$\beta \quad=0.75$ for rolled sections

$$
\bar{\lambda}_{\mathrm{LT}}=\sqrt{\frac{W_{\mathrm{y}} f_{\mathrm{y}}}{M_{\mathrm{cr}}}}
$$

where:
W_{y} is the appropriate section modulus for the section classification
$M_{\text {cr }}$ is the elastic critical moment for lateral-torsional buckling

An expression to evaluate $M_{\text {cr }}$ is not given in BS EN 1993-1-1. Three methods are given in this publication to assist in the determination of lateral-torsional buckling resistance.

Method 1

Access Steel Document SN003 (available from www.access-steel.com) provides appropriate expressions to calculate $M_{\text {cr }}$. For loads which are not destabilizing, and for doubly symmetric sections (i.e. UKB and UKC)

$$
M_{\mathrm{cr}}=C_{1} \frac{\pi^{2} E I_{z}}{L^{2}} \sqrt{\frac{I_{w}}{I_{z}}+\frac{L^{2} G I_{t}}{\pi^{2} E I_{z}}}
$$

where:
E and G are material properties
$I_{z}, I_{\mathrm{t}}, I_{\mathrm{w}}$ are section properties
$L \quad$ is the buckling length of the member
$C_{1} \quad$ is a factor that depends on the shape of the bending moment diagram see Table 6.4 of this publication

Method 2

The value of $M_{\text {cr }}$ may be determined using the software 'LTBeam' available from www.cticm.com

Method 3

As an alternative to calculating $M_{\text {cr }}$ and hence $\bar{\lambda}_{\mathrm{LT}}$, the value of $\bar{\lambda}_{\mathrm{LT}}$ may be calculated directly from the expression given below.

Where loads are not destabilising, for simply supported rolled I, H and channel sections, the non-dimensional slenderness $\bar{\lambda}_{\mathrm{LT}}$ is given by:

$$
\bar{\lambda}_{\mathrm{LT}}=\frac{1}{\sqrt{C_{1}}} U V \bar{\lambda}_{z} \sqrt{\beta_{\mathrm{w}}}
$$

where:
$\frac{1}{\sqrt{C_{1}}}$ is a parameter dependant on the shape of the bending moment diagram,
and which may conservatively be taken as 1.0 , or otherwise given in Table 6.4 for loads which are not destabilising
$U \quad$ is a section property (given in section property tables, or may conservatively be taken as 0.9)
$V \quad$ is a parameter related to slenderness, and for symmetric rolled sections where the loads are not destabilising, may be conservatively taken as 1.0 or as $V=\frac{1}{\sqrt[4]{1+\frac{1}{20}\left(\frac{\lambda_{\mathrm{z}}}{h / t_{\mathrm{f}}}\right)^{2}}}$

Conservatively, the product and U and V may be taken as 0.9
where:

$$
\begin{array}{ll}
\lambda_{\mathrm{z}} & =\frac{k L}{i_{z}}, \text { in which } k \text { may conservatively be taken as } 1.0 \text { for beams } \\
\text { supported and restrained against twist at both ends. With certain } \\
\text { additional restraint conditions } k \text { may be less than } 1.0 \text {, as described in } \\
\text { Appendix F, Section F. } 1 \text { For the value of } k \text { for cantilevers, see } \\
\text { Section F.3 }
\end{array}
$$

It is conservative to assume that the product $U V=0.9$ and that $\beta_{\mathrm{w}}=1.0$
In its most conservative form, $\quad \bar{\lambda}_{\mathrm{LT}}=\frac{L / i_{\mathrm{z}}}{96}$ for S275 and $\frac{L / i_{\mathrm{z}}}{85}$ for S355

Method 3 is amenable to presentation in a tabular format whereby χ_{LT} may be calculated directly, based on the slenderness L / i_{z} and h / t_{f}. This is presented in Appendix E, with an example.

Methods 1 and 2 give similar results. In method 3, the assumptions that $C_{1}=1.0$ and that $U V=0.9$ can be very conservative.

Where loads are destabilizing, a parameter D should be introduced in the expression for $\bar{\lambda}_{\mathrm{LT}}$. As shown in Appendix F Section F.1. The values of D are shown in Sections F. 1 and F.3.

