Sample No. 5

Sample FEA Analysis for Reinforced Branch Connection

DN2000 WT=10mm Header with DN300 WT=10mm Branch Pipe Material A106-B

Geometry:

Header Pipe OD =	2000	mm	D/t=	200
Header Pipe WT=	10	mm		
Branch Pipe OD =	300	mm	D/t=	30
Branch Pipe WT=	10	mm		
Re-pad Width=	150	mm	Note: D/t is great	ter than 20 therefore can be considered as thin shell.
Re-pad WT=	20	mm		

With 2 m of Length for Header and 1 m for Branch

Note: Length of Header is the total length. Branch is modelled at the center of header.

The given length of Branch is from face of header to end of branch.

Loads Applied at Branch End:

In-plane Bending Moment=	30000 N-m
Out-Plane Bending Moment=	10000 N-m
Axial Force=	100000 N
Torsional Moment=	50000 N-m
Internal Pressure, P=	1 Mpa

Boundary Condition:

Fixed at the One End of the Header Pipe

Inplane Von-Mises Equivalent Stress Output:

One FEA Sotware Another FEA Software (Brick Element) Another FEA Software (Brick Element) Another FEA Software (Plate Element)= Another FEA Software (Shell Element)= Another FEA Software (Shell Element)=	283 Mpa 258 Mpa 306 Mpa 526 Mpa 632 Mpa 578 Mpa	(Inplane) (Inplane) (Inplane) (Inplane) (Inplane) (Inplane)	(Mid Nodes Not Included) (Mid Nodes Included) (Linear Plate Element Formulation) (General Shell Element with Mid Node) (Thin Shell Element)
Outplane Von-Mises Equivalent Stress Output:			
One FEA Sotware Another FEA Software (Brick Element) Another FEA Software (Brick Element) Another FEA Software (Plate Element)= Another FEA Software (Shell Element)= Another FEA Software (Shell Element)= Axial Von-Mises Equivalent Stress Output:	151 Mpa 144 Mpa 163 Mpa 306 Mpa 360 Mpa 324 Mpa	(Outplane) (Outplane) (Outplane) (Outplane) (Outplane) (Outplane)	(Mid Nodes Not Included) (Mid Nodes Included) (Linear Plate Element Formulation) (General Shell Element with Mid Node) (Thin Shell Element)
One FEA Sotware Another FEA Software (Brick Element) Another FEA Software (Brick Element) Another FEA Software (Plate Element)= Another FEA Software (Shell Element)= Another FEA Software (Shell Element)=	192 Mpa 174 Mpa 218 Mpa 428 Mpa 435 Mpa 485 Mpa	(Axial) (Axial) (Axial) (Axial) (Axial) (Axial)	(Mid Nodes Not Included) (Mid Nodes Included) (Linear Plate Element Formulation) (Thin Shell Element) (General Shell Element with Mid Node)

Torsion Von-Mises Equivalent Stress Output:

One FEA Sotware	76 Mpa	(Torsion)	
Another FEA Software (Brick Element)	91 Mpa	(Torsion)	(Mid Nodes Not Included)
Another FEA Software (Brick Element)	116 Mpa	(Torsion)	(Mid Nodes Included)
Another FEA Software (Plate Element)=	81 Mpa	(Torsion)	(Linear Plate Element Formulation)
Another FEA Software (Shell Element)=	88 Mpa	(Torsion)	(Thin Shell Element)
Another FEA Software (Shell Element)=	87 Mpa	(Torsion)	(General Shell Element with Mid Node)

Pressure Von-Mises Equivalent Stress Output:

One FEA Sotware	204 Mpa	(Pressure)	
Another FEA Software (Brick Element)	278 Mpa	(Pressure)	(Mid Nodes Not Included)
Another FEA Software (Brick Element)	351 Mpa	(Pressure)	(Mid Nodes Included)
Another FEA Software (Plate Element)=	319 Mpa	(Pressure)	(Linear Plate Element Formulation)
Another FEA Software (Shell Element)=	253 Mpa	(Pressure)	(Thin Shell Element)
Another FEA Software (Shell Element)=	361 Mpa	(Pressure)	(General Shell Element with Mid Node)

Combined Loading Von-Mises Equivalent Stress Output:

One FEA Sotware	442 Mpa	(Combined)	
Another FEA Software (Brick Element)	407 Mpa	(Combined)	(Mid Nodes Not Included)
Another FEA Software (Brick Element)	483 Mpa	(Combined)	(Mid Nodes Included)
Another FEA Software (Plate Element)=	1238 Mpa	(Combined)	(Linear Plate Element Formulation)
Another FEA Software (Shell Element)=	1239 Mpa	(Combined)	(Thin Shell Element)
Another FEA Software (Shell Element)=	1424 Mpa	(Combined)	(General Shell Element with Mid Node)