

General

Connection no.
Connection name: Frame knee

Geometry

Column

Section: UC $203 \times 203 \times 86$

$\alpha=$	-90.0	$[\mathrm{Deg}]$	Inclination angle
$\mathrm{h}_{\mathrm{c}}=$	222	$[\mathrm{~mm}]$	Height of column section
$\mathrm{b}_{\mathrm{fc}}=$	209	$[\mathrm{~mm}]$	Width of column section
$\mathrm{t}_{\mathrm{wc}}=$	13	$[\mathrm{~mm}]$	Thickness of the web of column section
$\mathrm{t}_{\mathrm{f}}=$	21	$[\mathrm{~mm}]$	Thickness of the flange of column section
$\mathrm{r}_{\mathrm{c}}=$	10	$[\mathrm{~mm}]$	Radius of column section fillet
$\mathrm{A}_{\mathrm{c}}=$	11000	$\left[\mathrm{~mm}^{2}\right]$	Cross-sectional area of a column
$\mathrm{I}_{\mathrm{xc}}=$	94490000	$\left[\mathrm{~mm}^{4}\right]$	Moment of inertia of the column section
Material:	S355		
$\mathrm{f}_{\mathrm{yc}}=$	355.00	$[\mathrm{MPa}]$	Resistance

BEAM

Section: UC $203 \times 203 \times 71$
$\alpha=\quad 0.0 \quad$ [Deg] Inclination angle

$\alpha=$	0.0	$[\mathrm{Deg}]$	Inclination angle
$\mathrm{h}_{\mathrm{b}}=$	216	$[\mathrm{~mm}]$	Height of beam section
$\mathrm{b}_{\mathrm{f}}=$	206	$[\mathrm{~mm}]$	Width of beam section
$\mathrm{t}_{\mathrm{wb}}=$	10	$[\mathrm{~mm}]$	Thickness of the web of beam section
$\mathrm{t}_{\mathrm{fb}}=$	17	$[\mathrm{~mm}]$	Thickness of the flange of beam section
$\mathrm{r}_{\mathrm{b}}=$	10	$[\mathrm{~mm}]$	Radius of beam section fillet
$\mathrm{r}_{\mathrm{b}}=$	10	$[\mathrm{~mm}]$	Radius of beam section fillet
$\mathrm{A}_{\mathrm{b}}=$	9040	$\left[\mathrm{~mm}^{2}\right]$	Cross-sectional area of a beam
$\mathrm{I}_{\mathrm{xb}}=$	76180000	$\left[\mathrm{~mm}^{4}\right]$	Moment of inertia of the beam section
Material:	S 355		
$\mathrm{f}_{\mathrm{yb}}=$	355.00	$[\mathrm{MPa}]$	Resistance

Bolts

The shear plane passes through the UNTHREADED portion of the bolt.
$\mathrm{d}=\quad 24$ [mm] Bolt diameter
Class $=8.8 \quad$ Bolt class
$\mathrm{F}_{\mathrm{tRd}}=203.33$ [kN] Tensile resistance of a bolt
$\mathrm{n}_{\mathrm{h}}=\quad 2$ Number of bolt columns
$\mathrm{n}_{\mathrm{v}}=\quad 3 \quad$ Number of bolt rows
$\mathrm{h}_{1}=\quad 35[\mathrm{~mm}]$ Distance between first bolt and upper edge of front plate
Horizontal spacing $\mathrm{e}_{\mathrm{i}}=120$ [mm]
Vertical spacing $p_{i}=$ 90;130 [mm]

Plate

$\mathrm{h}_{\mathrm{p}}=$	320	$[\mathrm{~mm}]$	Plate height
$\mathrm{b}_{\mathrm{p}}=$	206	$[\mathrm{~mm}]$	Plate width
$\mathrm{t}_{\mathrm{p}}=$	20	$[\mathrm{~mm}]$	Plate thickness
Material:	S 275		
$\mathrm{f}_{\mathrm{yp}}=$	275.00	$[\mathrm{MPa}]$	Resistance

COLUMN STIFFENER

Upper			
$\mathrm{h}_{\text {su }}=$	181	$[\mathrm{~mm}]$	Stiffener height
$\mathrm{b}_{\text {su }}=$	98	$[\mathrm{~mm}]$	Stiffener width
$\mathrm{t}_{\text {hu }}=$	10	$[\mathrm{~mm}]$	Stiffener thickness
Material:	S 275		
$\mathrm{f}_{\text {ssu }}=$	275.00	$[\mathrm{MPa}]$	Resistance
Lower			
$\mathrm{h}_{\text {sd }}=$	181	$[\mathrm{~mm}]$	Stiffener height
$\mathrm{b}_{\text {sd }}=$	98	$[\mathrm{~mm}]$	Stiffener width
$\mathrm{t}_{\text {hd }}=$	10	$[\mathrm{~mm}]$	Stiffener thickness
Material:	S 275		
$\mathrm{f}_{\text {ysu }}=$	275.00	$[\mathrm{MPa}]$	Resistance

FILLET WELDS

$\mathrm{a}_{\mathrm{w}}=$	6	$[\mathrm{~mm}]$	Web weld
$\mathrm{a}_{\mathrm{f}}=$	6	$[\mathrm{~mm}]$	Flange weld
$\mathrm{a}_{\mathrm{s}}=$	6	$[\mathrm{~mm}]$	Stiffener weld

MATERIAL FACTORS

$\gamma_{\text {M0 }}=\quad 1.00 \quad$ Partial safety factor

$\gamma_{\mathrm{M} 0}=$	1.00	Partial safety factor	$[2.2]$
$\gamma_{\mathrm{M} 1}=$	1.00	Partial safety factor	$[2.2]$
$\gamma_{\mathrm{M} 2}=$	1.25	Partial safety factor	$[2.2]$
$\gamma_{\mathrm{M} 3}=$	1.25	Partial safety factor	$[2.2]$

LOADS

Ultimate limit state
Case: Manual calculations.

$\mathrm{M}_{\mathrm{bl1,Ed}}=$	58.00	$[\mathrm{kN} * \mathrm{~m}]$	Bending moment in the right beam
$\mathrm{V}_{\mathrm{b} 1 \mathrm{Ed}}=$	75.00	$[\mathrm{kN}]$	Shear force in the right beam
$\mathrm{N}_{\mathrm{b} 1, \mathrm{Ed}}=$	75.00	$[\mathrm{kN}]$	Axial force in the right beam

Results

BEAM RESISTANCES

TENSION

$\mathrm{A}_{\mathrm{b}}=\quad 9040 \quad\left[\mathrm{~mm}^{2}\right] \quad$ Area

EN1993-1-1:[6.2.3]
$N_{\mathrm{tb}, \mathrm{Rd}}=\mathrm{A}_{\mathrm{b}} \mathrm{f}_{\mathrm{yb}} / \gamma_{\mathrm{mo}}$
$\mathrm{N}_{\text {tb }, \text { Rd }}=3209.20$
[kN] Design tensile resistance of the section
EN1993-1-1:[6.2.3]
SHEAR
$A_{v b}=2424 \quad\left[\mathrm{~mm}^{2}\right] \quad$ Shear area \quad EN1993-1-1:[6.2.6.(3)]
$\mathrm{V}_{\mathrm{cb}, \mathrm{Rd}}=\mathrm{A}_{\mathrm{vb}}\left(\mathrm{f}_{\mathrm{yb}} / \sqrt{ } 3\right) / \gamma_{\mathrm{Mo}}$
$\mathrm{V}_{\mathrm{cb}, \mathrm{Rd}}=496.92 \quad[\mathrm{kN}] \quad$ Design sectional resistance for shear EN1993-1-1:[6.2.6.(2)]
$\mathrm{V}_{\mathrm{b} 1, \mathrm{Ed}} / \mathrm{V}_{\mathrm{cb}, \mathrm{Rd}} \leq 1,0 \quad 0.15<1.00$ verified
BENDING - PLASTIC MOMENT (WITHOUT BRACKETS)
$\mathrm{W}_{\text {plb }}=799000 \quad\left[\mathrm{~mm}^{3}\right] \quad$ Plastic section modulus
EN1993-1-1:[6.2.5.(2)]
$\mathrm{M}_{\mathrm{b}, \mathrm{pl}, \mathrm{Rd}}=\mathrm{W}_{\mathrm{plb}} \mathrm{f}_{\mathrm{yb}} / \gamma_{\mathrm{mo}}$
$\mathrm{M}_{\mathrm{b}, \mathrm{pl}, \mathrm{Rd}}=283.64[\mathrm{kN} * \mathrm{~m}]$ Plastic resistance of the section for bending (without stiffeners)
EN1993-1-1:[6.2.5.(2)]
BENDING ON THE CONTACT SURFACE WITH PLATE OR CONNECTED ELEMENT
$\mathrm{W}_{\mathrm{pl}}=799000 \quad\left[\mathrm{~mm}^{3}\right] \quad$ Plastic section modulus
EN1993-1-1:[6.2.5]
$\mathrm{M}_{\mathrm{cb}, \mathrm{Rd}}=\mathrm{W}_{\mathrm{pl}} \mathrm{f}_{\mathrm{yb}} / \gamma_{\mathrm{Mo}}$
$\mathrm{M}_{\mathrm{cb}, \mathrm{Rd}}=283.64 \quad[\mathrm{kN} * \mathrm{~m}] \quad$ Design resistance of the section for bending \quad EN1993-1-1:[6.2.5]
FLANGE AND WEB - COMPRESSION
$\mathrm{M}_{\mathrm{cb}, \mathrm{Rd}}=283.64 \quad[\mathrm{kN} * \mathrm{~m}] \quad$ Design resistance of the section for bending \quad EN1993-1-1:[6.2.5]
$\mathrm{h}_{\mathrm{f}}=\quad 198 \quad[\mathrm{~mm}] \quad$ Distance between the centroids of flanges
$\mathrm{F}_{\mathrm{c}, \mathrm{fb}, \mathrm{Rd}}=\mathrm{M}_{\mathrm{cb}, \mathrm{Rd}} / \mathrm{h}$
$\mathrm{F}_{\mathrm{c}, \mathrm{fb}, \mathrm{Rd}}=1428.94 \quad[\mathrm{kN}] \quad$ Resistance of the compressed flange and web
[6.2.6.7.(1)]
[6.2.6.7.(1)]

COLUMN RESISTANCES

WEB PANEL - SHEAR

$\mathrm{M}_{\mathrm{b} 1, \mathrm{Ed}}=58.00 \quad\left[\mathrm{kN} \mathrm{N}^{\mathrm{m}}\right] \quad$ Bending moment (right beam)
$M_{b 2, E d}=0.00 \quad[\mathrm{kN} * \mathrm{~m}] \quad$ Bending moment (left beam)
$\mathrm{V}_{\mathrm{cl} 1, \mathrm{Ed}}=\quad 0.00 \quad[\mathrm{kN}] \quad$ Shear force (lower column)
$V_{\mathrm{c} 2, \mathrm{Ed}}=0.00 \quad[\mathrm{kN}] \quad$ Shear force (upper column) [5.3.(3)]
$\mathrm{z}=127 \quad[\mathrm{~mm}] \quad$ Lever arm [6.2.5]
$\mathrm{V}_{\mathrm{wp}, \mathrm{Ed}}=\left(\mathrm{M}_{\mathrm{b} 1, \mathrm{Ed}}-\mathrm{M}_{\mathrm{b} 2, \mathrm{Ed}}\right) / \mathrm{z}-\left(\mathrm{V}_{\mathrm{c} 1, \mathrm{Ed}}-\mathrm{V}_{\mathrm{c} 2, \mathrm{Ed}}\right) / 2$
$\mathrm{V}_{\mathrm{wp}, \mathrm{Ed}}=456.15 \quad[\mathrm{kN}] \quad$ Shear force acting on the web panel
[5.3.(3)]
$A_{v s}=3105\left[\mathrm{~mm}^{2}\right]$ Shear area of the column web
$A_{\mathrm{vc}}=3105\left[\mathrm{~mm}^{2}\right]$ Shear area
$A_{\text {vs }}=3105\left[\mathrm{~mm}^{2}\right]$ Shear area of the column web
$\mathrm{d}_{\mathrm{s}}=206[\mathrm{~mm}]$ Distance between the centroids of stiffeners
[6.2.6.1.(4)]
$\mathrm{M}_{\mathrm{pl}, \mathrm{fc}, \mathrm{Rd}}=7.80\left[\mathrm{kN}{ }^{\star} \mathrm{m}\right]$ Plastic resistance of the column flange for bending
[6.2.6.1.(4)]
$M_{\mathrm{pl}, \mathrm{st}, \mathrm{Rd}}=1.44[\mathrm{kN} * \mathrm{~m}]$ Plastic resistance of the upper transverse stiffener for bending
[6.2.6.1.(4)]
$\mathrm{M}_{\mathrm{pl}, \mathrm{st}, \mathrm{Rd}}=1.44[\mathrm{kN} * \mathrm{~m}]$ Plastic resistance of the lower transverse stiffener for bending
$V_{\mathrm{wp}, \mathrm{Rd}}=0.9\left(A_{\mathrm{vs}}{ }^{\star} \mathrm{f}_{\mathrm{y}, \mathrm{wc}}\right) /\left(\sqrt{3} \gamma_{\mathrm{m} 0}\right)+\operatorname{Min}\left(4 \mathrm{M}_{\mathrm{pl}, \mathrm{fc}, \mathrm{Rd}} / \mathrm{d}_{\mathrm{s}},\left(2 \mathrm{M}_{\mathrm{pl}, \mathrm{fc}, \mathrm{Rd}}+\mathrm{M}_{\mathrm{pl}, \mathrm{stu}, R \mathrm{dd}}+\mathrm{M}_{\mathrm{p}, \mathrm{stl}, \mathrm{Rd}}\right) / \mathrm{d}_{\mathrm{s}}\right)$
$\mathrm{V}_{\mathrm{wp}, \mathrm{Rd}}=662.60 \quad[\mathrm{kN}] \quad$ Resistance of the column web panel for shear
[6.2.6.1]
$\mathrm{V}_{\mathrm{wp}, \mathrm{Ed}} / \mathrm{V}_{\mathrm{wp}, \mathrm{Rd}} \leq 1,0$
$0.69<1.00$
verified
(0.69)

WEB - TRANSVERSE COMPRESSION - LEVEL OF THE BEAM BOTTOM FLANGE

Bearing:
$\mathrm{t}_{\mathrm{wc}}=13[\mathrm{~mm}] \quad$ Effective thickness of the column web \quad [6.2.6.2.(6)]
$\mathrm{b}_{\text {eff }, \mathrm{c}, \mathrm{wc}}=228[\mathrm{~mm}] \quad$ Effective width of the web for compression \quad [6.2.6.2.(1)]
$A_{\mathrm{vc}}=3105\left[\mathrm{~mm}^{2}\right]$ Shear area
EN1993-1-1:[6.2.6.(3)]
$\omega=\quad 0.69 \quad$ Reduction factor for interaction with shear
[6.2.6.2.(1)]
$\sigma_{c o m, E d}=0.00 \quad[\mathrm{MPa}] \quad$ Maximum compressive stress in web
$\mathrm{k}_{\mathrm{wc}}=1.00 \quad$ Reduction factor conditioned by compressive stresses
[6.2.6.2.(2)]
[6.2.6.2.(2)]
$A_{s}=1964\left[\mathrm{~mm}^{2}\right] \quad$ Area of the web stiffener
EN1993-1-1:[6.2.4]
$F_{c, w c, R d 1}=\omega k_{w c} b_{\text {eff. }, \text {,wc }} t_{w c} f_{y c} / \gamma_{\mathrm{m}}+A_{s} f_{y s} / \gamma_{\mathrm{mo}}$
$\mathrm{F}_{\mathrm{c}, \mathrm{wc}, \mathrm{Rd} 1}=1244.06 \quad[\mathrm{kN}] \quad$ Column web resistance
[6.2.6.2.(1)]
Buckling:
$\mathrm{d}_{\mathrm{wc}}=161 \quad[\mathrm{~mm}] \quad$ Height of compressed web \quad [6.2.6.2.(1)]
$\lambda_{p}=0.58 \quad$ Plate slenderness of an element [6.2.6.2.(1)]
$\rho=1.00 \quad$ Reduction factor for element buckling
[6.2.6.2.(1)]
$\lambda_{s}=2.58 \quad$ Stiffener slenderness
EN1993-1-1:[6.3.1.2]
$\chi_{\mathrm{s}}=\quad 1.00 \quad$ Buckling coefficient of the stiffener
EN1993-1-1:[6.3.1.2]
$F_{c, w c, R d 2}=\omega k_{w c} \rho b_{\text {eff, }, \text {,wc }} t_{w c} f_{y c} / \gamma_{\mathrm{m} 1}+A_{s} \chi_{\mathrm{s}} f_{\mathrm{ys}} / \gamma_{\mathrm{M} 1}$
$\mathrm{F}_{\mathrm{c}, \mathrm{wc}, \mathrm{Rd} 2}=1244.06 \quad[\mathrm{kN}] \quad$ Column web resistance
[6.2.6.2.(1)]
Final resistance:
$\mathrm{F}_{\mathrm{c}, \mathrm{wc}, \mathrm{Rd}, \mathrm{low}}=\operatorname{Min}\left(\mathrm{F}_{\mathrm{c}, \mathrm{wc}, \mathrm{Rd1} 1}, \mathrm{~F}_{\mathrm{c}, \mathrm{wc}, \mathrm{Rd} 2}\right)$
$\mathrm{F}_{\mathrm{c}, \mathrm{wc}, \mathrm{Rd}}=1244.06 \quad[\mathrm{kN}] \quad$ Column web resistance
[6.2.6.2.(1)]

Geometrical parameters of a connection

EFFECTIVE LENGTHS AND PARAMETERS - COLUMN FLANGE

Nr	m	m_{x}	e	$\mathbf{e x}_{\mathrm{x}}$	p	$\mathrm{l}_{\text {eff,cp }}$	$l_{\text {eff,nc }}$	$l_{\text {eff,1 }}$	$l_{\text {eff,2 }}$	$\mathrm{l}_{\text {eff,cp,g }}$	$\mathrm{l}_{\text {eff,nc,g }}$	$\mathrm{l}_{\text {eff,1,g }}$	$\mathrm{l}_{\text {eff,2,g }}$
1	45	-	45	-	90	286	386	286	386	233	312	233	312
2	45	-	45	-	90	286	245	245	245	233	171	171	171
3	45	-	45	-	96	286	280	280	280	239	209	209	209

EFFECTIVE LENGTHS AND PARAMETERS - FRONT PLATE

Nr	m	m_{x}	e	$\mathbf{e x}_{x}$	p	$l_{\text {eff,cp }}$	$l_{\text {eff,nc }}$	$l_{\text {eff, } 1}$	$l_{\text {eff,2 }}$	$l_{\text {eff,cp,g }}$	$\mathrm{l}_{\text {eff,nc,g }}$	$l_{\text {eff,1,g }}$	$l_{\text {eff, } 2, \mathrm{~g}}$
1	48	-	43	-	90	303	401	303	401	241	322	241	322
2	48	-	43	-	90	303	247	247	247	241	168	168	168
3	48	32	43	65	96	188	103	103	103	-	-	-	-

m - Bolt distance from the web
m_{x} - Bolt distance from the beam flange
e - Bolt distance from the outer edge
$\mathrm{e}_{\mathrm{x}} \quad$ - Bolt distance from the horizontal outer edge
p - Distance between bolts
$l_{\text {lfficp }}$ - Effective length for a single bolt in the circular failure mode
$l_{\text {lff,nc }}$ - Effective length for a single bolt in the non-circular failure mode
$l_{\text {eff,1 }}$ - Effective length for a single bolt for mode 1
$l_{\text {eff,2 }}$ - Effective length for a single bolt for mode 2
m - Bolt distance from the web
$l_{\text {eff,cp,g }}$ - Effective length for a group of bolts in the circular failure mode
$l_{\text {eff,nc,g }}$ - Effective length for a group of bolts in the non-circular failure mode
$I_{\text {eff. } 1, \mathrm{~g}}$ - Effective length for a group of bolts for mode 1
$l_{\text {eff }, 2, g}$ - Effective length for a group of bolts for mode 2

CONNECTION RESISTANCE FOR TENSION

$\mathrm{F}_{\mathrm{t}, \mathrm{Rd}}=$	203.33	$[\mathrm{kN}]$	Bolt resistance for tension
$\mathrm{B}_{\mathrm{p}, \mathrm{Rd}}=$	466.87	$[\mathrm{kN}]$	Punching shear resistance of a bolt
$\mathrm{N}_{\mathrm{j}, \mathrm{Rd}}=\operatorname{Min}\left(\mathrm{N}_{\mathrm{tb}, \mathrm{Rd}}, \mathrm{n}_{\mathrm{v}} \mathrm{n}_{\mathrm{h}} \mathrm{F}_{\mathrm{t}, \mathrm{Rd}}, \mathrm{n}_{\mathrm{v}} \mathrm{n}_{\mathrm{h}} \mathrm{B}_{\mathrm{p}, \mathrm{Rd}}\right)$	[Table 3.4]		
$\mathrm{N}_{\mathrm{j}, \mathrm{Rd}}=$	1219.97	$[\mathrm{kN}]$	Connection resistance for tension
$\mathrm{N}_{\mathrm{bl}, \mathrm{Ed}} / \mathrm{N}_{\mathrm{j}, \mathrm{Rd}} \leq 1,0$		$0.06<1.00$	[Table 3.4]

CONNECTION RESISTANCE FOR BENDING

$\mathrm{F}_{\mathrm{t}, \mathrm{Rd}}=203.33 \quad[\mathrm{kN}] \quad$ Bolt resistance for tension [Table 3.4]
$\left.\mathrm{B}_{\mathrm{p}, \mathrm{Rd}}=466.87 \mathrm{kN}\right] \quad$ Punching shear resistance of a bolt [Table 3.4]
$\mathrm{F}_{\mathrm{t}, \mathrm{f}, \mathrm{Rd}}$ - column flange resistance due to bending
$\mathrm{F}_{\mathrm{t}, \mathrm{wc}, \mathrm{Rd}}$ - column web resistance due to tension
$\mathrm{F}_{\mathrm{t}, \mathrm{ep}, \mathrm{Rd}}$ - resistance of the front plate due to bending
$\mathrm{F}_{\mathrm{t}, \mathrm{wb}, \mathrm{Rd}}$ - resistance of the web in tension
$\mathrm{F}_{\mathrm{t}, \mathrm{fc}, R \mathrm{Rd}}=\operatorname{Min}\left(\mathrm{F}_{\mathrm{T}, 1, \mathrm{fc}, \mathrm{Rd}}, \mathrm{F}_{\mathrm{T}, 2 \mathrm{fc}, \mathrm{Rd}}, \mathrm{F}_{\mathrm{T}, 3, \mathrm{fc}, \mathrm{Rd}}\right)$
$F_{t, w c, R d}=\omega b_{\text {efft }, \mathrm{wc}} \mathrm{t}_{\mathrm{wc}} \mathrm{fyc} / \gamma_{\mathrm{mo}}$
[6.2.6.3.(1)]
$F_{t, e p, R d}=\operatorname{Min}\left(F_{T, 1, e p, R d}, F_{T, 2, e p, R d}, F_{T, 3, e p, R d}\right)$
[6.2.6.5] , [Tab.6.2]
[6.2.6.8.(1)]
$\mathrm{F}_{\mathrm{t}, \mathrm{wb}, \mathrm{Rd}}=\mathrm{b}_{\mathrm{eff}, \mathrm{twb}} \mathrm{t}_{\mathrm{wb}} \mathrm{f}_{\mathrm{yb}} / \gamma_{\mathrm{mo}}$
RESISTANCE OF THE BOLT ROW NO. 1

$\mathrm{F}_{\mathrm{tt}, \mathrm{Rd}, \mathrm{comp}}-$ Formula	$\mathrm{F}_{\mathrm{t} 1, \mathrm{Rd}, \mathrm{comp}}$	Component
$\mathrm{F}_{\mathrm{t} 1, \mathrm{Rd}}=\mathrm{Min}\left(\mathrm{F}_{\mathrm{t} 1, \mathrm{Rd}, \mathrm{comp}}\right)$	406.66	Bolt row resistance
$\mathrm{F}_{\mathrm{t}, \mathrm{f}, \mathrm{Rd}(1)}=406.66$	406.66	Column flange - tension
$\mathrm{F}_{\mathrm{t}, \mathrm{wc}, \mathrm{Rd}(1)}=773.40$	773.40	Column web - tension
$\mathrm{F}_{\mathrm{t}, \mathrm{e}, \mathrm{Rd}(1)}=406.66$	406.66	Front plate - tension
$\mathrm{F}_{\mathrm{t}, \mathrm{wd}, \mathrm{Rd}(1)}=1075.38$	1075.38	Beam web - tension
$\mathrm{B}_{\mathrm{p}, \mathrm{Rd}}=933.73$	933.73	Bolts due to shear punching
$\mathrm{V}_{\mathrm{wp}, \mathrm{Rd}} / \beta=662.60$	662.60	Web panel - shear
$\mathrm{F}_{\mathrm{c}, \mathrm{wc}, \mathrm{Rd}}=1244.06$	1244.06	Column web - compression
$\mathrm{F}_{\mathrm{c}, \mathrm{fb}, \mathrm{Rd}}=1428.94$	1428.94	Beam flange - compression

RESISTANCE OF THE BOLT ROW NO. 2

$\mathrm{F}_{\text {t2,Rd,comp }}$ - Formula	$\mathrm{F}_{\text {t2, Rd, comp }}$	Component
$\mathrm{F}_{\mathrm{t} 2, \mathrm{Rd}}=\operatorname{Min}\left(\mathrm{F}_{\mathrm{t} 2, \mathrm{Rd}, \mathrm{comp}}\right)$	255.95	Bolt row resistance
$F_{\text {tif }, \text { Rd(} 2 \text { 2 }}=404.13$	404.13	Column flange - tension
$\mathrm{F}_{\mathrm{t}, \mathrm{wc}, \mathrm{Rd}(2)}=727.52$	727.52	Column web - tension
$\mathrm{F}_{\text {tep, Rd(2) }}=340.70$	340.70	Front plate - tension
$\mathrm{F}_{\mathrm{t} \text { wb,Rd(2) }}=876.31$	876.31	Beam web - tension
$\mathrm{B}_{\mathrm{p}, \mathrm{Rd}}=933.73$	933.73	Bolts due to shear punching
$\mathrm{V}_{\mathrm{wp}, \mathrm{Rd}} / \beta-\Sigma_{1}{ }^{1} \mathrm{~F}_{\mathrm{ti}, \mathrm{Rd}}=662.60-406.66$	255.95	Web panel - shear
$\mathrm{F}_{\mathrm{c}, \mathrm{wc}, \mathrm{Rd}}-\sum_{1}{ }^{1} \mathrm{~F}_{\mathrm{t}, \mathrm{Rd}}=1244.06-406.66$	837.40	Column web - compression
$\mathrm{F}_{\mathrm{c}, \mathrm{fb}, \mathrm{Rd}}-\sum_{1}{ }^{1} \mathrm{~F}_{\mathrm{t}, \mathrm{Rd}}=1428.94-406.66$	1022.29	Beam flange - compression
$\mathrm{F}_{\mathrm{t}, \mathrm{f}, \mathrm{Rd}(2+1)}-\sum_{1}{ }^{1} \mathrm{~F}_{\mathrm{t}, \mathrm{Rd}}=802.58-406.66$	395.93	Column flange - tension - group
$\mathrm{F}_{\mathrm{t}, \mathrm{wc}, \mathrm{Rd}(2+1)}-\sum_{1}{ }^{1} \mathrm{~F}_{\mathrm{t}, \mathrm{Rd}}=878.29-406.66$	471.63	Column web - tension - group
$\mathrm{F}_{\mathrm{t}, \mathrm{ep}, \mathrm{Rd}(2+1)}-\Sigma_{1}{ }^{1} \mathrm{~F}_{\mathrm{t}, \mathrm{Rd}}=679.70-406.66$	273.04	Front plate - tension - group

$\mathrm{F}_{\mathrm{t} 2, \mathrm{Rd}, \text { comp }}-$ Formula	$\mathrm{F}_{\mathrm{t} 2, \mathrm{Rd}, \text { comp }}$
$\mathrm{F}_{\mathrm{t}, \mathrm{wb}, \mathrm{Rd}(2+1)}-\sum_{1}{ }^{1} \mathrm{~F}_{\mathrm{t}, \mathrm{Rd}}=1714.38-406.66$	1307.72

Additional reduction of the bolt row resistance

$\mathrm{F}_{\mathrm{t} 2, \mathrm{Rd}}=\mathrm{F}_{\mathrm{t} 1, \mathrm{Rd}} \mathrm{h}_{2} / \mathrm{h}_{1}$
$\mathrm{F}_{\mathrm{t} 2, \mathrm{Rd}}=194.06 \quad[\mathrm{kN}] \quad$ Reduced bolt row resistance
[6.2.7.2.(9)]
The remaining bolts are inactive (they do not carry loads) because resistance of one of the connection components has been used up or these bolts are positioned below the center of rotation.

SUMMARY TABLE OF FORCES

Nr	h_{j}	$\mathrm{F}_{\mathrm{tj}, \mathrm{Rd}}$	$\mathrm{F}_{\mathrm{t}, \mathrm{fc}, \mathrm{Rd}}$	$\mathrm{F}_{\mathrm{t}, \mathrm{wc}, \mathrm{Rd}}$	$\mathrm{F}_{\mathrm{t}, \mathrm{e}, \mathrm{Rd}}$	$\mathrm{F}_{\mathrm{t}, \mathrm{wb}, \mathrm{Rd}}$	$\mathrm{F}_{\mathrm{t}, \mathrm{Rd}}$	$\mathrm{B}_{\mathrm{p}, \mathrm{Rd}}$
1	172	406.66	406.66	773.40	406.66	1075.38	406.66	933.73
2	82	194.06	404.13	727.52	340.70	876.31	406.66	933.73
3	-48	-	406.66	767.78	303.75	-	406.66	933.73

CONNECTION RESISTANCE FOR BENDING $M_{j, R d}$
$\mathrm{M}_{\mathrm{j}, \mathrm{Rd}}=\sum \mathrm{h}_{\mathrm{j}} \mathrm{F}_{\mathrm{t}, \mathrm{Rd}}$
$M_{j, R d}=85.95 \quad[\mathrm{kN} * \mathrm{~m}] \quad$ Connection resistance for bending
$\mathrm{M}_{\mathrm{b} 1, \mathrm{Ed}} / \mathrm{M}_{\mathrm{j}, \mathrm{Rd}} \leq 1,0$
0.67 < 1.00
verified

CONNECTION RESISTANCE FOR SHEAR

$\mathrm{F}_{\mathrm{t}, \mathrm{Rd}, \mathrm{N}}$ - Bolt row resistance for simple tension
$\mathrm{F}_{\mathrm{t}, \mathrm{Ed}, \mathrm{N}}$ - Force due to axial force in a bolt row
$\mathrm{F}_{\mathrm{t}, \mathrm{Rd}, \mathrm{M}}$ - Bolt row resistance for simple bending
$\mathrm{F}_{\mathrm{t}, \mathrm{Ed}, \mathrm{M}}$ - Force due to moment in a bolt row
$\mathrm{F}_{\mathrm{t}, \mathrm{Ed}} \quad$ - Maximum tensile force in a bolt row
$F_{v j, R d}$ - Reduced bolt row resistance
$F_{\mathrm{t}, \mathrm{Ed}, \mathrm{N}}=\mathrm{N}_{\mathrm{j}, \mathrm{Ed}} \mathrm{F}_{\mathrm{t}, \mathrm{Rd}, \mathrm{N}} / \mathrm{N}_{\mathrm{j}, \mathrm{Rd}}$
$F_{\mathrm{t}, \mathrm{Ed}, \mathrm{M}}=\mathrm{M}_{\mathrm{j}, \mathrm{Ed}} \mathrm{F}_{\mathrm{t}, \mathrm{Rd}, \mathrm{M}} / \mathrm{M}_{\mathrm{j}, \mathrm{Rd}}$
$F_{\mathrm{t}_{\mathrm{t}, \mathrm{Ed}}}=\mathrm{F}_{\mathrm{t}, \mathrm{Ed}, \mathrm{N}}+\mathrm{F}_{\mathrm{t}, \mathrm{Ed}, \mathrm{M}}$
$F_{\mathrm{v}, \mathrm{Rd}}=\operatorname{Min}\left(n_{h} F_{v, R d}\left(1-F_{\mathrm{t}, \mathrm{Ed}}\left(1.4 n_{h} F_{\mathrm{t}, \mathrm{Rd}, \max }\right), n_{\mathrm{h}} \mathrm{F}_{\mathrm{v}, \mathrm{Rd}}, n_{\mathrm{h}} \mathrm{F}_{\mathrm{b}, \mathrm{Rd}}\right)\right)$
$V_{j, R d}=n_{h} \sum_{1}{ }^{n} F_{\mathrm{V} j, R d}$
[Table 3.4]
$\mathrm{V}_{\mathrm{i}, \mathrm{Rd}}=749.15 \quad[\mathrm{kN}] \quad$ Connection resistance for shear
[Table 3.4]
$\mathrm{V}_{\mathrm{b} 1, \mathrm{Ed}} / \mathrm{V}_{\mathrm{i}, \mathrm{Rd}} \leq 1,0$
$0.10<1.00$ verified

Weld resistance

$\mathrm{A}_{w}=$	5280	$\left[\mathrm{~mm}^{2}\right]$	Area of all welds	$[4.5 .3 .2(2)]$	
$\mathrm{A}_{w y}=$	3350	$\left[\mathrm{~mm}^{2}\right]$	Area of horizontal welds	$[4.5 .3 .2(2)]$	
$\mathrm{A}_{\mathrm{wz}}=$	1930	$\left[\mathrm{~mm}^{2}\right]$	Area of vertical welds	$[4.5 .3 .2(2)]$	
$\mathrm{I}_{w y}=$	32033301	$\left[\mathrm{~mm}^{4}\right]$	Moment of inertia of the weld arrangement with respect to the hor. axis	$[4.5 .3 .2(5)]$	
$\sigma_{\perp \max }=\tau_{\perp \max }=$	154.77	$[\mathrm{MPa}]$	Normal stress in a weld	$[4.5 .3 .2(5)]$	
$\sigma_{\perp}=\tau_{\perp}=$	145.86	$[\mathrm{MPa}]$	Stress in a vertical weld	$[4.5 .3 .2(5)]$	
$\tau_{\\| I}=$	38.87	$[\mathrm{MPa}]$	Tangent stress	$[4.5 .3 .2(5)]$	
$\beta_{w}=$	0.85		Correlation coefficient	$[4.5 .3 .2(7)]$	

$\sqrt{ }\left[\sigma_{\perp \text { max }}{ }^{2}+3^{*}\left(\tau_{\perp \text { max }}{ }^{2}\right)\right] \leq f_{u} /\left(\beta_{w}{ }^{*} \gamma_{M 2}\right)$	$309.54<404.71$	verified	(0.76)	
$\sqrt{ }\left[\sigma_{\perp}{ }^{2}+3^{*}\left(\tau_{\perp}{ }^{2}+\tau_{\\| \prime}{ }^{2}\right)\right] \leq f_{U} /\left(\beta_{w}{ }^{*} \gamma_{\mathrm{M} 2}\right)$	$299.39<404.71$	verified	(0.74)	
$\sigma_{\perp} \leq 0.9{ }^{*} \mathrm{f}_{\mathrm{U}} / \gamma_{\mathrm{M} 2}$	154.77 < 309.60	verified	(0.50)	

Connection stiffness

$\mathrm{t}_{\text {wash }}=$	5	$[\mathrm{~mm}]$	Washer thickness	$[6.2 .6 .3 .(2)]$
$\mathrm{h}_{\text {head }}=$	17	$[\mathrm{~mm}]$	Bolt head height	
$\mathrm{h}_{\text {nut }}=$	24	$[\mathrm{~mm}]$	Bolt nut height	$[6.2 .6 .3 .(2)]$
$\mathrm{L}_{\mathrm{b}}=$	71	$[\mathrm{~mm}]$	Bolt length	$[6.2 .6 .3 .(2)]$
$\mathrm{k}_{10}=$	8	$[\mathrm{~mm}]$	Stiffness coefficient of bolts	$[6.2 .6 .3 .(2)]$
		$[6.3 .2 .(1)]$		

STIFFNESSES OF BOLT ROWS

Nr	hj	k_{3}	k_{4}	k_{5}	$k_{\text {eff, } \mathrm{j}}$	$\mathrm{k}_{\text {eff, } \mathrm{j}} \mathrm{h}_{\mathrm{j}}$	$k_{\text {eff,j }} h_{j}{ }^{2}$
					Sum	723	106394
1	172	11	19	16	3	522	89858
2	82	8	14	11	2	201	16535

$k_{\text {eff, }, \mathrm{j}}=1 /\left(\sum_{3}^{5}\left(1 / k_{\mathrm{i}, \mathrm{j}}\right)\right)$
[6.3.3.1.(2)]
$z_{\text {eq }}=\sum_{j} k_{e f f, j} h_{j}^{2} / \sum_{j} k_{e f f, j} h_{j}$
$\mathrm{Z}_{\text {eq }}=\quad 147 \quad[\mathrm{~mm}] \quad$ Equivalent force arm \quad [6.3.3.1.(3)]
$k_{\text {eq }}=\sum_{j} k_{\text {eff, }} h_{j} / z_{\text {eq }}$
$\mathrm{k}_{\text {eq }}=\quad 5[\mathrm{~mm}] \quad$ Equivalent stiffness coefficient of a bolt arrangement \quad [6.3.3.1.(1)]
$A_{\mathrm{vc}}=3105\left[\mathrm{~mm}^{2}\right]$ Shear area
EN1993-1-1:[6.2.6.(3)]
$\beta=1.00 \quad$ Transformation parameter
[5.3.(7)]
$\mathrm{z}=127$ [mm] Lever arm
$\mathrm{k}_{1}=9[\mathrm{~mm}]$ Stiffness coefficient of the column web panel subjected to shear
[6.2.5]
$k_{2}=\quad$ Stiffness [6.3.2.(1)]
$\mathrm{k}_{2}=\infty \quad$ Stiffness coefficient of the compressed column web \quad [6.3.2.(1)]
$S_{\mathrm{j}, \text { ini }}=\mathrm{E} \mathrm{zeq}_{\mathrm{eq}}^{2} / \sum_{\mathrm{i}}\left(1 / \mathrm{k}_{1}+1 / \mathrm{k}_{2}+1 / \mathrm{k}_{\mathrm{eq}}\right)$
$\mathrm{S}_{\mathrm{j}, \mathrm{ini}}=14257.58 \quad[\mathrm{kN} * \mathrm{~m}] \quad$ Initial rotational stiffness
[6.3.1.(4)]
$\mu=1.03 \quad$ Stiffness coefficient of a connection [6.3.1.(6)]
$S_{j}=S_{j, \text { ini }} / \mu$
[6.3.1.(4)]
$\mathrm{S}_{\mathrm{j}}=13796.67 \quad[\mathrm{kN} * \mathrm{~m}] \quad$ Final rotational stiffness

Connection classification due to stiffness.

$\mathrm{S}_{\mathrm{j}, \mathrm{rig}}=78084.50 \quad\left[\mathrm{kN} \mathrm{N}^{*} \mathrm{~m}\right]$ Stiffness of a rigid connection [5.2.2.5]
$\mathrm{S}_{\mathrm{i}, \text { pin }}=1561.69\left[\mathrm{kN} \mathrm{m}^{*}\right]$ Stiffness of a pinned connection $\quad[5.2 .2 .5]$
$\mathrm{S}_{\mathrm{j}, \mathrm{pin}} \leq \mathrm{S}_{\mathrm{j}, \text { ini }}<\mathrm{S}_{\mathrm{j}, \text { rig }}$ SEMI-RIGID

WEAKEST COMPONENT:

WELDS

