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Design of Reinforced Concrete Solids Using Stress Analysis

by Stephen J. Foster, Peter Marti, and NebojSa Mojsilovi¢

Linear finite element modeling of three-dimensional solid structuresis
well established, easy to apply, and readily available to designers.
In the application of linear analysis in the design of concrete
structures, however, it is not intuitive how to dimension the steel
reinforcement to carry the stresses developed by the applied
tractions. In this paper, a methodol ogy for the design of reinforced
concrete solid structures is presented using stress analysis combined
with limit design. The admissible stress domain is presented in
terms of Mohr’s circles with solutions given for optimum reinforce-
ment ratios, minimum concrete strength demand, and uniaxial
concrete stress.
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INTRODUCTION
Today, most, if not al, structural engineering companies
have access to a finite element (FE) package, although of
varying degrees of sophistication. In fact, anumber of public
domain and shareware FE programs are available via the
Web. Dimensioning of structures based on linear analyses of
frames, as one example, is commonplace. Less common is
the dimensioning of concrete plates, shells, and membrane
type structures. Yet, it is in some of these structures where
designers can benefit most by undertaking stress analyses.
Some of the advantages of dimensioning based on linear FE
modeling include:
e Linear FE modeling is well established and relatively
easy to apply;
e Multipleload cases can be accommodated quickly; and
e The greatest quantity of reinforcement is placed in the
high-tension regions hel ping to control crack propagation.
The main drawbacks in using the method are;
¢ Noinformation is attained as to the collapse load of the
structure (provided that ductility demands are met,
designs based on elastic analyses will be safe for the
limit design loads);
* No information is provided on inelastic phenomena such
as crack widths, and crack spacing or deflections; and
e Detailing guidelines need to be established and followed
to ensure ductility and serviceability demands are met.
Theaboveaside, however, it isnot alwaysintuitive on how
todimensionthereinforcing stedl intwo- and three-dimensional
solids to meet the stress demands of the applied tractions
obtained from an FE analysis. One method is to place adequate
reinforcing steel in the direction of any principal tension
stress and to ensure that the concrete has sufficient strength
to meet all principal compressive stress demands. However,
placing reinforcement in principa directions is not always
convenient, and placement in thelocal structural or global
directionsis preferred. The question is then how to dimension
reinforcement for any set of orthogonal axes for the six
components of any applied stress tensor that define the
stresses at a point. The answer to this question is presented
in this paper.
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Fig. 1—Three-dimensional stresses. (a) orthogonal xyz axis
system; and (b) normal and shear stress for arbitrary plane.

RESEARCH SIGNIFICANCE

Research, to date, on the use of linear stressanalysisfor the
dimensioning of reinforced concrete structures has focused on
the use of one- and two-dimensional elements such as frames,
membranes, and slabs. In thisresearch, anew and robust design
process is developed for the dimensioning of reinforced
concrete solids using linear stress analysis in combination
with limit design. In addition to vast freedom in establishing
suitable load paths in three dimensions, the paper gives the
designer atool for the calculation of stressrotations from the
elastic precracked condition to the limit condition and, thus,
provides the designer with the quantitative information
necessary to make informed decisions on ductility demands
of the structure. The methodol ogy devel oped herein provides
the designer with a valuable tool for the dimensioning of
reinforced concrete solids.

BACKGROUND
In three-dimensional space, the stresses at a point are
completely defined by the tensor

o, T,, T

X txy ‘xz

0-ij = Txy 0-y Tyz (l)

,, T,, O

xz ‘yz Yz

where x, y, zare any set of orthogonal axes, and the stresses
are defined as shown in Fig. 1(a). Generaly, anormal stress
component is taken as positive if the component acts in a
positive (negative) direction on an element face where a
vector normal to the faceisin apositive (negative) direction
relative to the axis considered. The components are negative
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if they act in a positive (negative) direction on an element
face with a negative (positive) normal direction.

For every point in a body, there exist three stresses: gy,
oy, and 0, ontheloca X'y'Z axis system such that Ty, = T,
=Ty, = 0. These stresses are known asthe principal stresses,
and X, y', andZ arethe principal axes. Itiswell established that
the principal stresses are equal to the eigenvalues of the
stress tensor. Perhaps less well recognized, however, is
that the direction cosines to the principal axes are given by
the norms of the eigenvectors of the stress tensor.

For any oblique plane (Fig. 1(b)) having a unit normal n =
{ny, ny, n;} passing through a point P, the stresses at P can
be resolved into a component normal to the plane (o,,) and a
shear component parallel to the plane (S,). For astressto be
principal, S, = 0 which from Eqg. (1) implies that

O Ny + Ty Ny + Ty,N, = 0Ny
TN+ OyNy +T,,n, = a,ny 2

TNy + Ty,Ny+ 0N, = ogn,

Rewriting Eq. (2) in the form o.n = 0, it is seen that the
equations are homogeneous. As all three components of n
can not be zero, the solution is nontrivia only if the determinant

of the coefficients [o| = 0O, that is
O0x—0p Txy Tys
Ty Oy—0, T, =0 ©)
1, T,, 0,-0

XZ z n

yz

Expansion of Eq. (3) leads to the characteristic equation
oo —1,02+1,0,—15 = 0 @)

where 14, I, and |3 are the invariants of the stress tensor
given by

I, = 04+0,+0,=0,+0,+0; (54)
|, = 0,0,+0,0,+0,0,- (Txy + T St Tyz) (5b)
= 0,0,+0,03+ 0,03
I, = +2 2 4 2 4 2 5
3 = Oy 0 o, TxyszTyz (oxTyz O-y.[xz oszy) ( C)

= 0,0,03
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Fig. 2—Mohr’scirclesfor stresses at point in three dimensions.

and where g4, 05, and o3 are the principal stresses. By
common definition, the principal stresses are ordered such
that 03< 0,< 01. Theprincipal stressdirectionsn; ={ny, Ny,
N2 (i =1, 2, 3) are obtained from

n, = =2, = 2, = 2 (g
where C = Jc c + oo+ Ch c ,and where

Cix = (0x=01) Ty, =Ty Ty (78)

Cy = (0y=0i)Te =Ty Ty, (70)

Ciz = (0,7 0) Ty~ Tiely (7c)

Stresses at a point in three dimensions can be plotted in the
form of Mohr's circles (Fig. 2) where the normal stress is
plotted on the horizontal axis and the shear stress plotted on
thevertical axis. Three principal circles are possible between
the principal stresspairso, — 05, 0, —03, and 01 —03. Infailure
theorems, the principal stress pair 1 to 3isregarded asthe most
important and the circle generated through this stress pair is
referred to as the major principal stresscircle.

Inxyz space, oy, Oy, and o, are, by definition, normal to the
yz, Xz, and Xy planes, respectively. The magnitude of the shear
stresses on these planes are given by

— <2 2, _ [2 2, _ [2 2
Sk_ Txy+sz'Sy_ Txy+Tyz'Sz_ sz+Tyz (8)

As the orientation of the xyz axis system is arbitrary, its
interpretation represents all possible planes.

Oncethat the principal stresseshave been found in magnitude
and direction, the stresses on any oblique plane can be
determined from

_ 2 2 2
Op = 04Ny + 05N, + 03N (9a)

Sﬁ- 22, 22 22 2
= 0,n; +0,N, + O03N3 =G0

(9b)
wheren; (i = 1, 2, 3) are the direction cosines relative to the
principa axes of avector normal to the pl ane By notin gthe
relationship between the direction cosines n§ + n3 + ng =

it can be shown for any fixed value of n; (eliminating ny and
ns from Eqg. (9b)) that
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Concrete Stresses

Applied Stresses
Fig. 3—Compression field for three-dimensional stressat point.

o 1 0
On—3(0,+05)0 +S (108)
o 2 0

2 1 2
=ny(0,-0,)(03-0y) + 1(02 —03)

and by permutation of subscripts

0o 1 0
1,~5(01+ 090 +S, (10b)
O O

2 1 2
=ny(0,-0,)(03-0,) + Z(Gl —03)

0o 1 0
[(On— 5(01 +0,)0 + i (10c)
O O

2 1 2
=n3(0,—03)(0,—03) + 2(01 —0,)

Mohr! observed that with 03 < 0, < 04, Eq. (10a) places
the point (o, S,) onor outside the o, — o3 circleand, smilarly,
Eq. (10b) places the point on or outside the g, — 05 circle,
and Eq. (10c) placesit on or inside the o, — 03 circle. Thus,
the point (o, ;) lies within the hatched region of Fig. 2.

APPLICATION TO REINFORCED CONCRETE

Theory

In the applications that follow, the xyz axes are taken to
correspond with reinforcing directions. The normal stresses
applied at a point in areinforced concrete solid element are
carried by reinforcing steel and/or the concrete while shear
stresses are carried by the concrete alone. Given that the
applied stress tensor has been determined, for example, by
three-dimensiond finite dement solid modeling, the Mohr's
circles of applied stress can be plotted, as shown in Fig. 3.
Within the circles, the stress points (oj, §) are also plotted
where i = X, y, z As the reinforcing steel can not carry shear
gtress, it follows that the points (o, S;) must fall within the
hatched region of the concrete siress circles where o = o; —
04 and S5 = § and where o4 are the equivalent sted stressesin
thei-th direction.
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Applying Eqg. (1) to the stresses defined in Fig. 3, the tensor
of the concrete stresses is written as

(Gx - 0-s‘.x) Txy Txz
0-Cij = Txy (Oy - O-sy) Tyz (11)
Tz Tyz (Gz - 0-sz)

The equivaent reinforcement stresses are limited by
0] = @y, (12)

where pg (j =X, y, 2) arethe reinforcement ratiosin the x, y,
and zdirections, respectively; f,; aretheyield strengths of the
reinforcement; and @ is a material reduction factor for
tension elements.

With the convention 03 < O, < O, the concrete stresses
are required to satisfy

—O3= B(pc fcp (13)

where fg, is the uniaxial strength of the in-place concrete
(normally taken asf., = 0.85f.); B isafactor to account for
triaxial effectson concrete strength (discussed in the section,
Design Concrete Compression Strength); and @. isamaterial
reduction factor for concrete.

The invariants of the concrete stress tensor are given by
Eq. (5) with the appropriate substitutions for oy, o,, and g,.
The principal directions of the applied stresses ana/ those of
the concrete stresses enclose angles §; (i = 1, 2, 3) and are
given by

6i = cos ]Wnixncix + niynciy + nizhciz| (14)
whereng (i = 1, 2, 3) arethe direction cosines of the concrete
stress tensor.

Comparing Eq. (11) with Fig. 3, it is seen that there are
five unknowns: 0y, O¢a, Oy, Oy, aNd O, (With oy = 0 or
another prescribed limit such aso¢q = @t Wheref isthe
concrete tension strength). As the solution to Eg. (3) provides
for amaximum of three real roots, an infinity of solutions exist
to Eqg. (11). The designer has the freedom to apply two
congtraint equations with the three invariant equations making
up thefive equations required for asolution. Thedesign process

outlined above is demonstrated in the examples that follow.

Reinforcement dimensioning for three-dimensional
stresses—Example 1

The results of a stress analysis on a concrete structural
element give the stress tensor in the xyz axes as

2 6 -4
0;=|6 —2 2| MPa (15)
4 25

It is desired to reinforce the element in the orthogonal
directions of xyz. For the stresses defined by Eg. (15), the
magnitudes of the shear stresses are |S,|, 2V13 = 7.21 MPa,
|S,| = 2V10 = 6.32 MPa, and |S,| = 2V5 = 4.47 MPg; and the
principal stressesare g, = 8.28 MPa, 0, = 4.32 MPa, and 03
= —7.60 MPa. The Mohr’s circle of stress for the tensor of
Eqg. (15) is shown in Fig. 4(a). Viewing the stress plot
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b)

Fig. 4—Mohr’s stress circles for Example 1: (a) applied
stresses; and (b) concrete and reinforcement stresses.

(Fig. 4(a)), it is decided to seek the solution that gives the
lowest demand on the concrete strength. This is established
by selecting the smallest diameter for the major principal
gresscircle. Asonly the concrete carries shear stressthe radius
of the magjor stress circle (R, _ 3) isconstrained such that Ry _ 3
2 max(|S |, IS,l, IS,]), and thus, for thisexample, Ry _ 3 =[S
= 2V3 MPa. Therefore, for the absol ute minimum compression
stress in the concrete, the constraint equations are given by

O3 = —2|S| = -4./13 MPa (164)
Pfya = 0, +|S] = 2+2/13 MPa (16b)

wherefyq isthe design strength of the reinforcement (f,q = @ f,).
Substituting Eq. (16a) and (16b) into the stress invariant
equations given by Eq. (5a) to (5¢), the following is written

I, 0 0,—-44/13 = 3-2/13-p,f4—p,f,y (179
I2 O _4“/1_30—02 = _Zm(s_pyfyd_ pzfyd) (17b)
_(2 + py fyd)(s_ pzfyd) — 96
130 0 = 16p, f,q+36p,f,q —2/13(-2-p,f,9 (170)
(5-p,f,) —244+8,/13

Solving Eq. (173) to (17c) gives o, = —2.88 MPa, pyfyq =
3.88 MPa, and p,f,q = 9.21 MPa Thefind solutionisplottedin
Fig. 4(b).
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Fig. 5—Mohr’s stress circles for Example 2: (a) applied
stresses; and (b) concrete and reinforcement stresses.

Reinforcement dimensioning for three-dimensional
stresses—Example 2
In the second example, the stress tensor is given

36 4
o, = {6 _7 2] MPa (18)
420

and it is required to dimension the reinforcing steel. For the
tensor of Eg. (18), the magnitude of the shears are |S| =
7.21 MPa, |§| = 6.33 MPa, and |S,| = 4.47 MPa, and the
principal stressesare g, = 3.28 MPa, 0, =-0.68 MPa, and
03 = —12.60 MPa. The Mohr's circle of stress for the
applied tractionsis plotted in Fig. 5(a). After reviewing the
stress circles, it is decided to seek a solution such that no
reinforcing steel is required in the y-direction, that is, py fyq =
0. Subgtituting this constraint into Eq. (5a) to (5¢) gives

Il g Opp*+ 03 = — 10— Px fyd - pzfyd (1961)
2
I2 O Oc20c3 = — 35+ 7pryd+ 10pzfyd+ PP fyd (19b)

130 0 = 28+4p,f 4+ 15p,f,4—7p,0,f5  (190)

Solutionsto Eq. (19a) to (19¢) are plotted in Fig. 6(a) and (b)
for the intermediate principal concrete stress o, versus the
stress in the x and z reinforcement and for O, Versus o,
respectively. Also plotted in Fig. 6(b) is 0, versus I, where
I, isthe first invariant of stress given by the concrete stress
circles (that is, Iy = 0y + O + Og). From the first stress
invariant, it is seen that the minimum volume of reinforce-
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Fig. 6—Solutions to Eqg. (19a) to (19c) for o, versus: (a)
reinforcement ratios; and (b) principal concrete stresses.

ment for aunit element with the stresstensor of Eq. (18) occurs
at the point where I, is a maximum. In general, the optima
solutions lie at the upper end of o.,, as shown in Fig. 6(a)
and (b) for the example at hand. After consideration, a
solution is chosen such that p, fyq = p, fyq=3.77 MPa, 0, =
—2.98 MPg, and 6.3 =—-14.57 M Pa_ The stress circlesfor the
chosen solution are shown in Fig. 5(b).

GENERAL PROCEDURE FOR DIMENSIONING
OF REINFORCEMENT
Theory
A general procedure can be developed for rei nforcement
dimensioning based on the principles developed prewously
For a.; = O, the third invariant of the concrete stresses
(Eq. (5¢)) isls3 = 0and gives

O 2, 00 2, O
[0 — 0y — —*—0y -0, ———] = (20)
05, — 0410 O, —04]

For any og, = constant, Eq. (20) plots as the hyperbola
shown in Fig. 7. By Eq. (20), any assumed or given og, allows
the determination of Usy(st) for any assumed 04 (0g,)
Further, the no tension constraint (o, = 0) dictates that St/)y
Eg. (5b), for asolution to be valid

1,20 (21)

A substitution of |3 = 0into Eq. (4) leadsto

762

2

Ocn—1c10cntley = 0...{n=2,3 (22)

which has the roots

1 /2
cn ~ 2 5 Icl_4|c2 (23)

The first term of Eq. (23) (I41/2) defines the center of the
2to 3 principal stress circle and the second term, the radius.
Theminor principa concrete stress a3 isobtained by taking the
sign ahead of the square root term in Eq. (23) as negative,
and the intermediate principal concrete stress o, by taking
the sign ahead of the square root term as positive. The
concrete strength demand is then calculated by Eqg. (13).

Uniaxial compression in concrete—For the limiting case of
uniaxial compression inthe concrete, the following is written:
O¢1 = 0c2=0, o1 = 0c3, ad | o = I3 = 0. The solution to
Eqg. (20) isthen characterized by

—_ TX TXZ.
Oy = GX——TL—, (24)
yz
T,,T 1,1
Oy =0y~ Xy yz. o, = 0,— XzZ-yz
TXZ TXZ

and the required concrete strength is again obtained using
Eq. (13).

Optimum reinforcement—~For the purpose of definition in
this paper, the optlmum total reinforcement py + py + P, is
taken as the minimum total volume of relnforcement for a
unit element with the condition og = @pgfy; 2 0 (j = Xy,2).
That is, all steel isin tension. For sxeel str%sesof fyi =y Px

+ Pyt Py isaminimumif l¢ =11 —(0g + Ogy + Og) |samax—
imum. For any 0, = constant, this correspondsto Point A in
Fig. 7 for which the sum o, + 0g, isaminimum. Thus, using
Eg. (20) the sum

2 2
T,.,+T Ty, T
ZZ:_XZ..._)’_Z+2'[X+__X..X._ +0' -0 (25)
y z
O5,—0, Os,,—0,

must be minimized. Setting the derivative of X, with respect
to o5, — 0, equal to zero, one obtains

Og, = O, % |sz = yz| (26&)
where the sign within the absol ute term hasto be chosen such
that %, is minimized. Substituting oy, — 0, from Eq. (26a)
into the expression for the coordinates of Point A in Fig. 7,
the analogous requirements

Ox =0 +‘Txy— xz‘ (26b)

o

sy (26¢)

Oy + [Ty £ Ty

are obtained for optimum reinforcement.

Reinforcement dimensioning for three-dimensional
stresses—Example 3

Consider again the stress tensor given by Eq. (15) with the
principal stresses of 01 = 8.28 MPa, 0, = 4.32 MPa, and 03 =
—7.60 MPa. The direction cosines for the principal stress
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Y 65— 0y

Osx

Fig. 7—Equivalent stresses in reinforcement for og, =
constant.

directions n; are obtained by Eq. (6) and (7) and are nq =
{0.688, 0.270,-0.674}, n, ={0.419, 0.610, 0.672} ,and n3 =
{0.593, —0.745, 0.306} .

Optimum reinforcement solution—For a positive sign
within the absolute term on the right-hand side of Eq. (26a),
Og— Oy = 2 MPais obtained and the sum given by Eq. (25a)
is %, = 48 MPa. Taking a negative sign within the absolute
term gives og, — 0y, = 10 MPa and the sum amounts to %, =
16 MPa. Thus, in the x-direction, the negative sign governs
and 0g,—0, =10 MPa Similarly, in they- and z-directions, the
negative and positive signs govern in Eq. (26b) and (26c¢),
respectively, and og,— 0y, = 4 MPaand 0g, — 0,= 2 MPa

With the components of og —0; (i = X, Y, 2) determined, the
concrete stress tensor is now calculated by Eqg. (11) and is

~10 6 —4
ocijzlﬁ —4 2]MPa 27)
4 2 -2

and then by Eq. (6)

Ney ={0.577, 0.577, 0.577} (28a)
Neo ={0.099, 0.653, 0.751} (28b)
Neg = {0.810, —0.491, 0.320} (28¢)

The principal directions of the applied stresses are compared
with the directions of the concrete stresses by Eq. (14) giving 6,
=19.6 degrees, &, = 19.1 degrees, and &3 = 19.3 degrees, which
areplottedin Fig. 8.

A check on the second invariant of the concrete stress tensor
of Eq. (27) shows that |5, = 12 MPa® > 0 and, therefore, by
Eqg. (21) thesolutionisjudged valid. With |1 =16 MPa, the
concrete strength demand is obtained from Eg. (23) and
is 0.3 = —15.21 MPa and the specified concrete strength
obtained by the application of Eq. (13). The intermediate
principal concrete stressis o, = —0.79 MPa.

Uniaxial compression in concrete solution—Substitution
of the tensor given by Eq. (15) into Eq. (24) resultsin ag =
14 MPa, 05, =1 MPa, and 05, = 6.33 MPa. The concrete stress
tensor is again determined with Eq. (11) and is
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n

Fig. 8—Comparison of concrete principal stressdirections and
principal directions due to applied tractions for case of
optimum reinforcement.

-12 6 -4
O4j=| 6 -3 2 | MPa (29)
-4 2 -133

The concrete strength demand is obtained by summing the
diagonal terms of Eq. (29), that is, 03 = —16.33 MPa. The
application of Eqg. (6) yields n.3 = {0.857, —0.429, 0.286},
and from Eq. (14), 8, = 16.3 degrees, &, = 16.8 degrees, and
03 = 23.8 degrees. By comparison with the optimum reinforce-
ment solution p, + py + p,isincreased by 1.6%, disincreased
by 4.5 degrees, but d; and &, are decreased by 3.3 degrees
and 2.3 degrees, respectively.

TWO-DIMENSIONAL STRESS ANALYSIS

In the case where one of the three global axes is aligned
with aprincipal axis, asisthe case for plane stress and plane
drain, then the shear stresses associated with the axis are zero.
For the purpose of discussion, the authors aligned the global
z-axis with the principal 2-axis and removed the order
constraint with reference to o, but maintained the convention
for o; and o3. That is, 01 =2 03 but 0, 2 or < 0, 3. Considering
only planes normal to the 2-axis (that is, n, = 0), then from
Eqg. (10b) the following is obtained

2 2
0 o, —
Don—cyl;c% +S = D—l-z—c—% (30)
0 0 020

Equation (30) isin the familiar form of (x — a)2 + y2 =b?
and is the equation of the 1 to 3 stress circle centered at a =
(o1 + 03)/2 and of radius b = (0, — 03)/2. Thus, for plane
stress and plane strain, all solutionslie onthe boundary of the
1to 3 dresscircle. Similar expressionsto that of Eq. (30) can
be derived for the case where any of theglobal stressaxesare
aligned with any of the principal stress axes. In genera,
when one of the global axesis aligned such that it isalso a
principal axis, then all solutions for planes normal to this
axismust lie on the boundary of the stress circle not associated
with the axis.

For the particular case of plane stress, the relationships
developed in this paper for dimensioning of reinforced
concrete solids degenerate to the well-established dimensioning
rules and yield criteria for membranes (References 3 to 8).

763



GENERAL COMMENTS

Concrete stress angles

In developing solutions using linear analysis, the designer
must respect the limitations of the concrete material. Inasolid
subject to aconstant ratio of normal and shear stresses (with
at least one tensile principal stress) before cracking, the
stress field in the concrete remains relatively elastic and the
stresses in the reinforcement are negligible. After cracking,
the tension stresses in the concrete reduce while those in the
reinforcing steel increase. If the concrete does not fail in
compression, then the crack directions will remain relatively
stable until yield of the steel in one direction. After yield in
one direction, the forces are continuously redistributed to
balance the applied tractions until yield in all directions has
occurred. Concrete elements such as panels, for example,
have a limit on the amount of redistribution that can be
achieved. Asarule, concrete elements should not be pushed
far beyond that which is natural. Designers must critically
examine the load path being assumed to satisfy themselves
that a sufficient level of ductility is available to meet the
demands of the imposed tractions. As a tentative recommenda-
tion, the authors suggest a limit of 25 degrees to &;. Further
research isregquired, however, to corroborate this statement.

Design concrete compression strength

Thefactor 3 givenin Eq. (13) accountsfor both confinement
effects, asisthe casefor concretein biaxia or triaxial compres-
sion, and disturbance effects such as caused by thetransmission
of tension fields through compressi on fields. It has been
shown by a number of researchers®1* that the disturbi ng
effect of passing tension reinforcement through concrete in
compression weakens the concrete. In addition, as concrete
strength isincreased, the concrete becomes more brittle. To
account for the imperfect assumption that concrete behaves
asarigid-plastic material and to make sure that the ductility
demands can be met, an efficiency factor is introduced to
ensure that the concrete is not overstressed.

While there are a number of variants of the efficiency factor
relationship, the model by Collins and MitchelI*® has generally
withstood the t&st of time. Based on the panel tests of Vecchio

and Collins, %1 Collins and Mitchell proposed that
B=—1 <10 31)
0.8+ 170¢,

where g, isthemagjor principal strain normal to the direction
of the compression field. The transverse strain isrequired to
be sufficiently large for the ductility demand to be met.
Adopting & of 0.005 (twice the yield strain of steel for f, =
500 MPa) gives 3 = 0.6.

Not all members or subelements of members, however, are
subject to significant transverse strains, and a reduction to
the degree of 3 = 0.6 isunjustified. For the case where trans-
verse grainsare small and the concreteisessentidly in uniaxia
or biaxial compression, the concrete is undisturbed by crossing
tension stress fields. As a guide, if the major principa stress
due to the applied loads is such that o1 < 0.33Vf: (in MPa),
then the disturbance factor may be taken as 3 = 1.0. For
concrete in triaxial compression, B may be determined using
an appropriate triaxial stress model.

CONCLUSIONS

Linear finite element modeling of three-dimensional
solid structures is well established, easy to apply, and
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readily available to designers. In the application of linear
analysis in the design of concrete structures, however, how
to dimension the steel reinforcement to carry the stresses
developed dueto applied tractionsis not necessarily obvious
or intuitive. In this paper, a methodology for the design of
reinforced concrete solid structuresis presented using stress
analysiscombined with limit design. The admissible stress
domain is presented in terms of Mohr’s circles with two-
dimensional membrane structures noted as a special case
of three-dimensional solids.

Limit design is a powerful tool for the dimensioning of
reinforced concrete structures with its foundations in the
lower-bound method of the theory of plasticity. Provided
that sufficient ductility exists in the structure, the designer
may provide any one of an infinity of statically admissible
stress fields that satisfy the applied tractions. A method is
given for the determination of the rotations of the concrete
stress angles from those of the linear-elastic solution, and
limitations on these rotations have been discussed.
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