)
(cond
( (= val "TOP")
(rmode-tiles ' ("TOP2") 0)
(rmode-tiles ' ("SIDE2" "FRONT2") 1)

( (= val "SIDE")
(rmode-tiles ' ("SIDE2") 0)
(rmode-tiles ' ("TOP2" "FRONT2") 1)

( (= val "FRONT")

(rmode-tiles ' ("FRONT2") 0)
(rmode-tiles ' ("TOP2" "SIDE2") 1)

(defun node-tiles (tiles node)
(foreach tile tiles (node_tile tile node))

)

: Now simply follow the steps in Chapter 13 to compile
VieaPain Opion Oiber O both of these source files into a single VLX application
ﬁ‘ Top {Tonswe L] file and load it into your AutoCAD session. Type in

x|

My Dialog Form

o seescse [ MYFORM to run the command and see how the edit
Front Front Geale ’—| -
et | boxes react when you select the radio buttons.

Your dial og display should | ook sonething |ike
this exanple inmage if you conpile and load it correctly.

Controlling Images From Call-Backs

Now that we' ve seen how to enable and disable tiles from call-back values, let’s try going
atiny step farther and use this to change the slide image in a dialog form image tile. To
demonstrate this, you should load the sample code dide files into a common folder and
make sure the folder is in your default search path. Once we compile the VLX

150



application and load it, it will still need to find the .SLD files used for the image tile
display. Unfortunately, VLISP doesn't provide a means to compile slide files into the
VLX asit doesfor DCL, DVB, INI and LSPfiles.

Let’'s take the dialog form defined above and modify it slightly to add a single image tile:

nyform: dial og {
|l abel = “My Dialog Fornt;
orow {
: boxed_col um {
| abel = “Preview;
: image_button {
key = "image”;
hei ght = 10;
aspect _ratio = 1.25;
color = 0O;
fixed_height = true;
fixed wdth = true;

}

boxed_radi o_col um {
key = "“viewpoint”;
| abel = “ViewPoint Options”;

: radio_button {key = “TOP"; |abel = “Top”; }
: radio_button {key = “SIDE"; |abel = “Side”; }
: radio_button {key = “FRONT”; |abel = “Front”; }
}
: boxed_col um {
| abel = “Cther Options”;
: edit_box {key = “TOP2"; |label = “Top Scale”; edit_width = 6; }
: edit_box {key = “SIDE2”; l|label = “Side Scale”; edit_width = 6; }
: edit_box {key = “FRONT2”; label = “Front Scale”; edit_width = 6; }
}
}
ok _cancel ;

}

In order to properly control the image tile, we should define a special function that takes
care of finding the image file and adjusting scaling to suit the DCL configuration. You
can load this example from MyDialog2.L SP in the sample files collection for this book.
If you look closely, you'll notice that this function accepts either a SLD or SLB (dide-
library) file, thereby making it possible to bundle your sides into a SLB and keep the
total deployment down to just the VLX and SLB files.

(defun slide-show
(tile sld slb / wky xc yc sldnam
(cond
( (or
(and slb (findfile slb))
(findfile sld)
)
(setq
xc (dinmx_tile tile)
yc (diny_tile tile)
)

(start_image tile)

151



(fill _inmage 0 O xc yc 0)
(if slb

(progn
(setqg slb (vl-filenane-base slb))
(setqg sldnam (strcat slb "(" sld ")" ))

)

(setq sl dnam sl d)

)
(slide_image 0 0 xc yc sldnam
(end_i mage)

( T (alert "Slide inmage file not found...") )

)
)

Assuming that you use the provided dlide files TOP.SLD, SIDE.SLD and FRONT.SLD
and place them in afolder that isin the current default search path, you should be able to
compile and load the MYDIALOG2.VLX and run it successfully.

152



Chapter 24 — Examples of Common Tasks

This chapter will suggest some ideas for solving common tasks that combine aspects of
previous chapters. You may find some of these useful, maybe not. In any case, they are
provided simply to demonstrate how VLISP can be used to do things AutoLISP alone is
not capable of doing.

Example 1 — Dumping a List of Layer Properties

This example involves the task of producing an HTML report of all layersin the current
drawing, including their properties (color, linetype, etc.) and opening the report in a web
browser after completion. When loaded, the command is DUMPLAY ERS.

(def un C. DUVPLAYERS
( / acad doc dwg layers nane col Itp Iw pst onoff frz dat
path olist outfile output)

(vl -1oad-com
(setq acad (vl ax- get - acad- obj ect)
doc (vl a- get - acti vedocunent acad)

dwg (vl a- get - nane doc)
pat h (vl a-get-path doc)
| ayers (vla-get-layers doc)

(vl ax-for each |layers
(setq nanme (vl a-get-nanme each)
col (itoa (dsx-get-color each));; see Chapter 25
Itp (vl a-get-1linetype each)
| wt (itoa (vl a-get-lineweight each))
pst (vl a-get - pl ot styl enane each)
onoff (if (= :vlax-true (vla-get-layeron each))
“ON' “OFF”

frz (if (= :vlax-true (vla-get-freeze each))
“FRQZEN' “ THAVED'

dat (list nane col Itp Iw pst onoff frz)
olist (cons dat olist)

); vlax-for

(vl ax-rel ease-obj ect | ayers)
(vl ax-rel ease-obj ect doc)
(vl ax-rel ease- obj ect acad)

(cond
( olist
(setq outfile (strcat (vl-filename-base dwg) “.htni))
(setq outfile (strcat path outfile))
(cond
( (setq output (open outfile “w'))
(wite-line “<htnl>" output)
(write-line “<head><title>" output)
(wite-line (strcat “Layer Dunp: “ dwg) output)
(wite-line “</title></head><body>" out put)
(wite-line (strcat “<b>Drawi ng: “ dwg “</b><br>") output)
(write-line “<table border=1>" output)
(foreach layset olist

153



(wite-line “<tr>" output)
(foreach prop | ayset
(wite-line (strcat “<td>" prop “</td>") output)

(wite-line “</tr>" output)
); foreach |ayer set
(wite-line “</tabl e></body></htm >" output)
(cl ose out put)
(setq output nil)
(princ “\nReport finished! Opening in browser...”)
(vl-cnmdf “_.browser” outfile)

)
( T (princ “\nUnable to open output file.”) )
)

( T (princ “\nUnable to get layer table information.”) )

)
Example 2 — Set All Entities to “ByLayer”

This example involves the task of assigning al entities in the current working space to
“ByLayer” with respect to Color, Linetype, and Lineweight properties.

(defun C: BYLAYER
( / acad doc ssall i obj)
(vl -1 oad-com
(setq acad (vl ax-get-acad- object)
doc (vl a-get-activedocunent acad)

(vl a-startundonmar k acad)
(vl a- zoomext ent s acad)

(cond
( (setq ssall (ssget “x”)); get all entities
(setqg i 0)
(repeat (sslength ssall)

(setqg obj (vl ax-enane->vl a-object (ssnanme ssall i)))
(dsx-put-col or obj acBylLayer);; See Chapter 25
(vl ax- put-property obj “Linetype” “BylLayer”)
(vl ax- put-property obj “Linewei ght” acLnW ByLwDef aul t)
(vl ax-rel ease-obj ect obj)
(setg i (1+ 1))
)
)

(vl a- endundonar k acad)
(princ “\nFinished processing all entities.”)
(princ)

Example 3 — Purge, Audit and Save all Opened Drawings

This example involves the task of iterating through the Documents collection and
performing a Purge, Audit and Save operation on each document.

(defun C:DOALL ( / $acad docs dnumt his)

(vl -1 oad-com
(setq $acad (vl ax-get-acad-object)

154



docs (vl a-get-docunents $acad)
this (vla-get-activedocunent $acad)
dnum (vl a- get - count docs)

(vl ax-for each docs
(vl a-purgeal | each)
(vla-auditinfo each T)
(vl a-save each)

(vl a-get -acti vedocunent this)
(vl ax-rel ease-obj ect docs)
(vl ax-rel ease-obj ect this)
(vl ax-rel ease-obj ect $acad)
(princ (strcat “\nProcessed “ (itoa dnum) “ draw ngs.”))
(princ)
)

Example 4 — Zoom Extents and Save all Opened Drawings

This example involves iterating through each opened document, zooming to extents in
the current (active) space and tab, and saving the document. Finadly, it returnsto the
starting document when finished.

(defun C.ZOOVALL ( / $acad docs dnhnumthis)
(vl -1 oad-com
(setq $acad (vl ax-get-acad-object)
docs (vl a-get-docunents $acad)
this (vla-get-activedocunent $acad)
dnum (vl a-get-count docs)

(vl ax-for each docs
(vl a- put - Acti veDocunent each)
(vl a- ZoonExt ent s $acad)
(vl a-save each)

(vl a- put -acti vedocunent this)

(vl ax-rel ease- obj ect docs)

(vl ax-rel ease-obj ect this)

(vl ax-rel ease-obj ect $acad)

(princ (strcat “\nProcessed “ (itoa dnum) “ draw ngs.”))

(princ)

155



Chapter 25 - Changes in AutoCAD 2004

I’m not going to provide an exhaustive review of every difference introduced between
AutoCAD 2002 and 2004. 1I'll leave that for Autodesk and other people to provide. The
following section describes some of the changes since AutoCAD 2002 with respect to
the ActiveX interface to AcadPreferences collections, as well as the System Variables
collection. Items shown in blue are new since AutoCAD 2002. Items shown in red are
modified since AutoCAD 2002.

General Changes

The most significant general programming change is the conformity to Microsoft
guidelines. In particular: Windows XP compliance. The result is a completely revised
path and registry scheme that embraces the recommendations of Microsoft. Users no
longer must be members of the local Administrators, or Power Users group to launch
AutoCAD. Nor do they require hacked regsistry permissions or policy templates to open
“holes’ into the registry for restricted user access. The trade-off is added complexity, not
much, but particularly under the user profile folder tree. This will become apparent as
you examine the new folder paths under the AcadPreferenceskiles collection (see below).

ObjectARX (and ObjectDBX as well) have been updated and recompiled with Microsoft
Visual C++ 7.0 (part of Visua Studio .NET). The result is that ARX and DBX
components built for use on versions prior to AutoCAD 2004 will no longer work. If you
have any such works, you will need to recompile them on VC++ 7.0 for use with
AutoCAD 2004. Case in point is DOSlib by Robert McNeel Inc. (www.mcneel.com)
which has released version 6.03 specifically for use with AutoCAD 2004.

Type Libraries must now be invoked and addressed using their version-specific GUID
names. In other words, where you might have invoked AutoCAD as
Aut oCAD. Appl i cati on, YOUu NOW must use Aut oCAD. Appl i cati on. 16.

Visual LISP Changes

Technically speaking, nothing has changed functionally with respect to Visual LISP.
However, there are a few new oddities. The VLIDE.DSK file which stores your IDE
configuration settings is now stored under your Windows Profile folder (on Windows
2000 and XP systems: \Documents and Settings\<username>\Local Settings\Application
Data\Autodesk\AutoCAD\<language-code>\VVLIDE.DSK).

The (vlax-get) function works fine, however the (vlax-put) function is unpredictable. In
some cases it does nothing (does not apply a new value to a specified property). The
function (vlax-invoke) works reliably from my tests. For VLISP programming in
AutoCAD 2004, you should make a habit of using the full property and method
inferences to avoid problems. For example, if you've been using (vlax-get object
propertyname), you should instead use (vla-get-propertyname object), or even (vlax-get-
property object propertyname).

156



True Color Properties

As for VLISP (or other) coding changes, the addition of “true color” properties requires
an adjustment to some code. This actually turned out to be the only significant coding
changes | was forced to address. Once you get familiar with RGB color mapping this
won't be amajor concern for you.

Here is an example function you can use to hide the mess from the rest of your code.
Instead of using (vla-put-color) and (vla-get-color), you can use custom functions like
these. I’m cheating a bit here by using the DOSlib 6 (dos_acitorbg) function, but thisis
ony one possible solution. Thanks for Jon Szewczak for this example:

(defun dsx-put-color (obj num/ av)
(setq av (substr (getvar "acadver") 1 2))
(if (>= av "16")
i f Aut oCAD 2004. .
(dsx-put - col or 2004 obj num)
;; 1f any other version..
(dsx-put-property obj "Color" num

)

(defun dsx-put-col or2004 (obj num/ oCol or num st)
(if
(not
(vl-catch-all-error-p
(setq oCol or
(vl-catch-all-apply 'vla-get-TrueColor (list obj))
)
)
)

(progn ;; if getting the TrueCol or object of '"obj' did not return a vla-error
(cond
( (= "INT (type nun)) ;; if an ACl index integer is passed

; if obj is atable record (i.e. Layer)...
(if (vl-string-search "Table" (vla-get-ObjectName obj))
(progn
(vl a- put - Col or Met hod oCol or acCol or Met hodByAC! )
(vl a- put - Col or I ndex oCol or num

)
(if (= numacBylayer) ;; if obj is an entity
(progn ;; if numis to be bylLayer
(vl a- put - Col or Met hod oCol or acCol or Met hodByLayer)
(vl a- put - Col orl ndex oCol or acByLayer)
)
(progn ;; if numis to be an override
(vl a- put - Col or Met hod oCol or acCol or Met hodByAC! )
(vl a- put - Col or I ndex oCol or num
)
)
)

)
( (and (listp num (= (length num 3)) ;; an RGB list is passed
(vl a- put - Col or Met hod oCol or acCol or Met hodByRGB) ;; set the nethod
;: set the RGB val ues
(vl ax-i nvoke-met hod oColor 'SetRGB (nth 0 nunm) (nth 1 num) (nth 2 num)

)

;; stuff color object back into parent object
(vl a- put - TrueCol or obj oCol or)

clean up the nmenory stack of unused objects
(vl ax-rel ease-obj ect oCol or)

)

(vl -catch-all-error-nmessage oCol or)

157



)
(defun dsx-put-property (obj prop val / try)

(cond
( (and
(vl ax- property-avail abl e-p obj prop)
(not
(vl-catch-all-error-p
(setq try
(vl-catch-all-apply 'vlax-put-property (list obj prop val))
)
)
)
)
val

)
)
)

(defun dsx-get-property (obj prop / try)

(cond
( (and
(vl ax- property-avail abl e-p obj prop)
(not
(vl-catch-all-error-p
(setq try (vl-catch-all-apply 'vlax-get (list obj prop)))
)
)
try

;;; Provides a concatenated string result of the RGB color |ist using
;o comma delimters. For exanple, if the RGB list is (255 200 155), the
;o return val ue woul d be “255, 200, 155”

(defun dsx-acitorgb (cnum/ cnap)
(setq cmap (dos_acitorgb cnum)
(strcat
(nth O crmap) "," (nth 1 cmap) "," (nth 2 cnap)

)
)

Important: It is worth noting that Color-Based Plot Styles (CTB) do not work with
drawings that contain true color mapping to entitiess or layer tables. The result isthat the
plot style is simply ignored, both during preview and final output. This could possibly
affect code you' ve written to automate plotting via the ActiveX interfaces. For example,
if you assign color 255,148,228 to a given layer and attempt to use monochrome.ctb, the
result will still be acolor print (verify using Preview beforehand).

Changes to the ObjectDBX Interface

Due to the updated version of ObjectDBX in AutoCAD 2004, you need to replace your
references to the DLL from “AxDb15.dllI” to “AxDbl6.dll”. As mentioned in the
beginning section of this chapter, the GUID string identifier must be updated from
“ObjectDBX.AxDbDocument” to “ObjectDBX.AxDbDocument.16” to denote the class
version. This is actually a Microsoft guideline and was adopted during the porting of
AutoCAD 2004 to using Microsoft Visual C++ 7.0 (part of Visual Studio.NET).

158



Changes to External Referencing of AcadApplication

As with ObjectDBX, you need to update your references to the AutoCAD Application
object when invoking it from an external source. This doesn't really affect Visua LISP
since it works from within AutoCAD, but it's good to know nonetheless. The new GUID
string name is “AutoCAD.Application.16”. If you're developing with Microsoft Visual
Studio 6 or .NET, or Borland Delphi or some other “visual” development product, thisis
not really an issue as it is usually apparent while setting a project reference to the
required interface library.

Changes to AcadPreferences

The Preferences collections have been revised somewhat to suit some of the new changes
in AutoCAD 2004. Among these are pathing, display, and a few others. It is worth
noting that the Profiles collection has not been modified.

For the sake of clarity and improved printing | have substituted <%apppath%=> for the
new default user profile path used by AutoCAD 2004 on Windows 2000 and XP
operating systems: “ vauser prof i | e% Appl i cati on Dat a\ Aut odesk\ Aut 0CAD

2004\ R16. 0\ enu” and I’ve substituted <% ocal pat hoe for “omser profil e% Local
Settings\Application Data\ Aut odesk\ Aut oCAD 2004\ R16. 0\ enu”

;| AcadPr ef er ences:

; This object specifies the current AutoCAD settings

; Property val ues:

; Application (RO = #<VLA-OBJECT | AcadAppl i cation 00af 9594>

; Di splay (RO = #<VLA-OBJECT | AcadPreferencesDi splay 037faa6c>

; Drafting (RO = #<VLA OBJECT | AcadPreferencesDrafting 037f aa68>
; Files (RO = #<VLA- OBJECT | AcadPref erencesFil es 037faa70>

; penSave (RO = #<VLA- OBJECT | AcadPr ef erences(penSave 037faa74>
; Qut put (RO = #<VLA- OBJECT | AcadPr ef erencesQut put 037f aa78>

; Profiles (RO = #<VLA OBJECT | AcadPreferencesProfiles 037faa7c>
; Sel ection (RO = #<VLA- OBJECT | AcadPref erencesSel ecti on 037f aa80>
; System (RO) = #<VLA- OBJECT | AcadPr ef er encesSyst em 037f aa84>

; User (RO = #<VLA OBJECT | AcadPref erencesUser 037f aa88>

: No net hods

| AcadPr ef er encesDi spl ay:
Thi s object contains the options fromthe Display tab on the Options dial og

Not e: DockedVi si bl eLi nes i s ignored

; Property val ues:

; Application (RO = #<VLA-OBJECT | AcadAppl i cation 00af 9594>
; Aut oTr acki ngVecCol or = unsupported result type: 19

; CursorSize = 5

; Di spl ayLayout Tabs

= -1
Di spl ayScreenMenu = 0
Di spl ayScrol | Bars = -1

DockedVi si bl eLi nes = 3

G aphi csW nLayout Backgr ndCol or = unsupported result type: 19
G aphi csW nhbdel Backgr ndCol or = unsupported result type: 19
H storyLines = 400

| mageFraneH ghlight = 0

Layout Cr eat eVi ewport
Layout Cr osshai r Col or

0
unsupported result type: 19

159



; Layout Di spl ayMargins = -1
; Layout Di spl ayPaper = 0

; Layout Di spl ayPaper Shadow = 0

; Layout ShowPl ot Setup = 0

; MaxAut oCADW ndow = 0

; Mbdel Crosshai r Col or = unsupported result type: 19
; ShowRasterl mage = 0

; Text Font = "Courier"

; Text Font Si ze = 10

; Text FontStyle = 0

; Text W nBackgr ndCol or = unsupported result type: 19
; Text WnText Col or = unsupported result type: 19

TrueCol orl mages = -1
XRef Fadel ntensity = 50
No net hods

;| AcadPref erencesDrafting:
Thi s object contains the options fromthe Drafting tab on the Options dial og
Property val ues:
Al'i gnment Poi nt Acquisition = 0
Application (RO = #<VLA-OBJECT | AcadAppli cation 00af 9594>
Aut oSnapAperture = 0
Aut oSnapAper tureSi ze = 10
Aut oSnapMagnet = -1
Aut oSnaphar ker = -1
Aut oSnapMar ker Col or = 2
Aut oSnaphMar ker Size = 5
Aut oSnapTool tip = -1
Aut oTrackTool tip = -1

Ful | ScreenTracki ngVector = -1
Pol ar Tr acki ngVector = -1
No net hods

;| AcadPr ef erencesFi | es:

; This object contains the options fromthe Files tab on the Options dial og
; Property val ues:

; AltFontFile = "sinpl ex.shx"

; Al t Tabl et MenuFile = ""

; Application (RO = #<VLA-OBJECT | AcadAppl i cation 00af 9594>

; Aut oSavePat h = "<%userprofil e%\\Local Settings\\Tenp\\"

; Col or BookPath = "C:\\Program Fi | es\\ Aut oCAD

2004\ \ support\\col or; <%apppat h%\\support\\col or"

; ConfigFile (RO = "<% ocal pat h%\\ acad2004. cf g"

; CustonDi ctionary = "<%apppat h%\ \ support\\sanpl e. cus”

; Defaul tInternet URL = "http://ww. aut odesk. cont'

; DriversPath = "C: \\Program Fi | es\\ Aut oCAD 2004\ \ dr v"

; FontFi |l eMap = "<%rof i | epat h%\\ support\\acad. f np"

; Hel pFil ePath = "C: \\ Program Fi | es\\ Aut oCAD 2004\\ hel p\\ acad. chnf

; LogFi | ePath = "<%pppat hoe\\ "

; Mai nDi ctionary = "enu"

; MenuFil e = " <%apppat h%\ \ support\\acad"

; Post ScriptPrologFile = ""

; PrinterConfigPath = "<%apppat h%\\pl otters"

; PrinterDescPath = "<%pppat h%\\pl ot ters\\ PVP Fi | es"

; PrinterStyl eSheet Path = "<%pppat h%\\ Pl ot Styl es"”

; PrintFile = "."

; Print Spool erPath = "<%serprofile%\\Local Settings\\Tenp\\"

; Pri nt Spool Executable = ""

; Support Path = "<%pppat h%\\ support; C:\\ Program Fi | es\\ Aut oCAD
2004\ \ support; C:\\ Program Fi | es\\ Aut oCAD 2004\ \fonts; C:\\ Program Fi | es\\ Aut oCAD
2004\ \ hel p; C:\\ Program Fi | es\\ Aut oCAD 2004\ \ express; C:\\ Program Fi | es\\ Aut oCAD
2004\ \ support\\col or"

; TenpFil ePath = "<%serprofile%\\Local Settings\\Tenp\\"

160


http://www.autodesk.com

Tenpl at eDngPat h = " <% ocal pat h%\\ Tenpl at e"
TenpXref Path = " <%userprofil e%\\LOCALS~1I\\ Tenp\\"
TextEditor = "Internal”
Text ureMapPat h = " <% ocal pat h%\\t ext ures”
Tool Pal ettePat h = "<%pppat h%\\ support\\ Tool Pal ette"
Wor kspacePat h = "<%pppat h%\\ Data Li nks"
Met hods support ed:
Get ProjectFilePath (1)
Set Proj ectFil ePath (2)

| AcadPr ef erencesOpenSave:
Thi s object contains the options fromthe Open and Save tab on the
Options dial og
Property val ues:
Application (RO
Aut oAudit = 0
Aut oSavel nterval = 10
CreateBackup = -1
DermandLoadARXApp = 3
Ful | CRCval idation = 0
I ncrenent al SavePercent = 50
LogFileOn = 0
MRUNunber (RO = 9
Proxylmage = 1
SaveAsType = 24
SavePrevi ewThunbnai | = -1
ShowPr oxyDi al ogBox = -1
TenpFi | eExtensi on = "ac$"
Xr ef DemandLoad = 2
No net hods

#<VLA- OBJECT | AcadAppl i cati on 00af 9594>

| AcadPr ef er encesQut put :
Thi s object contains the options fromthe Qutput tab on the Options dial og
Property val ues:

Application (RO = #<VLA-OBJECT | AcadAppl i cation 00af 9594>

Def aul t Qut put Devi ce = "<%apppat h%\\ pl otters\\ Pl otterDevicel. pc3"

Def aul t Pl ot St yl eFor Layer = "ByCol or"

Def aul t Pl ot St yl eFor Cbj ects = "ByCol or™"

Def aul t Pl ot Styl eTabl e = "nonochr one. ct b"

OLEQuality =1
Pl ot Legacy = 0
PlotPolicy = 1
Print erPaperSi zeAlert = -1

PrinterSpool Alert =0
UselLast Pl ot Settings = 0
No net hods

| AcadPr ef erencesProfil es:
Thi s object contains the options fromthe Profiles tab on the Options dial og
Property val ues:

ActiveProfile = "defaul t"

Application (RO = #<VLA-OBJECT | AcadApplication 00af 9594>
Met hods support ed:

CopyProfile (2)

Del eteProfile (1)

ExportProfile (2)

Get Al I Profil eNames (1)

InportProfile (3)

RenaneProfile (2)

Reset Profile (1)

| AcadPr ef er encesSel ecti on:
Thi s object contains the options fromthe Selection tab on the Options dial og

161



; Note: There is no property for hover grip color, use GRI PHOVER sysvar

; Property val ues:

; Application (RO = #<VLA-OBJECT | AcadAppl i cation 00af 9594>
; Di splayGips = -1

; Di spl ayGi psWthinBl ocks = 0

; GipColorSelected = 1

; G i pCol or Unsel ected = 160

; GipSize =5

; Pi ckAdd = -1

; Pi ckAuto = -1

; Pi ckBoxSi ze = 3

; PickDrag = 0

; PickFirst = -1
; PickGoup = -1
: No net hods

;| AcadPr ef er encesSyst em

; This object contains the options fromthe Systemtab on the Options dial og
; Property val ues:

; Application (RO = #<VLA-OBJECT | AcadAppl i cation 00af 9594>
; BeepOnError = 0

; Di spl ayOLEScale = -1

; Enabl eStartupDialog = -1

; LoadAcadLspl nAl | Docunents = 0

; Showwar ni ngMessages = -1

; Si ngl eDocunent Mbde = 0

; StoreSQ.I ndex = -1

; Tabl esReadOnly = 0

: No net hods

;| AcadPr ef er encesUser :

; This object contains the options fromthe User tab on the Options dial og
; Property val ues:

; ADCI nsert Uni t sDef aul t Sour ce 1
; ADCl nser t Uni t sDef aul t Tar get 1
; Application (RO = #<VLA-OBJECT | AcadAppli cation 00af 9594>
; HyperlinkD spl ayCursor = -1

; HyperlinkDi spl ayTooltip = -1

; Keyboar dAccel erator = 1

; KeyboardPriority = 2

; SCMCommandMbde = 1

; SCVDef aul t Mode = 1

; SCVEdi t Mode = 1
; SCMIi meMode = -1

; SCMIi neVal ue = 250

; Shor t Cut Menubi splay = -1
: No net hods

; The SCMIi neMbde val ue controls whether the right-click threshold control is
enabl ed or not. The SCMIi neVal ue val ue controls the delay threshold if
SCMTi neMode is set to True (-1).

System Variables

Not e: %mserprofile%is substituted in the path val ues below for the sake of
clarity and printing only. The actual values use the user profile path as it

is expanded on the client machine. |Itens in green indicate an update since
2002. Itenms in red indicate a new system vari abl e.
ACADVER "16.0" (read only)

162



CLEANSCREENSTATE 0 (read only)

GFANG 0

GFCLR1 " RGB: 000, 000, 255"
GFCLR2 "RGB: 255, 255, 153"
GFCLRLUM 1. 000000000
GFCLRSTATE 1
GFNAVE 1
GFSHI FT 0
GRI PHOVER 3
GRI POBIJLIMT 1
GRI PTI PS 1
| NTERSECTI ONCOLOR 257
| NTERSECTI ONDI SPLAY OFF

00

LOCALROOTPREFI X

MIEXTFI XED

MIJl GSTRI NG
MYDOCUMENT SPREFI X
OBSCUREDCCOLOR
OBSCUREDLTYPE
PALETTEOPAQUE

PEDI TACCEPT
REPORTERROR
ROAMABL EROCOTPREFI X

S| GAARN

STANDARDSVI CLATI ON
TRAYI CONS

TRAYNOTI FY

TRAYTI MEQUT
TSPACEFAC

XREFNOTI FY

New Commands

3DCONFIG

BMPOUT
CLEANSCREENON
CLEANSCREENOFF
HLSETTINGS
JPGOUT

MREDO

PNGOUT

PUBLISH

QNEW
REVCLOUD
SECURITYOPTIONS

“Yapppath%...”

0

"abc"
"<%userprofil e\ M Docunents"
257

0

0
0
1

"Y%apppat h% ... "

[EnY

(read only)

(read only)
(range fromO to 257 only)
(range fromO to 11 only)

(read only)

Configure 3D performance options such as Adaptive Degradation
(adjusts resol ution with respect to zoom status and viewpoints), as well
as many other features used by 3D solids and surfaces drawings
Export bitmap image file

Toggle cleanscreen display ON (same as CTRL+0)

Toggle cleanscreen display OFF (same as CTRL+0)

Configure hidden line behavior and display settings

Export JPEG imagefile

Multiple Redo

Export Portable Network Graphics (PNG) imagefile

Opens Design Publishing utility for publishing DWF files or batch
plotting to physical or virtual printer devices

Quick-New for creating a new drawing with default options
Revision Cloud (formerly part of Express Tools)

Configure digital signature security management options

163



SETIDROPHANDLER Configure I-Drop options

SIGVALIDATE Validate digital signature of current drawing

TIFOUT Export Tagged Image File format (TIF) imagefile
TOOLPALETTES Toggle Tool Palettes ON (same as CTRL+1)
TOOLPALETTESCLOSE Toggle Tool Palettes OFF (same as CTRL+1)

TRAYSETTINGS Configure editor system tray settings (display options)

WIPEOUT WipeOut region creation and editing (formerly part of Express Tools)
XOPEN XREF open

Modified Commands (Since AutoCAD 2002)

SAVEAS No more R14 DWG format option

WHOHAS Enhanced to use the Windows file abject handlers and uses a new
DWL log file (hidden) to store last-user of file on network.

WMFOUT Enhanced graphics formatting and display quality

TODAY Removed!

MEETNOW Removed!

ENDTODAY Removed!

VIEWRES Default is FastRes ON and facet resolution at 1000

Tool Palettes

Tool palettes are an interesting new feature in AutoCAD 2004. Not only do they take the
idea of toolbars to a new realm, they introduce XML as a default data storage medium
within AutoCAD. Even though DesignXML has been around for quite a while, it was
not actually an internally managed data format for storing and retrieving information for
routine AutoCAD functionality.

Tool palets are stored in a folder specified by the ToolPalettePath property of the
lacadPreferenceskFiles collection (see earlier mention). By default, the path is under the

user profile path (on Windows 2000 and Windows XP systems, this is under:
\ Docunents and Settings\<usernanme>\Application Data\Autodesk\ Aut oCAD

2004\ R16. 0\ <l anguage- code>\ Suppor t\ Tool Pal ett e\ Pal ettes\ and use the .ATC
file extension. The following snippet is taken from the palette file: Sanple office
pr oj ect _00CFCE40- D240- 433A- 8C62- 54E982931ABB. at c. (You may notice that the
beginning part is not a particularly well-formed XML document by W3C guidelines, but
it gets the job done obvioudly).

<Pal ette>
<Item D i dVal ue="{ 00CFCE40- D240- 433A- 8C62- 54E982931ABB} "/ >
<Properties>
<l tenNanme resource="186" src="AcTpCatal ogRes. dl|"/><l mages/>
<Ti me createdUni versal Dat eTi ne="2003-02- 12T22: 37: 06" nodi fi edUni ver sal Dat eTi ne="2003-
02-12T22: 37: 06"/ >
</ Properties>
<Sour ce/ >
<Tool s>
<Tool >
<Item D i dVal ue="{04314506- 7712- 4F2C- BB53- B7TAD2EA423DD} "/ >
<Properties>
<l tenmNanme resource="160" src="AcTpCatal ogRes.dl|"/>
<l mges>
<l mage cx="32" cy="32" resource="|DB_BI TMAP_32_OFFI CE_CARPET"
src="AcTpCat al ogRes. dl | "/ >

164



</ | mages>
<Ti me createdUni versal Dat eTi me="2003-02- 12T22: 37: 06"
nodi f i edUni ver sal Dat eTi me="2003-02-12T22: 37: 06"/ >
</ Properties>
<Sour ce i dVal ue="{59A63456- 0025- 4EA0- 9CB2- 608916D5177C}"/ >
<St ockTool Ref i dVal ue="{AF0F641B- 9CCE- 4474- 8582- EFEOA38410FC}"/ >
<Dat a>
<Gener al Properties>
<Col or >
<Basi cPr opl nf 0>
<PropVal ue unspeci fi ed="FALSE" val ueType="2" val ue="0"/>
</ Basi cPr opl nf 0>
<Creat el nf 0>
<AcCnCol or nRGB="3256776847"/>
</ Cr eat el nf 0>
</ Col or >
. (more) . . .

As you can see, thisis a typical XML document, however, it does not use the standard
XML DTD document header reference you see in most XML formatted documents. The
parent document that references al available base palette definition files is the
AcTpPalette.atc file, which is located one folder level above the folder used by palette
definition files stated above.

If you Export a palette, it is written in XML form to a .XTP file. The default folder
location is the My Documents folder path. Unlike some other AutoCAD export
functions, this one actually uses the name of the palette as the default base filename
value. For example, exporting the “ Sample Office Project” will default to “sample office
project.xtp” in the My Documents folder, unless you specify otherwise.

An interesting thing to note here is that a new command has been added to act as a
wrapper to the previous TOOLBAR command. The new command for creating,
modifying, importing and exporting toolbar button files and palettes is CUSTOMIZE.
You can invoke it by right-clicking on a palette and picking the Customize option, or by
typing it in at the command prompt. Below is the “ Sample Office Project” palette export
file (snippet only) to show what an XTP file looks like internally. Pay particular attention
to how the insertion properties are represented <data> section colored green below.

<Tool Pal et t eExport>
<Dependent Fi | esPat h>Sanpl e of fi ce Project </ Dependent Fi | esPat h>
<Pal et t eSet s>
<Pal et t eSet Dat a>
<Pal et t eSet Cont ent >
<Pal ettes>
<Pal et t eDat a>
<Pal et t eCont ent >
<Pal ette>
<Item D i dVal ue="{ 00CFCE40- D240- 433A- 8C62- 54E982931ABB} "/ >
<Properties>
<l tenmNanme resource="186" src="AcTpCatal ogRes.dl|"/>
<l mages/ >
</ Properties>
<Sour ce/ >
<Tool s>
<Tool >
<Item D i dVal ue="{04314506- 7712- 4F2C- BB53- B7TAD2EA423DD} "/ >
<Properties>
<l tenmNanme resource="160" src="AcTpCatal ogRes.dl|"/>
<I mges>

165



<l mage cx="32" cy="32" resource="|DB_BI TMAP_32_OFFI CE_CARPET"
src="AcTpCat al ogRes. dl | "/ >
</ | mages>
<Ti me createdUni ver sal Dat eTi ne="2003-02- 12T22: 37: 06"
nodi fi edUni ver sal Dat eTi mne="2003- 02- 12T22: 37: 06"/ >
</ Properties>
<Sour ce i dVal ue="{59A63456- 0025- 4EA0- 9CB2- 608916D5177C}"/ >
<St ockTool Ref i dVal ue="{AF0F641B- 9CCE- 4474- 8582- EFEOA38410FC}"/ >
<Dat a>
<Gener al Properties>
<Col or >
<Basi cPr opl nf 0>
<PropVal ue unspeci fi ed="FALSE" val ueType="2" val ue="0"/>
</ Basi cPr opl nf 0>
<Creat el nf 0>
<AcCnCol or nRGB="3256776847"/>
</ Cr eat el nf 0>
</ Col or >
<Layer>
<Basi cPr opl nf 0>
<PropVal ue unspeci fied="TRUE" val ueType="1"/>
</ Basi cPr opl nf 0>
</ Layer >
<Li net ype>
<Basi cPr opl nf 0>
<PropVal ue unspeci fied="TRUE" val ueType="1"/>
</ Basi cPr opl nf 0>
</ Li netype>
<Li net ypeScal e>
<Basi cPr opl nf 0>
<PropVal ue unspeci fi ed="TRUE" val ueType="3" val ue="0"/>
</ Basi cPr opl nf 0>
</ Li net ypeScal e>
<Pl ot Styl e></ Pl ot Styl e>
<Li neWei ght ></ Li neWei ght >
<Hat chType></ Hat chType>
<Pat t er nNane></ Pat t er nNanme>

166



Conclusion

While this book covers a lot of information about using Visua LISP, it cannot cover
everything. Visual LISP has a lot of potential and provides a lot of powerful tools to
LISP developers. | wish Autodesk would commit some resources to improving it to
bring it up to speed with current development tools. At the very least, fix some of the
incomplete features and irritating quirks, but | think Autodesk is letting LISP die on the
vine in favor of VBA and ARX. That would be unfortunate and a big mistake as well.

Most of the features that could be improved would require very minimal investment in
time and budget and would yield a much more robust development tool. Some
improvements might be fixing the project management tools, better compilation controls,
fixing dialog box inconsistencies, adding “Intelli-Sense” completion, streamlined
functionality for referencing external objects and components, making a standalone
version and so on.

Hopefully, the information and examples provided herein will give you some additional
motivation to further explore Visual LISP and become a better software developer as a
result. If not, it makes a great coffee cup stand. In any case, | hope you find this book
useful and helpful.

Happy Coding!

Dave

167



Appendix A - VLAX Enumeration Constants

Constant Symbo
:vlax-false

:vlax-null

:vlax-true
vlax-vbAbort

vlax-vbAbortRetrylgnore
vlax-vbApplicationModal

vlax-vbArchive
vlax-vbArray
vlax-vbBoolean
vlax-vbCancel
vlax-vbCritica
vlax-vbCurrency
vlax-vbDataObject
vlax-vbDate
vlax-vbDefaultButtonl
vlax-vbDefaultButton2
vlax-vbDefaultButton3
vlax-vbDirectory
vlax-vbDouble
vlax-vbEmpty
vlax-vbError
vlax-vbExclamation
vlax-vbHidden
vlax-vbHiragana
vlax-vblgnore
vlax-vblnformation
vlax-vblnteger
vlax-vbK atakana
vlax-vbLong
vlax-vbL owerCase
vlax-vbNarrow
vlax-vbNo
vlax-vbNormal
vlax-vbNull
vlax-vbObject
vlax-vbOK
vlax-vbOK Cancel
vlax-vbOK Only
vlax-vbProperCase
vlax-vbQuestion
vlax-vbReadOnly
vlax-vbRetry
vlax-vbRetryCancel
vlax-vbSingle
vlax-vbString
vlax-vbSystem
vlax-vbSystemModal
vlax-vbUpperCase
vlax-vbVariant
vlax-vbVolume
vlax-vbWide
vlax-vbYes

Value
:vlax-false
:vlax-null
:vlax-true
3

2

0

32

8192

11

2

16

6

13

7

0

256

512

16

5

0

10

48

gm%r\a

()]

Q
©
(o]

168



vlax-vbY esNo 4
vlax-vbY esNoCancel 3

169



Appendix B —

F1

F3

F6

F8

SHIFT+F8
CTRL+SHIFT+F8
Fo
CTRL+SHIFT+F9
CTRL+W
CTRL+R
CTRL+Q
ALT+F6

ALT+Q

VLISP IDE Keyboard Shortcuts

Help

Find / Replace Next

Display L1SP Console Window
Step Into

Step Over

Step Out Of

Toggle BreakPoint

Clear All BreakPoints

Add Watch

Reset to Current Level

Quit to Current Level

Zoom

Exit / Quit Visual LISP IDE

170



Appendix C — Tips & Tricks for Visual LISP

Adding VLX support to the (autoload) function

By default, the AutoL ISP (autoload) function will only look for .LSP, .FAS or .MNL file
types when searching for a specified file loading. It will not consider .VLX files at all.
Thisis aminor but often significant oversight by Autodesk, but fortunately it is an easy
fix. Simply open the Acad2000doc.Isp file located in the Support folder of your
AutoCAD ingtalation. Then locate the (defun ai_ffile) function definition and add an
additional check for .vix files, save the file and close it. This will need to be done on
every machine that you wish to perform this change.

Saving your VLIDE configuration settings

When you modify the editor configuration settings your changes are saved in a
configuration file named VLIDE.DSK in the Support folder where your local copy of
AutoCAD (or network client) isinstalled. You should keep a copy of this file elsewhere
to avoid it being overwritten when reinstalling AutoCAD or installing a service pack
update. Thisfile contains your formatting preferences (colors, tabs, indentation, etc.).

Recovering DCL Code from VLX Files

In Chapter 13 the details of how LSP and DCL are compiled into VLX output was
discussed. One thing to remember is that while the LSP code is first compiled into FAS
form before being compiled into the VLX output, DCL code is not compiled at al. It is
simply appended to the bottom of the VLX output file. Therefore, you can open VLX
filesin any standard text editor such as Windows Notepad, and browse to the bottom of
thefile to find all the DCL codeintact. You can copy and paste it from there back into a
new DCL file whenever you delete a DCL file by mistake but happen to have the VLX
available.

Using Projects and DCL with the Make Application Wizard

To put Projectsto their full use, it isagood practice to add all related files for a given
VLX into aproject. Then order them in the proper sequence based upon the order of
function definition statements (load order). Next, when using the Make Application
wizard, select the Project PRJ file instead of the individual LSP files.

Since DCL files cannot be included in a Project list, you would normally have to add
them individually in the Resource files list of the Make Application wizard (Expert mode
only). However, another approach can be to concatenate all the DCL filesinto asingle
DCL file. Thiswill result in having to add one PRJ and one DCL file to make the VLX
application.

To concatenate multiple DCL filesinto asingle DCL file, use the age-old DOS command
COPY asfollows:

171



COPY *.DCL ALL. DCL

Thiswill copy all .DCL filesinto asingle file named ALL.DCL. Remember to consider
the relative paths, or run everything from within the same path location.

Team-based VLX Development

If you're developing a network based project along with several other developers, you
should keep a few things in mind. First, the PRV format stores the path/drive
information for your source files when compiling VLX applications. Secondly, sharing
PRV setup files only works when the relative pathing is portable to al intended users.
By “portable”, | mean that the relative path/drive information must be equally applicable
by al intended users. It's a good idea to have all the developers copy the entire source
code set to their local hard drives and use local pathing for all your PRV file setups.
Then after the VLX apps are built, copy them up to the intended network server(s).

In addition, if you have some sort of change management software, such as Visua Source
Safe, StarBase, PVCS-DOORS or whatever, you should use that in order to manage
check-out, check-in and version control over all the various files to avoid stepping on
each other’ s work and creating confusion.

172



Appendix D — Useful Resources
Helpful/Recommended Web Sites:

http://www.acadx.com **

http://www.vbdesign.net **

http://www.upfront.com

http://www.ntfag.com

http://www.microsoft.com/scripting

http://www.microsoft.com/data

http://www.tenlinks.com

http://www.cadinfo.net

http://www.swynk.com

http://www.adminscripts.net

http://www.fourguysfromrolla.com

http://www.15seconds.com

http://www.win2000mag.net

http://www.planet-source-code.com

173


http://www.acadx.com
http://www.vbdesign.net
http://www.upfront.com
http://www.ntfaq.com
http://www.microsoft.com/scripting
http://www.microsoft.com/data
http://www.tenlinks.com
http://www.cadinfo.net
http://www.swynk.com
http://www.adminscripts.net
http://www.fourguysfromrolla.com
http://www.15seconds.com
http://www.win2000mag.net
http://www.planet-source-code.com

Glossary

ActiveX

Bookmark

Breakpoint

Call-Back

Collection

COM

Constant

Consumer

Control

Data Type

DCL

Debug

(boy, oh boy. Ask Microsoft)

A location marker placed in a document that enables the user to
return to that location quickly.

A marker placed in program code that instructs the compiler or
interpreter to pause execution at runtime and wait for the user to
perform debugging tasks or continue execution.

A requested response to a given action or event. For example, a
call-back to clicking a button might be “accept” which then
triggers a call to a particular function or expression.

A group of objects with a common parent and related properties or
methods that enable processing the objects in alogica manner asa

group.

Component Object Model. A Microsoft technology that defines a
hierarchical organization of software components, and services and
provides intrinsic properties, methods and events for components
and services that enable more efficient programmatic manipulation
and promotes componentized functional reuse. Other flavors
include Distributed COM or DCOM and the newer COM +
included with Windows 2000 and XP platforms.

A variable or symbol with a static value assignment.

Any software component or application that imports or uses the
exposed component services of another software component or
service. The source of the imported components or servicesis
known as a provider.

An ActiveX DLL component.

The intrinsic nature of a particular value with respect to what form
of datais represented. Examples of ActiveX datatypesinclude
Integer, Long, Double, String, and Array.

Diaog Control Language, a C-based |language construct used to
define dialog box forms within the AutoCAD LISP and Visual
LISP environments.

The process of isolating, diagnosing and correcting errorsin
program code or programming logic.

174



Dictionary

DLL

Element
Enumeration

Evaluate

Event

Expression

Focus

Function

Global

Heap

Interface

A type of collection that provides direct access to member objects
by a using unique identifier for each object.

A dynamic link library is a Windows-based ActiveX component
that usually exposes functions, properties, methods, and constants
for use by other applications. It is something like a packaged
library of tools that can be loaded by applications to perform
specialized tasks.

An individual member of an array or safearray construct.
(need an officia definition for this one)

The process of executing a LISP expression or extracting an
associated value from a LISP symbol and returning a resullt.

A moment when some action occurs in a software program. This
can be the click of abutton or moving an entity. An event usually
provides programmatic notification that can be detected and
responded to using areactor or callback.

A program statement within the context of AutoLISP or Visual
LISP interpreter environments.

The state of a given item within aDCL dialog box either having
control by the active cursor location. If an editbox has the cursor
active and is editable, it is said to have the focus. When the cursor
ismoved out of agiven item, it is said to have lost the focus.

In the context of software development, thisis an expression or
group of expressions that processes some type of input and returns
aresult. Inthe context of Visual LISP, a subroutine and a function
are synonymous. In the context of other languages like Visual
Basic or C/C++ a subroutine returns no result, while a function
returns aresult.

Any variable, symbol or expression that is exposed for either read
or write manipulation by all other variables, symbols or expression
running in the same namespace. A symbol or expression that is
hidden from access by other expressionsis said to be Localized or
Local to its parent function or expression.

A pile of trash that needs to be cleaned up, or alogical memory
address space alocated for a particular group of related expression
definitions and/or their results.

(Programming) any means by which one software component or
service can connect to another for the purposes of requesting

175



Iterate

Locd

Marshalling

Method

Modal / Modeless

NameSpace

Object

Object Model

Project

services or values from the other component or service. This can
also involve the passing of information in either direction through
acommon logical programmatic reference.

A loop process where items are accessed in a sequentia order
within a group of related items. Examples of iteration functions
are (while), (do while), (foreach), (repeat), and (vlax-for).

Any variable, symbol or expression that is not shared or accessible
outside of its parent function or expression.

The process of controlling an externa process remotely from
another process. Launching another application in serialized
fashion is but one example of marshalling.

A built-in function of a given object that enables automated
retrieval or modification of that object. Examples of methods
provided by a Line object include Move, Rotate, and Copy.

Refers to the nature of how a dialog form can be displayed and
controlled within the environment in which it is launched. If the
dialog can remain visible while the user can continue to interact
with other aspects of the parent application, the formis said to be
Modeless. If the visible form prevents interaction with other
aspects of the parent application until it is closed, that form is said
to be Moda in nature.

An isolated memory address range alocated to a given application
or process. The address range is protected from access by other
address ranges, and thereby creates a protected environment for the
process to execute within.

In the context of software development: An instance of a class that
provides intrinsic functionality such as properties, methods or
events that can be used to interact with other services, components
or objects to perform some programming task.

A logical, hierarchical organization of objects within a parent
software application or process. For example, Windows 2000 has
an object model provided by the Win32 and DCOM or COM+
class environments. AutoCAD 2002 has its own object model
provided by the ActiveX framework and exposed through
ObjectDBX, ObjectARX, VBA and Visua LISP environments.

(Visual LISP) anamed collection of program source code files.

176



Property

Provider

Reactor

Recursion

RPC

SafeArray

Scope

Stack

Stepping

Type Casting

Type Library

An intrinsic attribute of a given object that enables unique
identification of that object in some way.

A software application or component that exposes some
functionality for use by other applications or components. In
particular, it becomes a provider whileit is actually used by a
consumer application, component or service.

A specia type of software service provided by Visual LISP that
acts as alistening device for specific events within the AutoCAD
application session and optionally performs some task when a
specified condition is met by an intercepted event.

The process of evaluating inputs to a given function whereby the
repetitive processing to achieve a desired result involves one or
more self-invocations of the same function by itself until afinal,
terminating condition is met.

A Remote Procedure Call process that is provided by the Windows
operating system to allow alocal process to request a process to be
created on another machine to perform some action remotely.

An array of elements whereby the array has afixed length and
cannot be modified to increase or decrease the length (number of
elements that can be stored within it). It issaid to be “safe”
because it cannot change length, and thereby reduces the
possibility of errors as aresult of attempting to enter or retrieve
elements from an index that is out of bounds (beyond the end of
the array).

A minty mouthwash, or alogical boundary with respect to the
reach or lifespan of a specific symbol or expression

A logical container that can collect objects or values and alow for
systematic addition or removal of membersin an orderly or
sequential manner.

The process of stopping program execution and allowing the user
to manually advance execution one statement or one line at atime.
There are severa types of stepping: Step Into, Step Over and Step
Out Of.

The process of converting one data type to another, such as
converting an integer number value to a string value.

Also called a TypelLib, is a dedicated software component that
identifies the object model and member objects, properties,

177



Variant

WorkSpace

WSH

methods, and constants of that object model to any other
applications or processes that request programmatic interaction.

A datatype that is defined to be capable of storing al other data
types, thereby avoiding the concern of verifying a given data type
before assigning or retrieving it from a given variable or symbol.

The active set of related program documents opened in the
programming development environment.

Microsoft’s Windows Scripting Host, a software service that
provides runtime support for executing script code fileson a
machine. WSH allows scripts to be run either in the Windows
namespace or within the namespace of a calling application or
process from a programmatic interface. The default WSH enabling
services are CSCRIPT (command line interface) and WSCRIPT
(graphical user interface).

178



	Contents
	About the Author
	Introduction
	What is Visual LISP?
	Comments used Throughout This Book
	The Future?

	Chapter 1 - The Visual LISP Development Environment
	The Visual LISP IDE Toolbars
	The VLISP IDE Pull-Down Menus

	Chapter 2 – Basic Coding in Visual LISP
	Comparing AutoLISP to Visual LISP/ActiveX
	Exploring Object Properties and Methods
	ActiveX vs. DXF?
	Selection Sets
	Point Lists
	Entity Properties


	Chapter 3 – Using ActiveX with Visual LISP
	Classes
	Objects
	Object Models
	Class Inheritance
	Collections and Dictionaries
	Properties, Methods and Events
	Property Relevance
	Using Methods

	Data Types
	Constants and Enumerations
	Variants and Safearrays

	Namespaces
	Interfaces and Type Libraries

	Chapter 4 – Debugging Code with Visual LISP
	Breakpoints
	Stepping
	Animation
	Watches
	Tracing
	Inspection
	Symbol Service
	Apropos
	Bookmarks
	Goto Line Position
	Error Trapping
	Visual LISP Error Trapping Functions

	Chapter 5 – Working with Projects and Multiple Files
	Chapter 6 – Working with Variants and Safearrays
	Visual LISP Variant Functions
	Variant Data Types

	Visual LISP SafeArray Functions

	Chapter 7 –Object Manipulation Functions
	Chapter 8 –File and Directory Functions
	Chapter 9 –Mapping and Iteration Functions
	Chapter 10 –Working with Namespaces
	Namespace Scoping
	Namespace Functions

	Chapter 11 –Registry Functions
	Chapter 12 – Reactors and Call-Backs
	Visual LISP Reactor Functions
	Reactor Types
	Verifying Reactor Types
	Using Object Reactors
	Attaching Data to Reactor Objects
	Querying Reactors
	Transient and Persistent Reactors
	Opening Drawings with Persistent Reactors
	Reactors and Multiple Namespaces
	Guidelines for Using Reactors

	Chapter 13 – Making Visual LISP Applications
	Why Make VLX Applications?
	Building a Simple Application
	PRV Files

	Chapter 14 – Using ObjectDBX with Visual LISP
	What is ObjectDBX?
	How to Use ObjectDBX within Visual LISP

	Chapter 15 – XDATA and XRECORDs
	Working with XDATA
	Working with XRECORD Objects

	Chapter 16– The AutoCAD Application Object
	Chapter 17 – AutoCAD Entities
	All Objects – Common Properties
	The ARC object
	The CIRCLE entity
	The RotatedDimension (LinearDimension) entity
	The ELLIPSE entity
	The LEADER entity
	The LINE entity
	The LWPOLYLINE entity
	The MLINE entity
	The MTEXT entity
	The POINT entity
	The POLYLINE entity
	The RAY entity
	The SOLID entity
	The SPLINE entity
	The TEXT entity
	The TRACE entity
	The VIEWPORT entity
	The XLINE entity

	Chapter 18 – Documents
	The Documents Collection

	Chapter 19 – The Preferences Objects
	The AcadPreferences Collection Object
	The DatabasePreferences Object
	Reloading a Profile

	Chapter 20 – Menus and Toolbars
	The MenuBar Object
	Getting MenuBar Items
	Inserting PopMenus into the MenuBar collection
	Removing PopMenus from the MenuBar collection

	The MenuGroups Collection Object
	The MenuGroup Object
	The PopMenus Object
	The PopMenu Object
	The Toolbars Collection Object
	The Toolbar Object
	Creating a Toolbar


	Chapter 21 – Interfacing with Other Applications
	Microsoft Excel
	Windows Scripting Host
	The FileSystem Object
	Windows Messaging and CDONTS
	Windows Management Instrumentation (WMI)
	Working with Services

	Chapter 22 –Using Visual Basic DLLs with Visual LISP
	Registering DLLs
	Re-Registering DLLs

	Chapter 23 – Working With Dialog Forms
	Referencing DCL Definitions
	Dynamic Dialog Interaction
	Controlling Images From Call-Backs

	Chapter 24 – Examples of Common Tasks
	Example 1 – Dumping a List of Layer Properties
	Example 2 – Set All Entities to “ByLayer”
	Example 3 – Purge, Audit and Save all Opened Drawings
	Example 4 – Zoom Extents and Save all Opened Drawings

	Chapter 25 - Changes in AutoCAD 2004
	General Changes
	Visual LISP Changes
	True Color Properties
	Changes to the ObjectDBX Interface
	Changes to External Referencing of AcadApplication
	Changes to AcadPreferences
	System Variables
	New Commands
	Modified Commands (Since AutoCAD 2002)
	Tool Palettes

	Conclusion
	Appendix A - VLAX Enumeration Constants
	Appendix B – VLISP IDE Keyboard Shortcuts
	Appendix C – Tips & Tricks for Visual LISP
	Adding VLX support to the (autoload) function
	Saving your VLIDE configuration settings
	Recovering DCL Code from VLX Files
	Using Projects and DCL with the Make Application Wizard
	Team-based VLX Development

	Appendix D – Useful Resources
	Glossary

