Sample No. 6

Sample FEA Analysis for Reinforced Branch Connection

DN1800 WT=7mm Header with DN1400 WT=7mm Branch Pipe Material A106-B

Geometry:

Header Pipe OD =	1828.8	mm	D/t= 261.257143		
Header Pipe WT=	7	mm			
Branch Pipe OD =	1422.4	mm	D/t= 203.2		
Branch Pipe WT=	7	mm			
Re-pad Width=	711.2	mm	Note: D/t is greater than 20 therefore can be considered as thin shell.		
Re-pad WT=	7	mm			
Header Length (10D)=	18000	mm	Note: Length of Header is the total length. Branch is modelled at the center of header.		
Nozzle Lenghth (4D)=	6300	mm	The given length of Branch is from face of header to	end of branch.	

Load Applied at Branch End:

In-plane Bending Moment=	20000 N-m
Out-Plane Bending Moment=	20000 N-m
Axial Force=	20000 N
Torsional Moment=	20000 N-m
Internal Pressure=	0.25 Mpa

Boundary Condition:

Fixed at the One End of the Header Pipe

Inplane Von-Mises Equivalent Stress Output:			
One FEA Software=	21 Mpa	(Inplane)	
Another FEA Software (Plate Element)=	31 Mpa	(Inplane)	(Linear Plate Element Formulation)
Another FEA Software (Shell Element)=	38 Mpa	(Inplane)	(Thin Shell Element)
Another FEA Software (Shell Element)=	24 Mpa	(Inplane)	(General Shell Element with Mid Node)
Outplane Von-Mises Equivalent Stress Output:			
One FEA Software=	117 Mpa	(Outplane)	
Another FEA Software (Plate Element)=	134 Mpa	(Outplane)	(Linear Plate Element Formulation)
Another FEA Software (Shell Element)=	26 Mpa	(Outplane)	(Thin Shell Element)
Another FEA Software (Shell Element)=	134 Mpa	(Outplane)	(General Shell Element with Mid Node)
Torsion Von-Mises Equivalent Stress Output:			
One FEA Software=	8 Mpa	(Torsion)	
Another FEA Software (Plate Element)=	18 Mpa	(Torsion)	(Linear Plate Element Formulation)
Another FEA Software (Shell Element)=	8 Мра	(Torsion)	(Thin Shell Element)
Another FEA Software (Shell Element)=	15 Mpa	(Torsion)	(General Shell Element with Mid Node)
Axial Von-Mises Equivalent Stress Output:			
One FEA Software=	55 Mpa	(Axial)	
Another FEA Software (Plate Element)=	48 Mpa	(Axial)	(Linear Plate Element Formulation)
Another FEA Software (Shell Element)=	1 Mpa	(Axial)	(Thin Shell Element)
Another FEA Software (Shell Element)=	49 Mpa	(Axial)	(General Shell Element with Mid Node)
Pressure Von-Mises Equivalent Stress Output:			
One FEA Software=	228 Mpa	(Pressure)	
Another FEA Software (Plate Element)=	1138 Mpa	(Pressure)	(Linear Plate Element Formulation)
Another FEA Software (Shell Element)=	209 Mpa	(Pressure)	(Thin Shell Element)
Another FEA Software (Shell Element)=	1068 Mpa	(Pressure)	(General Shell Element with Mid Node)