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Linear finite element modeling of three-dimensional solid structures is
well established, easy to apply, and readily available to designers.
In the application of linear analysis in the design of concrete
structures, however, it is not intuitive how to dimension the steel
reinforcement to carry the stresses developed by the applied
tractions. In this paper, a methodology for the design of reinforced
concrete solid structures is presented using stress analysis combined
with limit design. The admissible stress domain is presented in
terms of Mohr’s circles with solutions given for optimum reinforce-
ment ratios, minimum concrete strength demand, and uniaxial
concrete stress.
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INTRODUCTION
Today, most, if not all, structural engineering companies

have access to a finite element (FE) package, although of
varying degrees of sophistication. In fact, a number of public
domain and shareware FE programs are available via the
Web. Dimensioning of structures based on linear analyses of
frames, as one example, is commonplace. Less common is
the dimensioning of concrete plates, shells, and membrane
type structures. Yet, it is in some of these structures where
designers can benefit most by undertaking stress analyses.
Some of the advantages of dimensioning based on linear FE
modeling include:
• Linear FE modeling is well established and relatively

easy to apply;
• Multiple load cases can be accommodated quickly; and
• The greatest quantity of reinforcement is placed in the

high-tension regions helping to control crack propagation.
The main drawbacks in using the method are:

• No information is attained as to the collapse load of the
structure (provided that ductility demands are met,
designs based on elastic analyses will be safe for the
limit design loads);

• No information is provided on inelastic phenomena such
as crack widths, and crack spacing or deflections; and

• Detailing guidelines need to be established and followed
to ensure ductility and serviceability demands are met.

The above aside, however, it is not always intuitive on how
to dimension the reinforcing steel in two- and three-dimensional
solids to meet the stress demands of the applied tractions
obtained from an FE analysis. One method is to place adequate
reinforcing steel in the direction of any principal tension
stress and to ensure that the concrete has sufficient strength
to meet all principal compressive stress demands. However,
placing reinforcement in principal directions is not always
convenient, and placement in the local structural or global
directions is preferred. The question is then how to dimension
reinforcement for any set of orthogonal axes for the six
components of any applied stress tensor that define the
stresses at a point. The answer to this question is presented
in this paper.

RESEARCH SIGNIFICANCE
Research, to date, on the use of linear stress analysis for the

dimensioning of reinforced concrete structures has focused on
the use of one- and two-dimensional elements such as frames,
membranes, and slabs. In this research, a new and robust design
process is developed for the dimensioning of reinforced
concrete solids using linear stress analysis in combination
with limit design. In addition to vast freedom in establishing
suitable load paths in three dimensions, the paper gives the
designer a tool for the calculation of stress rotations from the
elastic precracked condition to the limit condition and, thus,
provides the designer with the quantitative information
necessary to make informed decisions on ductility demands
of the structure. The methodology developed herein provides
the designer with a valuable tool for the dimensioning of
reinforced concrete solids.

BACKGROUND
In three-dimensional space, the stresses at a point are

completely defined by the tensor

(1)

where x, y, z are any set of orthogonal axes, and the stresses
are defined as shown in Fig. 1(a). Generally, a normal stress
component is taken as positive if the component acts in a
positive (negative) direction on an element face where a
vector normal to the face is in a positive (negative) direction
relative to the axis considered. The components are negative
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Fig. 1—Three-dimensional stresses: (a) orthogonal xyz axis
system; and (b) normal and shear stress for arbitrary plane.
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if they act in a positive (negative) direction on an element
face with a negative (positive) normal direction.

For every point in a body, there exist three stresses: σx′,
σy′, and σz′ on the local x′y′z′ axis system such that τx′y′ = τx′z′
= τy′z′ = 0. These stresses are known as the principal stresses,
and x′, y′, and z′ are the principal axes. It is well established that
the principal stresses are equal to the eigenvalues of the
stress tensor. Perhaps less well recognized, however, is
that the direction cosines to the principal axes are given by
the norms of the eigenvectors of the stress tensor.

For any oblique plane (Fig. 1(b)) having a unit normal n =
{nx, ny, nz} passing through a point P, the stresses at P can
be resolved into a component normal to the plane (σn) and a
shear component parallel to the plane (Sn). For a stress to be
principal, Sn = 0 which from Eq. (1) implies that

(2)

Rewriting Eq. (2) in the form σ.n = 0, it is seen that the
equations are homogeneous. As all three components of n
can not be zero, the solution is nontrivial only if the determinant
of the coefficients |σ | = 0, that is

(3)

Expansion of Eq. (3) leads to the characteristic equation

(4)

where I1, I2, and I3 are the invariants of the stress tensor
given by
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and where σ1, σ2, and σ3 are the principal stresses. By
common definition, the principal stresses are ordered such
that σ3 ≤ σ2 ≤ σ1. The principal stress directions ni = {nix, niy,
niz}(i = 1, 2, 3) are obtained from

(6)

where and where

(7a)

(7b)

(7c)

Stresses at a point in three dimensions can be plotted in the
form of Mohr’s circles (Fig. 2) where the normal stress is
plotted on the horizontal axis and the shear stress plotted on
the vertical axis. Three principal circles are possible between
the principal stress pairs σ1 – σ2, σ2 – σ3, and σ1 – σ3. In failure
theorems, the principal stress pair 1 to 3 is regarded as the most
important and the circle generated through this stress pair is
referred to as the major principal stress circle.

In xyz space, σx, σy, and σz are, by definition, normal to the
yz, xz, and xy planes, respectively. The magnitude of the shear
stresses on these planes are given by

(8)

As the orientation of the xyz axis system is arbitrary, its
interpretation represents all possible planes.

Once that the principal stresses have been found in magnitude
and direction, the stresses on any oblique plane can be
determined from

(9a)

(9b)

where ni (i = 1, 2, 3) are the direction cosines relative to the
principal axes of a vector normal to the plane. By noting the
relationship between the direction cosines n2

1 + n2
2 + n2

3 =1,
it can be shown for any fixed value of n1 (eliminating n2 and
n3 from Eq. (9b)) that
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Fig. 2—Mohr’s circles for stresses at point in three dimensions.



760 ACI Structural Journal/November-December 2003

(10a)

and by permutation of subscripts

(10b)

(10c)

Mohr1 observed that with σ3 ≤ σ2 ≤ σ1, Eq. (10a) places
the point (σn, Sn) on or outside the σ2 – σ3 circle and, similarly,
Eq. (10b) places the point on or outside the σ1 – σ2 circle,
and Eq. (10c) places it on or inside the σ1 – σ3 circle. Thus,
the point (σn, Sn) lies within the hatched region of Fig. 2.

APPLICATION TO REINFORCED CONCRETE
Theory

In the applications that follow, the xyz axes are taken to
correspond with reinforcing directions. The normal stresses
applied at a point in a reinforced concrete solid element are
carried by reinforcing steel and/or the concrete while shear
stresses are carried by the concrete alone. Given that the
applied stress tensor has been determined, for example, by
three-dimensional finite element solid modeling, the Mohr’s
circles of applied stress can be plotted, as shown in Fig. 3.
Within the circles, the stress points (σi, Si) are also plotted
where i = x, y, z. As the reinforcing steel can not carry shear
stress, it follows that the points (σci, Sci) must fall within the
hatched region of the concrete stress circles where σci = σi –
σsi and Sci = Si and where σsi are the equivalent steel stresses in
the i-th direction.
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Applying Eq. (1) to the stresses defined in Fig. 3, the tensor
of the concrete stresses is written as

(11)

The equivalent reinforcement stresses are limited by

(12)

where ρsj ( j = x, y, z) are the reinforcement ratios in the x, y,
and z directions, respectively; fyj are the yield strengths of the
reinforcement; and φt is a material reduction factor for
tension elements.

With the convention σc3 ≤ σc2 ≤ σc1, the concrete stresses
are required to satisfy

(13)

where fcp is the uniaxial strength of the in-place concrete
(normally taken as fcp = 0.85fc′ ); β is a factor to account for
triaxial effects on concrete strength (discussed in the section,
Design Concrete Compression Strength); and φc is a material
reduction factor for concrete.

The invariants of the concrete stress tensor are given by
Eq. (5) with the appropriate substitutions for σx, σy, and σz.
The principal directions of the applied stresses and those of
the concrete stresses enclose angles δi (i = 1, 2, 3) and are
given by

(14)

where nci (i = 1, 2, 3) are the direction cosines of the concrete
stress tensor.

Comparing Eq. (11) with Fig. 3, it is seen that there are
five unknowns: σc2, σc3, σsx, σsy, and σsz (with σc1 = 0 or
another prescribed limit such as σc1 = φc fct where fct is the
concrete tension strength). As the solution to Eq. (3) provides
for a maximum of three real roots, an infinity of solutions exist
to Eq. (11). The designer has the freedom to apply two
constraint equations with the three invariant equations making
up the five equations required for a solution. The design process
outlined above is demonstrated in the examples that follow.

Reinforcement dimensioning for three-dimensional 
stresses—Example 1

The results of a stress analysis on a concrete structural
element give the stress tensor in the xyz axes as

 MPa (15)

It is desired to reinforce the element in the orthogonal
directions of xyz. For the stresses defined by Eq. (15), the
magnitudes of the shear stresses are |Sx|, 2√13 ≈ 7.21 MPa,
|Sy | = 2√10 ≈ 6.32 MPa, and |Sz| = 2√5 ≈ 4.47 MPa; and the
principal stresses are σ1 = 8.28 MPa, σ2 = 4.32 MPa, and σ3
= –7.60 MPa. The Mohr’s circle of stress for the tensor of
Eq. (15) is shown in Fig. 4(a). Viewing the stress plot
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Fig. 3—Compression field for three-dimensional stress at point.
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(Fig. 4(a)), it is decided to seek the solution that gives the
lowest demand on the concrete strength. This is established
by selecting the smallest diameter for the major principal
stress circle. As only the concrete carries shear stress the radius
of the major stress circle (R1 – 3) is constrained such that R1 – 3
≥ max(|Sx |, |Sy |, |Sz |), and thus, for this example, R1 – 3 = |Sx|
= 2√3 MPa. Therefore, for the absolute minimum compression
stress in the concrete, the constraint equations are given by

(16a)

(16b)

where fyd is the design strength of the reinforcement (fyd = φt fy).
Substituting Eq. (16a) and (16b) into the stress invariant
equations given by Eq. (5a) to (5c), the following is written

(17a)

(17b)

(17c)

Solving Eq. (17a) to (17c) gives σc2 = –2.88 MPa, ρy fyd =
3.88 MPa, and ρz fyd = 9.21 MPa. The final solution is plotted in
Fig. 4(b).

σc3 2 Sx– 4 13 MPa–= =
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Reinforcement dimensioning for three-dimensional 
stresses—Example 2

In the second example, the stress tensor is given

 MPa (18)

and it is required to dimension the reinforcing steel. For the
tensor of Eq. (18), the magnitude of the shears are |Sx| =
7.21 MPa, |Sy| = 6.33 MPa, and |Sz| = 4.47 MPa, and the
principal stresses are σ1 = 3.28 MPa, σ2 = –0.68 MPa, and
σ3 = –12.60 MPa. The Mohr’s circle of stress for the
applied tractions is plotted in Fig. 5(a). After reviewing the
stress circles, it is decided to seek a solution such that no
reinforcing steel is required in the y-direction, that is, ρy fyd =
0. Substituting this constraint into Eq. (5a) to (5c) gives

(19a)

(19b)

(19c)

Solutions to Eq. (19a) to (19c) are plotted in Fig. 6(a) and (b)
for the intermediate principal concrete stress σc2 versus the
stress in the x and z reinforcement and for σc2 versus σc3,
respectively. Also plotted in Fig. 6(b) is σc2 versus Ic1, where
Ic1 is the first invariant of stress given by the concrete stress
circles (that is, Ic1 = σc1 + σc2 + σc3). From the first stress
invariant, it is seen that the minimum volume of reinforce-
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Fig. 4—Mohr’s stress circles for Example 1: (a) applied
stresses; and (b) concrete and reinforcement stresses.

Fig. 5—Mohr’s stress circles for Example 2: (a) applied
stresses; and (b) concrete and reinforcement stresses.
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ment for a unit element with the stress tensor of Eq. (18) occurs
at the point where Ic1 is a maximum. In general, the optimal
solutions lie at the upper end of σc2, as shown in Fig. 6(a)
and (b) for the example at hand. After consideration, a
solution is chosen such that ρx fyd = ρz fyd = 3.77 MPa, σc2 =
–2.98 MPa, and σc3 = –14.57 MPa. The stress circles for the
chosen solution are shown in Fig. 5(b).

GENERAL PROCEDURE FOR DIMENSIONING 
OF REINFORCEMENT

Theory
A general procedure can be developed for reinforcement

dimensioning based on the principles developed previously.2

For σc1 = 0, the third invariant of the concrete stresses
(Eq. (5c)) is Ic3 = 0 and gives

(20)

For any σsz = constant, Eq. (20) plots as the hyperbola
shown in Fig. 7. By Eq. (20), any assumed or given σsz allows
the determination of σsy(σsx) for any assumed σsx(σsy).
Further, the no tension constraint (σc1 = 0) dictates that, by
Eq. (5b), for a solution to be valid

(21)

A substitution of Ic3 = 0 into Eq. (4) leads to
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which has the roots

(23)

The first term of Eq. (23) (Ic1/2) defines the center of the
2 to 3 principal stress circle and the second term, the radius.
The minor principal concrete stress σc3 is obtained by taking the
sign ahead of the square root term in Eq. (23) as negative,
and the intermediate principal concrete stress σc2 by taking
the sign ahead of the square root term as positive. The
concrete strength demand is then calculated by Eq. (13).

Uniaxial compression in concrete—For the limiting case of
uniaxial compression in the concrete, the following is written:
σc1 = σc2 = 0, Ic1 = σc3, and Ic2 = Ic3 = 0. The solution to
Eq. (20) is then characterized by

(24)

and the required concrete strength is again obtained using
Eq. (13).

Optimum reinforcement—For the purpose of definition in
this paper, the optimum total reinforcement ρx + ρy + ρz is
taken as the minimum total volume of reinforcement for a
unit element with the condition σsj = φtρsjfyj ≥ 0 (j = x,y,z).
That is, all steel is in tension. For steel stresses of fyj = fy, ρx
+ ρy + ρz, is a minimum if Ic1 = I1 – (σsx + σsy + σsz) is a max-
imum. For any σsz = constant, this corresponds to Point A in
Fig. 7 for which the sum σsx + σsy is a minimum. Thus, using
Eq. (20) the sum

(25)

must be minimized. Setting the derivative of Σz with respect
to σsz – σz equal to zero, one obtains

(26a)

where the sign within the absolute term has to be chosen such
that Σz is minimized. Substituting σsz – σz from Eq. (26a)
into the expression for the coordinates of Point A in Fig. 7,
the analogous requirements

(26b)

(26c)

are obtained for optimum reinforcement.

Reinforcement dimensioning for three-dimensional 
stresses—Example 3

Consider again the stress tensor given by Eq. (15) with the
principal stresses of σ1 = 8.28 MPa, σ2 = 4.32 MPa, and σ3 =
–7.60 MPa. The direction cosines for the principal stress
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Fig. 6—Solutions to Eq. (19a) to (19c) for σc2 versus: (a)
reinforcement ratios; and (b) principal concrete stresses.
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directions ni are obtained by Eq. (6) and (7) and are n1 =
{0.688, 0.270, –0.674}, n2 = {0.419, 0.610, 0.672}, and n3 =
{0.593, –0.745, 0.306}. 

Optimum reinforcement solution—For a positive sign
within the absolute term on the right-hand side of Eq. (26a),
σsx – σx = 2 MPa is obtained and the sum given by Eq. (25a)
is Σx = 48 MPa. Taking a negative sign within the absolute
term gives σsx – σx = 10 MPa and the sum amounts to Σx =
16 MPa. Thus, in the x-direction, the negative sign governs
and σsx – σx = 10 MPa. Similarly, in the y- and z-directions, the
negative and positive signs govern in Eq. (26b) and (26c),
respectively, and σsy – σy = 4 MPa and σsz – σz = 2 MPa.

With the components of σsi – σi (i = x, y, z) determined, the
concrete stress tensor is now calculated by Eq. (11) and is

 MPa (27)

and then by Eq. (6)

nc1 = {0.577, 0.577, 0.577} (28a)

nc2 = {0.099, 0.653, 0.751} (28b)

nc3 = {0.810, –0.491, 0.320} (28c)

The principal directions of the applied stresses are compared
with the directions of the concrete stresses by Eq. (14) giving δ1
= 19.6 degrees, δ2 = 19.1 degrees, and δ3 = 19.3 degrees, which
are plotted in Fig. 8.

A check on the second invariant of the concrete stress tensor
of Eq. (27) shows that Ic2 = 12 MPa2 ≥ 0 and, therefore, by
Eq. (21) the solution is judged valid. With Ic1 = –16 MPa, the
concrete strength demand is obtained from Eq. (23) and
is σc3 = –15.21 MPa and the specified concrete strength
obtained by the application of Eq. (13). The intermediate
principal concrete stress is σc2 = –0.79 MPa.

Uniaxial compression in concrete solution—Substitution
of the tensor given by Eq. (15) into Eq. (24) results in σsx =
14 MPa, σsy = 1 MPa, and σsz = 6.33 MPa. The concrete stress
tensor is again determined with Eq. (11) and is

σcij

10   6   4––

6  4   2–

4   2   2––

=

 MPa (29)

The concrete strength demand is obtained by summing the
diagonal terms of Eq. (29), that is, σc3 = –16.33 MPa. The
application of Eq. (6) yields nc3 = {0.857, –0.429, 0.286},
and from Eq. (14), δ1 = 16.3 degrees, δ2 = 16.8 degrees, and
δ3 = 23.8 degrees. By comparison with the optimum reinforce-
ment solution ρx + ρy + ρz is increased by 1.6%, δ3 is increased
by 4.5 degrees, but δ1 and δ2 are decreased by 3.3 degrees
and 2.3 degrees, respectively.

TWO-DIMENSIONAL STRESS ANALYSIS
In the case where one of the three global axes is aligned

with a principal axis, as is the case for plane stress and plane
strain, then the shear stresses associated with the axis are zero.
For the purpose of discussion, the authors aligned the global
z-axis with the principal 2-axis and removed the order
constraint with reference to σ2 but maintained the convention
for σ1 and σ3. That is, σ1 ≥ σ3 but σ2 ≥ or ≤ σ1, σ3. Considering
only planes normal to the 2-axis (that is, n2 = 0), then from
Eq. (10b) the following is obtained

(30)

Equation (30) is in the familiar form of (x – a)2 + y2 = b2

and is the equation of the 1 to 3 stress circle centered at a =
(σ1 + σ3)/2 and of radius b = (σ1 – σ3)/2. Thus, for plane
stress and plane strain, all solutions lie on the boundary of the
1 to 3 stress circle. Similar expressions to that of Eq. (30) can
be derived for the case where any of the global stress axes are
aligned with any of the principal stress axes. In general,
when one of the global axes is aligned such that it is also a
principal axis, then all solutions for planes normal to this
axis must lie on the boundary of the stress circle not associated
with the axis.

For the particular case of plane stress, the relationships
developed in this paper for dimensioning of reinforced
concrete solids degenerate to the well-established dimensioning
rules and yield criteria for membranes (References 3 to 8).
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Fig. 7—Equivalent stresses in reinforcement for σsz =
constant.

Fig. 8—Comparison of concrete principal stress directions and
principal directions due to applied tractions for case of
optimum reinforcement.
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GENERAL COMMENTS
Concrete stress angles δi

In developing solutions using linear analysis, the designer
must respect the limitations of the concrete material. In a solid
subject to a constant ratio of normal and shear stresses (with
at least one tensile principal stress) before cracking, the
stress field in the concrete remains relatively elastic and the
stresses in the reinforcement are negligible. After cracking,
the tension stresses in the concrete reduce while those in the
reinforcing steel increase. If the concrete does not fail in
compression, then the crack directions will remain relatively
stable until yield of the steel in one direction. After yield in
one direction, the forces are continuously redistributed to
balance the applied tractions until yield in all directions has
occurred. Concrete elements such as panels, for example,
have a limit on the amount of redistribution that can be
achieved. As a rule, concrete elements should not be pushed
far beyond that which is natural. Designers must critically
examine the load path being assumed to satisfy themselves
that a sufficient level of ductility is available to meet the
demands of the imposed tractions. As a tentative recommenda-
tion, the authors suggest a limit of 25 degrees to δi. Further
research is required, however, to corroborate this statement.

Design concrete compression strength
The factor β given in Eq. (13) accounts for both confinement

effects, as is the case for concrete in biaxial or triaxial compres-
sion, and disturbance effects such as caused by the transmission
of tension fields through compression fields. It has been
shown by a number of researchers9-14 that the disturbing
effect of passing tension reinforcement through concrete in
compression weakens the concrete. In addition, as concrete
strength is increased, the concrete becomes more brittle. To
account for the imperfect assumption that concrete behaves
as a rigid-plastic material and to make sure that the ductility
demands can be met, an efficiency factor is introduced to
ensure that the concrete is not overstressed.

While there are a number of variants of the efficiency factor
relationship, the model by Collins and Mitchell15 has generally
withstood the test of time. Based on the panel tests of Vecchio
and Collins,10,11 Collins and Mitchell proposed that

(31)

where ε1 is the major principal strain normal to the direction
of the compression field. The transverse strain is required to
be sufficiently large for the ductility demand to be met.
Adopting ε1 of 0.005 (twice the yield strain of steel for fy =
500 MPa) gives β = 0.6.

Not all members or subelements of members, however, are
subject to significant transverse strains, and a reduction to
the degree of β = 0.6 is unjustified. For the case where trans-
verse strains are small and the concrete is essentially in uniaxial
or biaxial compression, the concrete is undisturbed by crossing
tension stress fields. As a guide, if the major principal stress
due to the applied loads is such that σ1 < 0.33√fc′  (in MPa),
then the disturbance factor may be taken as β = 1.0. For
concrete in triaxial compression, β may be determined using
an appropriate triaxial stress model.

CONCLUSIONS
Linear finite element modeling of three-dimensional

solid structures is well established, easy to apply, and

readily available to designers. In the application of linear
analysis in the design of concrete structures, however, how
to dimension the steel reinforcement to carry the stresses
developed due to applied tractions is not necessarily obvious
or intuitive. In this paper, a methodology for the design of
reinforced concrete solid structures is presented using stress
analysis combined with limit design. The admissible stress
domain is presented in terms of Mohr’s circles with two-
dimensional membrane structures noted as a special case
of three-dimensional solids.

Limit design is a powerful tool for the dimensioning of
reinforced concrete structures with its foundations in the
lower-bound method of the theory of plasticity. Provided
that sufficient ductility exists in the structure, the designer
may provide any one of an infinity of statically admissible
stress fields that satisfy the applied tractions. A method is
given for the determination of the rotations of the concrete
stress angles from those of the linear-elastic solution, and
limitations on these rotations have been discussed.
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