

Stuctur Poteau - vue Poteau - interaction N-M Poteau - feraillage Poteau - note de calcul

2.4 Chargements :

Cas Nature	,	${ }_{\text {f }}$	(T)	$\begin{aligned} & M y(s) \\ & \left(T^{*}+m\right) \end{aligned}$	$\begin{aligned} & M y(i) \\ & \left(T^{*} m\right) \end{aligned}$	$\begin{aligned} & M Z(s) \\ & \left(T^{*}+m\right) \end{aligned}$		
			(T)				($\left.\mathrm{T}^{*} \mathrm{~m}\right)$	
UDL - SSW permanerte	89	1.35	93.93	-5.54	-0.00	-2.17	-0.00	
UDL-SC permanente	89	1.35	13.83	-4.82	-0.00	-1.51	-0.00	
UDL-SR permanente	89	1.35	2.32	-0.28	-0.00	-0.06	-0.00	
UDL-RF permanente	89	1.35	20.51	2.11	-0.00	1.05	-0.00	
LDL permanerte	89	1.35	74.26	1.35	-0.00	-1.77	-0.00	
NDL permanente	89	1.35	2.81	0.01	0.00	-0.30	-0.00	
ULL d'exploitation	89	1.50	47.21	-2.49	-0.00	-1.28	-0.00	
TEMP1 température	89	1.50	2.00	-33.48	-0.00	15.11	0.00	
M MNDX+(H) vent	89	1.50	4.11	-11.25	0.00	-0.11	-0.00	
MMNDX+(V) vent	89	1.50	4.32	-9.68	-0.00	-0.16	0.00	
MMNDX-(H) vent	89	1.50	-1.67	11.22	-0.00	0.25	0.00	
WMNDX-(V) vert	89	1.50	-0.34	9.77	-0.00	0.13	0.00	
WINDY+(H) vent	89	1.50	0.12	1.65	0.00	-19.41	0.00	
WMNDY+(V) vert	89	1.50	1.59	1.82	0.00	-17.62	-0.00	
M MNDY-(H) vent	89	1.50	2.12	1.73	-0.00	19.44	0.00	
WMNDY-(V) vent	89	1.50	2.71	1.56	0.00	17.46	-0.00	
M MND +45 -(H)	vent	89	1.50	9.17	-36.51	-0.00	-13.93	-0.00
MND +45 -(V)	vent	89	1.50	10.36	-35.27	-0.00	-12.71	0.00
WND+135-(H)	vent	89	1.50	-6.88	36.66	0.00	-13.26	0.00
MND +135 -(V)	vent	89	1.50	-4.92	35.76	0.00	-12.07	0.00
WND-45-(H)	vent	89	1.50	10.63	-36.62	-0.00	13.12	-0.00
MND-45-(V)	vent	89	1.50	11.18	-35.61	-0.00	11.68	-0.00
WND-135-(H)	vent	89	1.50	-5.45	36.64	-0.00	14.27	-0.00
WMND-135-(V)	vent	89	1.50	-4.01	35.07	-0.00	12.70	0.00
SPECT_NOUV30	sismique	89	1.00	10.18	48.46	-0.01	-38.77	-0.00
SPECT_NOUV31	sismique	89	1.00	8.75	40.63	-0.00	-2.19	-0.00
SPECT_NOUV32	sismique	89	1.00	8.75	40.63	-0.00	-2.19	-0.00
SPECT_NOUV33	sismique	89	1.00	10.18	48.46	-0.01	-38.77	-0.00
SPECT_NOUV34	sismique	89	1.00	5.23	26.41	-0.00	-67.11	-0.01
SPECT_NOUV35	sismique	89	1.00	0.45	0.31	0.00	54.82	0.01
SPECT_NOUV36	sismique	89	1.00	0.45	0.31	0.00	54.82	0.01
SPECT_NOUV37	sismique	89	1.00	5.23	26.41	-0.00	-67.11	-0.01
SPECT_NOUV38	sismique	89	1.00	3.56	17.28	-0.00	-24.44	-0.00
SPECT_NOUV39	sismique	89	1.00	2.12	9.45	-0.00	12.15	0.00
SPECT_NOUV40	sismique	89	1.00	2.12	9.45	-0.00	12.15	0.00
SPECT_NOUV41	sismique	89	1.00	3.56	17.28	-0.00	-24.44	-0.00

$\begin{array}{ll}\text { 2.5 } & \text { Resultats des calculs: } \\ \text { La capacité ultime du poteau n'est pas satisfaisante. }\end{array}$
Dispositions sismiques: sans conditions!
Coeficicients de sécurité Rd/Fd $=0.53<1.0$

Tapez un mot-clé ou une expressia
$80 \cdot 9 \& \hat{*}$

2.5.1 Analyse à l'ELU

Combinaison défavorable: $1.35 \mathrm{UDL}-\mathrm{SSW}+1.35 \mathrm{UDL}-\mathrm{SC}+1.35 \mathrm{UDL}-\mathrm{SR}+1.35 \mathrm{UDL}-\mathrm{RF}+1.35 \mathrm{LDL}+1.35 \mathrm{NDL}+1.50 \mathrm{ULL}+0.90 \mathrm{~W} / \mathrm{ND}+45-(\mathrm{V})+0.90 \mathrm{TEMP1}$ (A) Efforts sectionnels:

Nsd $=362.28(T) \quad M s d y=-75.31\left(T^{*} m\right) \quad M s d z=-6.19\left(T^{*} m\right)$
Efforts de dimensionnement:
noeud supérieur
$N=362.28(T) \quad N^{*}$ etotz $=-12660.75\left(T^{*} m\right) N^{*}$ etoty $=-9.66\left(T^{*} m\right)$

Excentrement		ez (MyN)	ey (MzN)
statique	eEd:	-0.2079 (m)	-0.0171 (m)
due au montage	ea:	0.0285 (m)	0.0000 (m)
initial	e0:	0.2079 (m)	0.0171 (m)
minim	emin	0.0267 (m)	0.0267 (m)

 -0.0267 (m) How can we obtain 34.94 m final excentricity when having initial one equal to 0.2079 m (correct) and the other equal to 0.0285 m (correct) ?!

2.5.1.1. Analyse détaillée-Direction Y :

2.5.1.1.1 Analyse de l'Elancement

Structure avec possibilité de translation
$\begin{array}{lll}\mathrm{L}(\mathrm{m}) & \mathrm{Lo}(\mathrm{m}) & \lambda \\ 5.3350 & 23.8048 & 119.02\end{array}$ ${ }_{20.80}^{\text {Nim }}$

Poteau élancé

2.5.1.1.2 Analyse de flambemen

$\mathrm{M} 2=-0.00\left(\mathrm{~T}^{*} \mathrm{~m}\right) \quad \mathrm{M} 1=-75.31\left(\mathrm{~T}^{*} \mathrm{~m}\right)$
Cas: section à l'extrénité du poteau (noeud supérieur), prise en compte de linfluence de lélancement
M0 $=-75.31$ ($\left.\mathrm{T}^{*} \mathrm{~m}\right)$
$=\theta 1^{*}+0,2=0.0285(\mathrm{~m})$
$\theta 1=\theta 0 *(\mathrm{ch})^{*} \mathrm{~cm}=0.0$
$\theta_{0}=0.01$
$\begin{array}{ll}\mathrm{m}= & =(0.5(1+1 \mathrm{~m}))^{\wedge} 0.5=0.71\end{array}$
$0 m=0,5(1+1$
$m=58.00$
Méthode basée sur une rigidité nominale
$\left[1+\frac{\beta}{\left(N_{B} / N\right)-1}\right]_{=147.85}$
$\beta=1.23$
$\mathrm{Nb}=\left(\pi^{\wedge} 2^{*} \mathrm{EJ}\right) / 10^{\wedge} 2=304.36(\mathrm{~T})$
$J=K c^{*} E C d^{*} J \mathrm{~J}+\mathrm{Ks} \mathrm{s}^{*} E s^{*} J \mathrm{~J}=17474.7800\left(\mathrm{~T}^{*} \mathrm{~m} 2\right)$
wet $=3.02$
$\mathrm{Jc}=0.0201(\mathrm{~m} 4)$
$\begin{aligned} \mathrm{Js} & =0.0007(\mathrm{~m} 4) \\ \mathrm{K}_{\mathrm{c}} & =0.06 \mathrm{~m}^{2}\end{aligned}$
$\mathrm{K}=0.060$
$\mathrm{~K}=1.00 \mathrm{o}$

Tapez un mot－clé ou une expressia
昛• $9 \& \approx$ ？
$-5 x$
$-x^{-5}$

\qquad

ane

Structure	Poteau－vue	Poteau－interaction $N \cdot M$	Poteau－ferraillage	Poteau－note de calcul

2．5．1．1．2 Analyse de flambement

$\mathrm{M} 2=-0.00\left(\mathrm{~T}^{*} \mathrm{~m}\right) \quad \mathrm{M} 1=-75.31\left(\mathrm{~T}^{*} \mathrm{~m}\right)$
Cas：section à l＇extrénité du poteau（noeud supérieur），prise en compte de linfluence de lélancement
M0 $=-75.31\left(\mathrm{~T}^{*} \mathrm{~m}\right)$
$\begin{aligned} & e a==1 * 1022=0.0285(\mathrm{~m}) \\ & \theta 1=\theta 0 * \mathrm{ch} * \\ & \mathrm{cmm}=0.00\end{aligned}$
$1=\theta_{0} * \mathrm{ch}_{\substack{* \\ \theta_{0}=0.01}}=0.00$
$A_{0}=0.01$
$\Delta \rightarrow=0.67$
$\begin{aligned} a m= & =(0.5(1+1 \mathrm{~m}))^{\wedge} \times 0.5=0.71\end{aligned}$
$\begin{aligned} & \mathrm{cm} \\ & \mathrm{m}=56.00\end{aligned}$
rigidité nominale

$\beta=1.23$
EJ） $10 \wedge 2=304.36$（ T ）
$E J=K C^{*} E C C^{*} J C+K s^{*} E S^{*} J s=17474.7800\left(T^{*} * 2\right)$
pet $=3.02$
$\mathrm{Jc}=0.0201(\mathrm{~m} 4)$
$\mathrm{J}_{\mathrm{s}}=0.0007(\mathrm{~m} 4)$
$\mathrm{K}=0.060$
$\mathrm{~K}=1.000$
$k_{s}=1.000$
$M_{Z_{d}}=\max \left\{M_{\overline{Z d \min }} ;\left[1+\frac{\beta}{\left(N_{B} / N\right)-1}\right] M_{0 E d}\right\}$
2．5．1．2．Analyse détaillée－Direction Z：
$\mathrm{M} 2=0.00\left(\mathrm{~T}^{*} \times \mathrm{m}\right) \quad \mathrm{M} 1=619\left(\mathrm{~T}^{*} \times 2\right)$
Cas：section à l＇extrénité du poteau（noeud supérieur），négliger linfluence de rélancement
$\mathrm{MO}=-6.19\left(\mathrm{~T}^{*} \mathrm{~m}\right)$
$\mathrm{ea}=0.0000(\mathrm{~m})$
$\mathrm{Ma}=\mathrm{N}^{*} \mathrm{ea}=0.00\left(\mathrm{~T}^{*} \mathrm{~m}\right)$
MEdrain $=9.66\left(T^{*} \mathrm{~m}\right)$
MOEd $=\max (\mathrm{MEdrinin}, M 0+\mathrm{Ma})=-9.66\left(\mathrm{~T}^{*} \mathrm{~m}\right)$

2．5．2 Ferraillage ：

$$
\begin{array}{ll}
\text { section d'acier réelle } & \text { Asr }=120.64(\mathrm{~cm} 2) \\
\text { Ratio acier/béton : } & \rho=2.40 \%
\end{array}
$$

