In formula (54):

$$\delta_1 = \frac{8.5E_S \psi_{\Theta}}{R \times 10^3} \tag{55}$$

Where

$$\theta = 0.8 + \eta \frac{A_{s,tot}}{A_{ef}} \left(1 - \frac{R_b}{100} \right)$$

Here η is a coefficient taken according to the rebar class as follows:

10 for A-IV;

25 for A-V, A-VI and Ar-VII.

high-strength reinforcement;

 J_{cL} denotes the same as in (49);

 R_b is given in MPa.

The value of θ shall be at least 1.0 and at most:

1.2 for the rebars of class A-IV;

1.6 for the rebars of classes A-V, A-VI and A_T-VII.

When used to determine the boundary value of the Falative depth of the compression zone in sections with assembly reinforcement, formula (25) is supplemented with:

$$\omega = \alpha - 0.008R_b + \delta_2 \le 0.9 \tag{56}$$

where α is a coefficient taken as specified in 3.12;

 δ_{2} is a coefficient equal to 10μ but not higher than 0.15.

by formulae (49) and (53) for fabric and helix, respectively.

 $\sigma_{SC,\,U}$ in (25) for members with high-strength

$$\sigma_{SC, u} = (2 + 8.5\psi\theta)E_S \times 10^{-3}$$
 (57)

but

120

cap

tak

ine

by

val

COG

to

COE

in

pro

spe

exc

sec wit

3.2

cal

COV

3,2