Retaining Wall Loading:

Soil Info:

$$\beta=39 deg$$
 $\phi=39 deg$ $\delta=26 deg$ $\gamma=120 pcf$ $W_1=0 psf$ $\alpha=90 deg$ $H=10 ft$

Calculate Rankine Active Earth Pressure Coefficient:

$$K_{a_R} = \frac{\cos(\beta) - \sqrt{\cos(\beta)^2 - \cos(\phi)^2}}{\cos(\beta) + \sqrt{\cos(\beta)^2 - \cos(\phi)^2}} \cdot \cos(\beta) = 0.777$$

$$K_{a_C} = \frac{\sin(\alpha + \phi)^2}{\left(1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta)}{\sin(\alpha - \delta) \cdot \sin(\alpha - \beta)}}\right)^2 \cdot \sin(\alpha)^2 \cdot \sin(\alpha - \delta)} = 0.672$$

Calculate Horizontal component: $K_0 = 0.5$

$$K_{ah} = \cos(\beta) \cdot \max(K_{a_R}, K_{a_C}, K_0) = 0.604$$

Calculate Equivalent Fluid Pressure (EFP):

$$P_a = K_{ah} \cdot \gamma = 72.475 \, pcf$$

Calculate Passive Pressure Coefficient:

Flat in front of footing: $\beta = 0 \text{deg}$

$$K_{p_R} = \frac{\cos(\beta) + \sqrt{\cos(\beta)^2 - \cos(\phi)^2}}{\cos(\beta) - \sqrt{\cos(\beta)^2 - \cos(\phi)^2}} \cdot \cos(\beta) = 4.395 \quad K_{ph} = \cos(\beta) \cdot K_{p_R} = 4.395$$

Calculate Passive Earth Pressure:

$$P_p = K_{ph} \cdot \gamma = 527.459 pcf$$

Wall Loading Functions at any point on wall:

Pressure at any point on wall:

$$P(h) = K_{ah} \cdot \gamma \cdot h + W_1 \cdot K_{ah}$$

Shear at any point in cantelevered wall:

$$V(h) = \int_{0 \text{fr}}^{h} K_{ah} \cdot \gamma \cdot h + W_1 \cdot K_{ah} dh$$

Moment at any point in cantelevered wall:

$$M(h) = \int_{0ft}^{h} \int_{0ft}^{h} K_{ah} \cdot \gamma \cdot h + W_1 \cdot K_{ah} dh dh$$

 $M(H) \cdot 1ft = 12.079 \cdot kip \cdot ft$

Pressure to apply at Top of Wall:

$$P(0ft) = 0 \cdot psf$$

Pressure to apply at Bottom of Wall:

$$P(H) = 724.747 \cdot psf$$

Pressure on heel of the footing:

$$W_1 + \gamma \cdot H = 1200 \cdot psf$$