EN 1993-1-1 article 5.3.2(11):
As an alternative the shape of the elastic buckling mode her of the structure may be applied as an unique global and local imperfection. The amplitude h init of this imperfection may be determined from:
α - The imperfection factor for the relevant buckling curve.
χ - The reduction factor for the relevant buckling curve, depending on the relevant cross-section. N_{Rk} - The characteristic resistance to normal force of the critical cross-section, i.e. Npl,Rk.
N_{cr} - Elastic critical buckling load.
M_{Rk} - The characteristic moment resistance of the critical cross-section, i.e. $\mathrm{M}_{\mathrm{el}, \mathrm{Rk}}$ or $\mathrm{M}_{\mathrm{pl}, \mathrm{Rk}}$ as relevant.
$\eta_{c r}$ - Shape of the elastic critical buckling mode.
$\eta^{\prime \prime}{ }_{c r}$ - Maximal second derivative of the elastic critical buckling mode.

The column has a cross-section of type IPE 300, is fabricated from $\mathbf{S 2 3 5}$ and has the following relevant properties:

First a Stability calculation is done using a load of 1 kN . This way, the elastic critical buckling load N_{cr} is obtained. In order to obtain precise results, the Number of 1D elements is set to 10. In addition, the Shear Force Deformation is neglected so the result can be checked by a manual calculation.
The stability calculation gives the following result:

Critical load coefficients

Critical load coefficients	
N	f
-	-
Stability combination : S1	
1	6885,28

This can be verified with Euler's formula using the member length as the buckling length:

$$
N_{c r}=\frac{\pi^{2} E I}{l^{2}}=\frac{\pi^{2} \times 210.000 \mathrm{~N} / \mathrm{mm}^{2} \times 83560000 \mathrm{~mm}^{4}}{(5000 \mathrm{~mm})^{2}}=6927.5 \mathrm{kN}
$$

The following picture shows the mesh nodes of the column and the corresponding buckling shape:
Displacement of nodes
Stability calculation, Extreme : No
Selection: All
Stability combinations: S1/1-6885,28
Values are mulitpied by 10000 for better numeric representation.

Node of mesh	Case	Ux $[-]$	Uz $[-]$	Fiy $[-]$
1	$\mathrm{~S} 1 / 1-6885,28$	0,00	0,00	$-2314,62$
11	$\mathrm{~S} 1 / 1-6885,28$	$-1138,38$	0,00	$-2201,33$
3	$\mathrm{~S} 1 / 1-6885,28$	$-2165,34$	0,00	$-1872,57$
4	$\mathrm{~S} 1 / 1-6885,28$	$-2980,33$	0,00	$-1360,50$
5	$\mathrm{~S} 1 / 1-6885,28$	$-3503,59$	0,00	$-715,26$
6	$\mathrm{~S} 1 / 1-6885,28$	$-3683,89$	0,00	0,00
7	$\mathrm{~S} 1 / 1-6885,28$	$-3503,59$	0,00	715,26
8	$\mathrm{~S} 1 / 1-6885,28$	$-2980,33$	0,00	1360,50
9	$\mathrm{~S} 1 / 1-6885,28$	$-2165,34$	0,00	1872,57
10	$\mathrm{~S} 1 / 1-6885,28$	$-1138,38$	0,00	2201,33
2	$\mathrm{~S} 1 / 1-6885,28$	0,00	0,00	2314,62

Using for example an Excel worksheet, the buckling shape can be approximated by a 4th grade polynomial.

A polynomial has the advantage that the second derivative can easily be calculated.

$$
\begin{aligned}
\eta_{c r}= & -2.1104 \times 10^{-11} \times x^{4}+2.1104 \times 10^{-7} \times x^{4}-7.0507 \times 10^{-5} \times x^{2}+2.2854 \times x \\
& -7.3769 \times 10^{-1} \\
\eta^{\prime \prime}{ }_{c r}= & -2.5325 \times 10^{-10} \times x^{2}+1.2662 \times 10^{-6} \times x-1.4101 \times 10^{-4}
\end{aligned}
$$

Calculation of e_{0}

$$
\begin{gathered}
N_{R k}=f_{y} \times A=235 \mathrm{~N} / \mathrm{mm}^{2} \times 5380 \mathrm{~mm}^{2}=1264300 \mathrm{~N} \\
M_{R k}=f_{y} \times W_{p l}=235 \mathrm{~N} / \mathrm{mm}^{2} \times 628400 \mathrm{~mm}^{3}
\end{gathered}=147674000 \mathrm{Nmm}(\text { class } 2), ~ \sqrt{\frac{N_{R k}}{N_{c r}}}=\sqrt{\frac{1264300 \mathrm{~N}}{6927510 \mathrm{~N}}}=0.43 \mathrm{y} .
$$

$\alpha=0.21$ for buckling curve a

$$
\begin{gathered}
\chi=\frac{1}{0.5\left[1+\alpha(\bar{\lambda}-0.2)+(\bar{\lambda})^{2}\right]+\sqrt{\left(0.5\left[1+\alpha(\bar{\lambda}-0.2)+(\bar{\lambda})^{2}\right]\right)^{2}-(\bar{\lambda})^{2}}}=0.945 \\
e_{0}=\alpha(\bar{\lambda}-0.2) \frac{M_{R k}}{N_{R k}} \frac{1-\frac{\chi \times(\bar{\lambda})^{2}}{1-\chi \times(\bar{\lambda})^{2}}}{1-2.21 \times(0.43-0.2) \frac{147674000 \mathrm{Nmm}}{1264300 \mathrm{~N}}=5.6416 \mathrm{~mm}} .
\end{gathered}
$$

Calculation of $\eta_{\text {init }}$

The mid section of the column is decisive $=>x=2500 \mathrm{~mm}$
$\eta_{c r}$ at mid section $=-3681,8$
$\eta^{\prime \prime}{ }_{c r}$ at mid section $=1,4418 \times 10^{-3} 1 / \mathrm{mm}^{2}$

$$
\begin{aligned}
& \eta_{\text {init }}=e_{0} \times \frac{N_{c r}}{E \times I \times \eta^{\prime \prime} c r} \times \eta_{c r}=5.6416 \mathrm{~mm} \times \frac{6927510 \mathrm{~N}}{210000^{N} / \mathrm{mm}^{2} \times 83560000 \mathrm{~mm}^{4} \times 1.4418 \times 10^{-3} \times 1 / \mathrm{mm}^{2}} \times \\
& 3681.8=5.6528 \mathrm{~mm}
\end{aligned}
$$

This value can now be inputted as amplitude of the buckling shape for imperfection.

