Section Properties:

b =	200	mm	Flange width (mm)
d =	146	mm	Stem of tee (mm)
t =	6.4	mm	Flange thickness (mm)
W =	6.4	mm	Stem of tee thickness (mm)
			` '
b =	7.87	in	Flange width (in)
d =	5.76	in	Stem of tee (in)
t =	0.25	in	Flange thickness (in)
w =	0.25	in	Stem of tee thickness (in)
A =	3.37	in^2	Area of tee section (in^2)
y =	4.45	in	distance between N.A. and bottom of stem
I =	10.31	in^4	Moment of inertia around X axis
S_1 =	2.32	in^3	
S_2 =	7.86	in^3	
S_x =	2.32	in^3	Section modulus around X axis (in^3)
I_y =	10.26	in^4	
_			
S_y =	2.61	in^3	
rx =	1.75	in	
ry =	1.74	in	
	000		
L (mm) =	820	mm	

Allowable Flexural Stress:

Fy =	50.75	ksi (5	50 ksi for 350W) 1 Mpa = 0.145 ksi
d = t =			lax b/2 & d (in) hickness (in)
Web Slenderness (b/2t) =			
d / t =	22.88		
127/(Fy^0.5) =	1 17.83		ompact section upper limit (1 = N/A) (Sec. B5.2.) oncompact section upper limit (Sec. B5.2.)

176/(Fy^0.5) =	24.71		Eq. A-B5.5. (App. B5.2.a)
Section =	3	•	1 = compact , 2 = noncompact , 3 = slender (Sec. B5.2)
Qs =	0.743		Reduction Factor (App. B5.2.a)
M1x (KN-m) = M2x (KN-m) =	0.14 -0.14		1 KN-m = 8.85 kip-in * Negative for single curvature (M2 > M1)
M1x (Kip-in) = M1x (Kip-in) =	1.2 -1.2		
C_mx = 0.6 - 0.4 (M1x / M2x) =	1		Sect. H1
M1y (KN-m) = M2y (KN-m) =	1.82 -1.82		1 KN-m = 8.85 kip-in * Negative for single curvature (M2 > M1)
M1y (Kip-in) = M1y (Kip-in) =	16.1 -16.1		
C_my = 0.6 - 0.4 (M1y / M2y) =	1		Sec. H1
Lc =	84.0	in	Sec. F.1.1.
Lb =	820	mm	
Lb (in) =	32.3	in	
Lc > Lb ?	No		
Cb =	1		Sec. F.1.3.
$It = (1/12)*b*t^3+(b*t)*(t/2+(d-y-t)/3)^2$	0.48	in^4	Sec. F.1.3.
$At = b^*t + (d-y-t)/3^*w =$	2.07	in^2	Sec. F.1.3.
$rt = (It / At)^0.5$	0.48	in	Sec. F.1.3.
L / rt =	67.2		
(102*1000*Cb/Fy)^0.5 = (510*1000*Cb/Fy)^0.5 =	44.8 100.2		Sec. F.1.3. Sec. F.1.3.
Fbx_1 (from Eqs (F1.6) & (F1.7) - F1	26.22		Non Compact & Lb>Lc - Sec. F1.3.
$Fbx_2 = 0.6*Fy*Qs (From B5.2.a) =$	22.62		App. B5.2.a
Fbx = Min (Fbx_1, Fbx_2) =	22.62		Allowable Bending Stress X (Fbx) - F3.1. & B5.2.d

Fby = 0.6*Fy*Qs = 22.62 ksi Allowable Bending Stress Y (Fby) - Non Compact - F2.2

 $F_{ex} = 438.0$ Sec. H1

F_ey = 435.8 Sec. H1

 $f_bx = Mx / S_x = 0.53$ ksi

 $f_by = My / S_y =$ 6.18 ksi

Allowable Compressive Stress:

K = 1

L (mm) = 820 mm Length (mm)

L(in) = 32.3 in Length (in)

Sx = KL/rx = 18.5 Slenderness (x)

Sy = KL/ry = 18.5 Slenderness (y)

(KL/r)max. = Max (Sx, Sy) = 18.5

Q = 0.743 Reduction Factor (from top)

E = 29000 ksi Modulus of Elasticity

 $C_c = 123$ App. B5.2.c.

 $KL/r < C_c$ Yes

Fa = 21.64 ksi Allowable Compressive Stress (App. B5.2.c)

P = 0.596 KN 1 KN = 0.2248 kips

P = 0.1 kips

fa = P / A = 0.04 ksi

Allowable Shear Stress:

d/w = 22.875

 $380 / (Fy^0.5) = 53.34$ Sec. F.4

 $d/w < 380/(Fy^0.5)$ Yes Sec. F.4

a =	32.3 in	distance between stiffeners (Sec. F.4.)
a/h =	5.60	Sec. F.4
$Kv = 5.34 + 4 / (a/h)^2 =$	5.47	Sec. F.4
Cv =	9.26	Sec. F.4
Fv =	20.3 ksi	
V =	1.054312 kips	1 KN = 0.2248 kips
fv =	0.73 ksi	1 Mpa = 0.145 ksi

Stress Ratios:

fa / Fa =	0.002	O.K.
f_bx / Fbx =	0.02	O.K.
f_by / Fby =	0.27	O.K.
fv / Fv =	0.04	O.K.
Eq. H1-1	0.30	O.K.
Eq. H1-2	0.30	O.K.