FLEX I/O ac Digital Input Modules

Cat. Nos. 1794-IA8, -IA8K, IA8I, -IA16
(Modules with a K in the last position of the catalog number are conformally coated to meet noxious gas requirements of ISA/ANSI-71.040 1985 Class G3 Environment.)

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.ab.com/manuals/gi) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.
Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc. is prohibited.
Throughout this manual we use notes to make you aware of safety considerations.

Identifies information that is critical for successful application and understanding of the product.

Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you:

- identify a hazard
- avoid a hazard
- recognize the consequence

Environment and Enclosure
This equipment is intended for use in a Pollution Degree 2 industrial environment, in overvoltage Category II applications (as defined in IEC publication 60664-1), at altitudes up to 2000 meters without derating.
This equipment is considered Group 1, Class A industrial equipment according to IEC/CISPR Publication 11. Without appropriate precautions, there may be potential difficulties ensuring electromagnetic compatibility in other environments due to conducted as well as radiated disturbance.
This equipment is supplied as "open type" equipment. It must be mounted within an enclosure that is suitably designed for those specific environmental conditions that will be present and appropriately designed to prevent personal injury resulting from accessibility to live parts. The interior of the enclosure must be accessible only by the use of a tool. Subsequent sections of this publication may contain additional information regarding specific enclosure type ratings that are required to comply with certain product safety certifications.
See NEMA Standards publication 250 and IEC publication 60529, as applicable, for explanations of the degrees of protection provided by different types of enclosure. Also, see the appropriate sections in this publication, as well as the
Allen-Bradley publication 1770-4.1 ("Industrial Automation Wiring and Grounding Guidelines"), for additional installation requirements pertaining to this equipment.

FLEX I/O is grounded through the DIN rail to chassis ground. Use zinc plated yellow-chromate steel DIN rail to assure proper grounding. The use of other DIN rail materials (e.g. aluminum, plastic, etc.) that can corrode, oxidize, or are poor conductors, can result in improper or intermittent grounding.

Preventing Electrostatic Discharge

This equipment is sensitive to electrostatic discharge, which can cause internal damage and affect normal operation. Follow these guidelines when you handle this equipment:

- Touch a grounded object to discharge potential static.
- Wear an approved grounding wriststrap.
- Do not touch connectors or pins on component boards.
- Do not touch circuit components inside the equipment.
- If available, use a static-safe workstation.

North American Hazardous Location Approval

The following input modules are North American Hazardous Location approved: 1794-IA8, -IA8K, -IA8I and 1794-IA16.

The following information applies when operating this equipment in hazardous locations:		Informations sur l'utilisation de cet équipement en environnements dangereux:	
Products marked "CLL, DIV $2, G P A, B, B, C, D$ " are suitable for use nonhazardous locations only. Each product is supplied with markings on the rating namemalat indicating the hazardous system, the most adverse temperature code l lowest "T" numberl may be used to help determine the overall temperature code of the system. Combinations of equipment in your system are subject to investigation by the local Authority HavingJurisdiction at the time of installation.		Les produits marqués "CLI, DIV 2, GP A , B, C, D" ne conviennent qua une utilisation en environnements de Classe Division 2 Groupes A, B, C, D dangereux et non dangereux. Chaque produit est livé avec des marquages sur sa plaqued'identification qui indiquent le code de temperature pour le environnements dangereux. Lorsque plusieurs produits sont combinés dans un système, le code de température le plus défavorable (code de température le plus faible) peut être utilisé pour déterminer le code de température global du système. Les combinaisons d'équipements dans le systèmesont sujettes à inspection par les autorités locales qualifiées au moment de l'installation.	
Warning	EXPLOSION HAZARD - Do not disconnect equipment unless ower has been removed or the area is known to be nonhazardous. - Do not disconnect connections to this equipment unless power has been removed or the area is known to be nonhazardous. Secure any extemal connections that mate to this equipment by using screws, sliding means provided with this product. - Substitution of components may impair suitability for Class I, Division 2. - If this product contains batteries, they must only be changed in an area known to be nonhazardous.	AVERTISSEMENT	RISQUE D'EXPLOSION - Couper le courant ou s'assurer que l'environnement est classé non dangereux avant de débrancher l'équipement. - Couper le courant ou s'assurer que I'environnement est classé non dangereux avant de débrancher les connecteurs. Fixer tous les connecteurs externes reliés à cet équipement à connecteurs filetés ou autres moyens fournis avec ce produit.
			- La substitution de composants peut rendre cet équipement inadapté à une utilisation en environnement de Classe I, Division 2. - S'assurer que l'environnement est classé non dangereux avant de changer les piles.

European Hazardous Location Approval

The following module is European Zone 2 approved: 1794-IA8K.

European Zone 2 Certification (The following applies when the product bears the EEx Marking)
This equipment is intended for use in potentially explosive atmospheres as defined by European Union Directive 94/9/EC.
The LCIE (Laboratoire Central des Industries Electriques) certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of Category 3 equipment intended for use in potentially explosive atmospheres, given in Annex II to this Directive. The examination and test results are recorded in confidential report No. 28 682010.

Compliance with the Essential Health and Safety Requirements has been assured by compliance with EN 50021.

IMPORTANT

Observe the following additional Zone 2 certification requirements.

- This equipment is not resistant to sunlight or other sources of UV radiation.
- The secondary of a current transformer shall not be open-circuited when applied in Class I, Zone 2 environments.
- Equipment of lesser Enclosure Type Rating must be installed in an enclosure providing at least IP54 protection when applied in Class I, Zone 2 environments.
- This equipment shall be used within its specified ratings defined by Allen-Bradley.
- Provision shall be made to prevent the rated voltage from being exceeded by transient disturbances of more than 40% when applied in Class I, Zone 2 environments

Installing Your ac Digital Input Module

The module mounts on a 1794 terminal base.
During mounting of all devices, be sure that all debris (metal chips, wire strands, etc.) is kept from falling into the module. Debris that falls into the module could cause damage on power up.

1. Rotate the keyswitch (1) on the terminal base (2) clockwise to position 8 as required for this type of module.
2. Make certain the flexbus connector (3) is pushed all the way to the left to connect with the neighboring terminal base/adapter. You cannot install the module unless the connector is fully extended.
3. Make sure the pins on the bottom of the module are straight so they will align properly with the connector in the terminal base.

WARNING

If you remove or insert the module while the backplane power is on, an electrical arc can occur. This could cause an explosion in hazardous location installations. Be sure that power is removed or the area is nonhazardous before proceeding.
4. Position the module (4) with its alignment bar (5) aligned with the groove (6) on the terminal base.
5. Press firmly and evenly to seat the module in the terminal base unit. The module is seated when the latching mechanism (7) is locked into the module.

Connecting Wiring for the 1794-IA8 and -IA8K

1. For 1794-TB2, -TB3, or -TB3S - Connect individual input wiring to even numbered terminals on the $0-15$ row (A) as indicated in the table below.
For 1794-TBN - Connect individual input wiring to numbered terminals on the 16-33 row (B) as indicated in the table below.
2. For 1794-TB2 - Connect the associated 120 V ac power lead (L1) of the input device to the corresponding odd numbered terminals on the $0-15$ row A for each input as indicated in the table below. (The odd numbered terminals on row A are internally connected to 120 V ac L1.)

For 1794-TB3, or -TB3S - Connect the associated 120 V ac power lead (L1) of the input device to the corresponding odd numbered terminals on the 34-51 row (C) or to the corresponding terminal on row (C) for each input as indicated in the table below. (The odd numbered terminals on row (A) and the terminals of row (C) are internally connected to 120 V ac power L1.)

For 1794-TBN - Connect the associated 120 V ac power lead (L1) of the input device to the corresponding odd numbered terminal on the 34-51 row (C) for each input as indicated in the table below. (The 120 V ac power terminals of row (C) are internally connected together.)
3. Connect 120 V ac power (L1) to terminal 34 on the $34-51$ row (C).
4. Connect 120 V ac common (L2) to terminal 16 on the $16-33$ row (B).
5. If daisychaining power to the next terminal base, connect a jumper from terminal $51(+120 \mathrm{~V}$ ac L1) on this base unit to terminal 34 on the next base unit
6. If continuing ac common to the next base unit, connect a jumper from terminal 33 (120 V common L2) on this base unit to terminal 16 on the next base unit.

Wiring Connections for the 1794-IA8 and -IA8K

Input	1794-TB2,-TB3, -TB3S		1794-TBN	
	Input Terminal	120V ac Supply	Input Terminal	120 V ac Supply
Input 0	A-0	A-1 ${ }^{1 / C-35}$	B-0	$\mathrm{C}-1^{2}$
Input 1	A-2	A-3 ${ }^{1 / C-36}$	B-2	C-3 ${ }^{2}$
Input 2	A-4	A-5 ${ }^{1 / C-37}$	B-4	C-5 ${ }^{2}$
Input 3	A-6	A-7 ${ }^{1} / \mathrm{C}-38$	B-6	C-7 ${ }^{2}$
Input 4	A-8	A-9 ${ }^{1} / \mathrm{C}-39$	B-8	C-92
Input 5	A-10	A-11 $1 / \mathrm{C}-40$	B-10	C-11 ${ }^{2}$
Input 6	A-12	A-13 ${ }^{1}$ C-41	B-12	C-13 ${ }^{2}$
Input 7	A-14	A-15 $/$ C-42	B-14	C-15 ${ }^{2}$
```\(A=\) Input terminals (Even numbered terminals 0 thru 14) \(B=\) Common terminals \(\mathrm{C}=\) Power terminals \(\mathrm{C}-34\) and \(\mathrm{C}-51\) on -TB2; \(\mathrm{C}-34\) thru C-51 on -TB3 and -TB3S)```			$\mathrm{B}=$ Even numbered Input terminals$0-14$ a. common terminals 16 and 33$\mathrm{C}=$ Power terminals $\mathrm{C}-34 \mathrm{and} \mathrm{C}=-1$ andodd numbered input terminals 1 thu 15	
1 A-1, 3, 5, 7, 9, 11, 13 and 15 on the 1794-TB2,-TB3 and -TB3S are internally connected in the module to 120 V ac L 1 .   $2 \mathrm{C}-1,3,5,7,9,11,13$ and 15 on the $1794-\mathrm{TBN}$ are internally connected in the module to 120 V ac L1.				

1794-TB2, -TB3 and -TB3S Terminal Base Wiring for 1794-IA8, IA8K and -IA16

$\mathbb{P}$				
$\begin{array}{lllllllllllllllll}16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32\end{array}$				
$\bigcirc \mathbb{Q}$				
L2 Commons L2				
L1 Voltage L1				
Connect 120V ac L1 power to terminal C-34				
Connect 120V ac common L2 to terminal B-16				
Use B-33 and C-51 for daisychaining to the next terminal base unit (Terminals $\mathrm{C}-35$ thru $\mathrm{C}-50$ not available on the 1794-TB2.)				

## 1794-TBN Terminal Base Wiring for 1794-IA8, IA8K

 and -IA16
$\mathrm{L} 1=120 \mathrm{~V}$ ac - Connect to terminal $\mathrm{C}-34$
$\mathrm{L} 2=120 \mathrm{~V}$ ac common - Connect to terminal B-16
Use B-33 and C-51 for daisychaining to the next terminal base unit

## Connecting Wiring for the 1794-IA16

1. For 1794-TB3, or -TB3S - Connect individual input wiring to numbered terminals on the $0-15$ row (A) as indicated in the table below .
For 1794-TBN - Connect individual input wiring to even numbered terminals on the 16-33 row (B), and to the odd numbered terminals on the $34-51$ row (C) as indicated in the table below.
2. For 1794-TB3, or -TB3S - Connect the associated 120 V ac power lead (L1) of the input device to the corresponding terminals on the 34-51 row (C) for each input as indicated in the table below. (The 120 V power terminals of row (C) are internally connected together.)

For 1794-TBN - An external terminal strip is needed to distribute 120 V ac power (L1) to each device.
3. Connect 120 V ac power (L1) to terminal 34 on the $34-51$ row (C).
4. Connect 120 V ac common (L2) to terminal 16 on the $16-33$ row (B).
5. If daisychaining power to the next terminal base, connect a jumper from terminal $51(+120 \mathrm{~V}$ ac L1) on this base unit to terminal 34 on the next base unit.
6. If continuing ac common to the next base unit, connect a jumper from terminal 33 ( 120 V common L2) on this base unit to terminal 16 on the next base unit.

Terminal Base Wiring for 1794-IA16

Input   Channel	Input Terminal   1794-TB3, -TB3S	Input Terminal   $\mathbf{1 7 9 4 - T B N ~}$	120V ac   Supply (L1)
Input 0	A-0	B-0	C-35
Input 1	A-1	C-1	C-36
Input 2	A-2	B-2	C-37
Input 3	A-3	C-3	C-38
Input 4	A-4	B-4	C-39
Input 5	A-5	C-5	C-40
Input 6	A-6	B-6	C-41
Input 7	A-7	C-7	C-42
Input 8	A-8	B-8	C-43
Input 9	A-9	C-9	C-44
Input 10	A-10	B-10	C-45
Input 11	A-11	C-11	C-46
Input 12	A-12	B-12	C-47
Input 13	A-13	C-13	C-48
Input 14	A-14	B-14	C-49
Input 15	A-15	C-15	C-50
120 a ac L1	Power terminals C-34 thru C-51 (C-34 and C-51 on -TBN) are   internally connected together. Connect 120V ac L1 to C-34		
120V ac L2	Common terminals B-16 thru B-33 (B-16 and B-33 for -TBN) are   internally connected together. Connect 120V ac common L2 to   terminal B-16		

## Connecting Wiring for the 1794-IA8I

1. For 1794-TB2, -TB3, or -TB3S - Connect individual input wiring to even numbered terminals on the $0-15$ row (A) as indicated in the table below
For 1794-TBN - Connect individual input wiring to even numbered terminals $0-14$ on the $16-33$ row (B) as indicated in the table below.
2. For 1794-TB2, -TB3, or -TB3S - Connect the associated 120 V ac common (L2) of the isolated supply to the corresponding odd numbered terminals on the $0-15$ row A for each input as indicated in the table below.
For 1794-TBN - Connect the associated 120 V ac common lead (L2) of the isolated supply to the corresponding odd numbered terminal $1-15$ on the $34-51$ row ( C ) as indicated in the table below.

## IMPORTANT

Individual isolated 120 V ac L1 power leads must be run externally to each of the input devices.

Wiring Connections for the 1794-IA8I

Input	1794-TB2, -TB3, -TB3S		1794-TBN	
	Input Terminal	120 V ac L2 Common	Input Terminal	$120 \mathrm{~V} \text { ac } \mathrm{L2}$ Common
Input 0	A-0	A-1	B-0	C-1
Input 1	A-2	A-3	B-2	C-3
Input 2	A-4	A-5	B-4	C-5
Input 3	A-6	A-7	B-6	C-7
Input 4	A-8	A-9	B-8	C-9
Input 5	A-10	A-11	B-10	C-11
Input 6	A-12	A-13	B-12	C-13
Input 7	A-14	A-15	B-14	C-15
$A=$ Even numbered terminals 0 thru 14 for customer connections; corresponding odd numbered 120 V ac common L2 terminals 1 thru 15 for customer connections from isolated power supply.			$\mathrm{B}=$ Even numbered terminals 0 thru 14 for customer connections; $\mathrm{C}=0 \mathrm{dd}$ numbered 120 V ac common L2 terminals 1 thru 15 for customer connections from isolated power supply.	

1794-TB2, -TB3, or -TB3S Terminal Base Wiring for the 1794-IA8I
|
U

Connect Inputs to even numbered terminals on row (A) (1794-TB3 shown) Connect 120 V ac common L 2 to odd numbered terminals on row (A)

## 1794-TBN Terminal Base Wiring for 1794-IA8I



Connect Inputs to even numbered terminals on row (B)
$\mathrm{L} 2=120 \mathrm{~V}$ ac common - Connect to odd numbered terminals on row (C)

## Configuring Your ac Input Module

Image Table Memory Map for the 1794-IA8, -IA8K and -IA8I

Dec.	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Oct.	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Read									17	16	15	14	13	12	11	10
Write	Not used - set to 0															

Image Table Memory Map for the 1794-IA16

Dec.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Oct.	17	16	15	14	13	12	11	10	7	6	5	4	3	2	1	0
Read 1	$\begin{aligned} & 1 \\ & 15 \end{aligned}$	$\begin{aligned} & 1 \\ & 14 \end{aligned}$	$\begin{aligned} & 1 \\ & 13 \end{aligned}$	$\begin{aligned} & 1 \\ & 12 \end{aligned}$	$\begin{aligned} & 1 \\ & 11 \end{aligned}$	$\begin{aligned} & 1 \\ & 10 \end{aligned}$	19	18	17	16	15	14	13	12	11	10
Write 3	Not used - set to 0										$\begin{aligned} & \text { Input Filter FT } \\ & 12-15 \end{aligned}$			$\begin{aligned} & \text { Input Filter } \mathrm{FT} \\ & 0-11 \end{aligned}$		
Where	$\begin{aligned} & 1=\text { Input } \\ & F=\text { Input filter time } \end{aligned}$															

## Setting the Input Filter Time

You can increase the input filter time (FT) for channels 00-07 (1794-IA8, -IA8K, -IA8I) and channels 00-15 (1794-IA16) by setting the corresponding bits in the output image table (complementary word) for the module.


For example, to increase the off-to-on filter time to 12 ms for all inputs at address rack 1 , module group 0 , set bits and program as shown below.


To increase the filter time, set the bits according to the table below.

## Input Filter Time

Bits			Description	$\begin{aligned} & \text { Selected } \\ & \text { Filter } \\ & \text { Time } \end{aligned}$			Maximum Filter Time 1794-1A8$(\mathrm{ms})$		Maximum Filter Time $\underset{(\mathrm{ms})}{\text { 1794-IA1 }}$	
02	01	00	Filter Time inputs 00-11		Off		Off	On	Off	On
05	04	03	Filter Time inputs 12-15				On	Off	On	Off
0	0	0	Filter Time 0 (Default)	256 $\mu \mathrm{s}$	8.4	26.4	8.4	26.4	7.5	26.5
0	0	1	Filter Time 1	$512 \mu \mathrm{~s}$	8.6	26.6	8.6	26.6	8	27
0	1	0	Filter Time 2	1 ms	9	27	9	27	9	28
0	1	1	Filter Time 3	2 ms	10	28	10	28	10	29
1	0	0	Filter Time 4	4 ms	12	30	12	30	12	31
1	0	1	Filter Time 5	8 ms	16	34	16	34	16	35
1	1	0	Filter Time 6	16 ms	24	42	24	42	24.5	44
1	1	1	Filter Time 7	32 ms	40	58	40	58	42	60.5

## Specifications

Specifications	1794-IA8, 1794-IA8K	1794-IA8\|
Number of Inputs	8, (1 group of 8), nonisolated	8 isolated
Module Location	Cat. No. 1794-TB2, -TB3, -TB3S and -TBN Terminal Base Units	
On-state Voltage	65 V ac minimum   120 V ac nominal   132 V ac maximum	
On-state Current ${ }^{1}$	7.1 mA minimum	
Off-state Voltage	43 V ac maximum	
Off-state Current	2.9 mA minimum	
Input Impedance	10.6K ohms nominal	
Nominal Input Current	12 mA @ $120 \mathrm{Vac}, 60 \mathrm{~Hz}$	
Isolation Voltage	Tested at 2150 V dc for 1 s between user and system No isolation between individual channels	Tested at 2150V dc for 1s between user and system and between individual channels
Input Filter Time	Refer to Input Filter Time table	
Flexbus Current	30 mA @5V dc	
Power Dissipation	4.5W maximum @ 132V ac	
Thermal Dissipation	Maximum 15.3 BTU/hr @ 132V ac	


Specifications - Cat. No. 1794-IA16	
Number of Inputs	16 (1 group of 16), nonisolated
Module Location	Cat. No. 1794-TB3, -TB3S and -TBN Terminal Base Units
On-state Voltage	74 V ac minimum 120 V ac nominal 132 V ac maximum
On-state Current ${ }^{1}$ minimum nominal maximum	$5.49 \mathrm{~mA} @ 74 \mathrm{Vac}, 47 \mathrm{~Hz}$ 12.06mA @ 120V ac, 60Hz 14.81 mA @ 132 V ac, 63Hz
Off-state Voltage	20 V ac maximum
Off-state Current	2.9 mA minimum
Nominal Input Impedance	10 Kohms
Nominal Input Current	$12 \mathrm{~mA} @ 120 \mathrm{Vac}$, 60Hz
Isolation Voltage	Tested at 2150V dc for 1 s between user and system No isolation between individual channels
Flexbus Current	20 mA
Power Dissipation	6.4 W maximum @ 132V ac
Thermal Dissipation	Maximum 21.8 BTU/hr @ 132V ac


General Specifications	
$\begin{aligned} & \text { Input Filter Time }{ }^{2} \\ & \text { Off to On } \\ & \text { On to Off } \end{aligned}$	Refer to Input Filter Time chart for values.
Terminal Base Screw Torque	7 pound-inches ( 0.8 Nm )   9 pound-inches ( 1.0 Nm ) for 1794-TBN
Dimensions (with module installed)	$\begin{aligned} & \text { 3.7H } \times 3.7 \mathrm{~W} \times 2.7 \mathrm{D} \text { inches } \\ & 94 \mathrm{H} \times 94 \mathrm{~W} \times 69 \mathrm{~mm} \end{aligned}$
Indicators (field side indication, customer device driven)	1794-IA8, -IA8K - 8 yellow status indicators 1794-IA8I- 8 yellow status indicators 1794-IA16-16 yellow status indicators
External ac power Supply voltage Voltage range	120 V ac nominal   1794-IA8, -IA8K, -IA8I-85 to 132 V ac, $47-63 \mathrm{~Hz}$ $1794-\mathrm{IA} 16$ - 74 to 132 V ac, $47-63 \mathrm{~Hz}$
Keyswitch Position	8
Environmental Conditions	
Operating Temperature	IEC 60068-2-1 (Test Ad, Operating Cold),   IEC 60068-2-2 (Test Bd, Operating Dry Heat),   IEC 60068-2-14 (Test Nb, Operating Thermal Shock):   0 to $55^{\circ} \mathrm{C}$ ( 32 to $131^{\circ} \mathrm{F}$ )
Storage Temperature	IEC 60068-2-1 (Test Ab, Un-packaged Non-operating Cold), IEC 60068-2-2 (Test Bb, Un-packaged Non-operating Dry Heat), IEC 60068-2-14 (Test Na, Un-packaged Non-operating Thermal Shock):   -40 to $85^{\circ} \mathrm{C}$ ( -40 to $185^{\circ} \mathrm{F}$ )
Relative Humidity	IEC 60068-2-30 (Test Db, Un-packaged Non-operating Damp Heat):   5 to $95 \%$ non-condensing
Vibration	IEC60068-2-6 (Test Fc, Operating): $5 \mathrm{~g} @ 10-500 \mathrm{~Hz}$
Shock	IEC60068-2-27 (Test Ea, Unpackaged shock):   Operating 30 g   Non-operating 50 g
Emissions	CISPR 11:   Group 1, Class A (with appropriate enclosure)
ESD Immunity	IEC 61000-4-2:   4 kV contact discharges   8 kV air discharges
Radiated RF Immunity	IEC 61000-4-3:   $10 \mathrm{~V} / \mathrm{m}$ with 1 kHz sine-wave $80 \% \mathrm{AM}$ from 30 MHz to 1000 MHz $10 \mathrm{~V} / \mathrm{m}$ with $200 \mathrm{~Hz} 50 \%$ Pulse $100 \% \mathrm{AM}$ at 900 Hz
ET/B Immunity	IEC 61000-4-4:   $\pm 2 \mathrm{KV}$ at 5 kHz on signal ports   $\pm 2 \mathrm{KV}$ at 5 kHz on power ports
Surge Transient Immunity	IEC 61000-4-5:   $\pm 1 \mathrm{kV}$ line-line(DM) and $\pm 2 \mathrm{kV}$ line-earth(CM) on signal ports   $\pm 1 \mathrm{kV}$ line-line(DM) and $\pm 2 \mathrm{kV}$ line-earth(CM) on power ports
Conducted RF Immunity	IEC 61000-4-6:   10 Vrms with 1 kHz sine-wave $80 \% \mathrm{AM}$ from 150 kHz to 80 MHz
Enclosure Type Rating	None (open-style)
Conductors Wire Size   Category ${ }^{3}$	```12-22AWG \(\left(2.5 \mathrm{~mm}^{2}-0.34 \mathrm{~mm}^{2}\right)\) stranded copper wire rated at \(75^{\circ} \mathrm{C}\) or higher \(3 / 64\) inch \((1.2 \mathrm{~mm})\) insulation maximum 2```
Certifications (when product is marked ${ }^{4}$	UL UL Listed Industrial Control Equipment CSA certified for Class I, Division 2, Groups A, B, C and D Hazardous locations   EEx ${ }^{5}$ European Union 94/9/EEC ATEX Directive, compliant with: EN 50021; Potentially Explosive Atmospheres, Protection "n" (European Zone 2) - (1794-IA8K only)   CE $^{4} \quad$ European Union 89/336/EEC EMC Directive, compliant with: EN 61000-6-4; Industrial Emissions EN 50082-2; Industrial Immunity EN 61326: Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity European Union 73/23/EEC LVD Directive, compliant with: EN 61131-2; Programmable Controllers   C-Tick ${ }^{4}$ - Australian Radiocommunications Act compliant with AS/NZS CISPR 11, Industrial Emissions

## www.rockwellautomation.com

## Corporate Headquarters

Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212 .520

## Headquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36-BP 3A/B, 1170 Brussels, Belgium, Tel: (32) 26630600 , Fax: (32) 26630640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

## Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: (1) 864.281.2433
Europe: Rockwell Automation, Brühlstraße 22, D-74834 Elztal-Dallau, Germany, Tel: (49) 6261 9410, Fax: (49) 626117741
Asia Pacific: Rockwell Automation, 55 Newton Road, \#11-01/02 Revenue House, Singapore 307987, Tel: (65) 351 6723, Fax: (65) 3551733

