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Generalized Annular Couette Flow of a Power-Law Fluid 
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The  steady laminar axial flow of a power-law non-Newtonian fluid in the annular space between 
two long coaxial cylinders, with one of them in motion and an imposed pressure gradient, is studied. 
The  pressure gradient may assist or oppose the drag on the fluid due to the moving cylinder. 
Expressions for the volume rate of flow are derived analytically for two cases, one in which there 
is a maximum or minimum in the velocity profile within the annular region of interest and another 
in which there is not. A quantitative criterion is established to distinguish between these two cases. 
The solutions allow direct calculation of the volumetric flow rate for all values of the annulus aspect 
ratio, the power-law index, and the dimensionless pressure gradient parameter. 

Introduction 
Generalized couette flow involves the imposition of a 

pressure gradient on a system in which a bounding surface 
is in motion. The generalized plane couette flow problem 
has been solved for the Newtonian fluid (Schlichting, 
1955), the Ellis fluid (Wadhwa, 1966), and the power-law 
fluid (Skelland, 1967; Flumerfelt et al., 1969). The cor- 
responding flow problem in an annulus for a power-law 
fluid was investigated by Lin and Hsu (1980). However, 
their solution is not complete as they did not consider the 
possibility of the pressure gradient opposing the drag flow. 
Furthermore, the volumetric flow rate equations they ob- 
tained were in the form of definite integrals necessitating 
numerical quadrature. Here, the complete solution is 
presented, and the flow integrals are evaluated analytically 
to obtain simple algebraic expressions, which are of general 
importance and of particular practical utility in performing 
quick calculations. 

Problem Formulation 
Consider a fluid confined to the space between two long 

coaxial cylindrical surfaces, as in Figure 1. The cylindrical 
surface of radius R is stationary, while that of radius KR 
moves with a constant axial velocity V in the positive z 
direction. Furthermore, there exists a pressure gradient 
in the z direction, with the pressures being Po and PL at 
z = 0 and L ,  respectively. The local velocity in the axial 
direction is denoted by u, and depends solely on the radial 
distance r. The system is assumed to be isothermal, and 
viscous heating effects are neglected. 

For the above one-dimensional flow problem, the 
equation of motion on considering an incompressible fluid 
and cylindrical coordinates simplifies to 

(1) 

where AP = Po - PL. If E denotes r /R ,  then eq 1 on in- 
tegration yields the shear-stress distribution as 

d(rTrz) u -- _ -  
dr L r  

T,, = - "( { - y ) 
2L 

Here, h2 is a dimensionless constant of integration. If X 
is real (A2  2 0), then X mathematically corresponds to a 
dimensionless zero-shear radius (i.e., T~~ = 0 at  5 = A); on 
the other hand, if X is imaginary (A2  < 01, then X2 may be 
taken to be merely an integration constant. 

With the Ostwald-de Waele power-law model to de- 
scribe the non-Newtonian viscosity, the rheological equa- 
tion of state is 

du, n-1 du, 
l d r l  dr T,, = -m - - (3) 
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If 4 = u,/ V is the dimensionless velocity, then eqs 2 and 
3 may be combined and rewritten in the following di- 
mensionless form: 

(4) 

Here, A = [APR/(2mL)] ( R / V n  may be viewed as a di- 
mensionless pressure gradient parameter, which may be 
positive or negative depending on whether the pressure 
gradient acts in the same or opposite direction to the 
motion of the moving cylinder. The above differential 
equation must be solved subject to the boundary condi- 
tions 

$ = O  at E = 1  (5a) 

1 $ = 1  a t  E = K  (5b) 
The velocity distribution obtained on solving may be 

substituted into the following expression for the dimen- 
sionless volumetric flow rate: 

Wadhwa (1966) has presented a similar formulation for 
an Ellis fluid in generalized annular couette flow but has 
provided no solutions for the volumetric flow rate. 

Solutions for the power-law fluid are presented below 
for two cases: one in which the shear stress does not 
change sign within the annular region and another in which 
it does. The two cases must be separately considered as 
the sign of the dimensionless velocity gradient needs to 
be predetermined to solve eq 4. 

Case I (Velocity Profile without Maximum or 
Minimum) 

In the case where there is no maximum or minimum in 
the velocity distribution in the range K < .$ < 1, the di- 
mensionless velocity gradient d4/d.$ is always negative. 
Hence, eq 4 can be written as 

( 7 )  

As the right-hand side of eq 7 is always positive, it may 
be noted that A > 0 implies X2 < K~ (case Ia) and A < 0 
implies X2 > 1 (case Ib). On integrating eq 7 from to 1 
after taking the nth root of both sides and using eq 5a, the 
dimensionless velocity profile obtained is 

4 = l l [ h ( x  - X2/x)]1/n dx (8) 

The dimensionless volumetric flow rate as defined in eq 
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The determining equation for X(A,n,K) is obtained by 
equating the velocities given by eqs 12a and 12b at [ = A. 
Thus 

Cose I lb  Cose I b  Cow lo Cose lla r=KR 

Ve loc ity D is t r i  bu t ion s 
-__I) 

Shoor- Stress Dist ributionr V 

P = Po P'PL 
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& 
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Figure 1. Schematic diagram of generalized annular couette flow. 

6 can be now obtained (refer to the Appendix for detailed 
derivation) as 

Q = '[ (+2 - K 2 ]  + 
2 3 n + 1  

{[A(1 - X2)]'+'/" - K ~ - ~ / " [ A ( K ~  - X2)]'+'/") (9) n 
2(3n + 1)A 

The value of X(A,n,K) required in eqs 8 and 9 is obtained 
by imposing the condition in eq 5b on eq 8. Thus 

X 1 [ A ( f  - X2/[)]'/" d[ = 1 (10) 

Case I1 (Velocity Profile with Maximum or 
Minimum) 

In the case where there exists a maximum or minimum 
in the velocity distribution between the two cylindrical 
surfaces, d4/d[ changes sign in the range K < f < 1. Hence, 
eq 4 must be separately adapted for the two regions 5 I 
X and (1 A, denoting the respective dimensionless velocity 
profiles by 4' and 4': 

On integration, the dimensionless velocity profiles obtained 
by use of the boundary conditions in eq 5 are 

4' = A l A 1 1 / " - l ~ ' ( X 2 / ~  - x ) l / "  dx + 1 for K I f I X 

(W 
4' = AIAl l /" - l i l (x  - X2/x)'/n dx for I 5 I 1 

(12b) 
The analogue of eq 9 for the dimensionless volume rate 
of flow in case I1 can be derived (refer to the Appendix) 
as 

(14) 
In this case, the physical significance of X turns out to be 
the surface ( f  = A) where the maximum or minimum in 
the velocity profile occurs. In other words, the zero-shear 
surface a t  5 = X separates the negative shear-stress region 
(given by K I 5 < X for case IIa and by X < 5 I 1 for case 
IIb) from the positive shear-stress region (given by X < [ 
I 1 for case IIa and by K I 5 < X for case IIb). 

Criterion to Distinguish between Cases I and I1 
It may be noted that case I occurs when the magnitude 

of the pressure gradient (relative to the velocity V of the 
moving cylindrical surface) is insufficient to produce a 
maximum or minimum in the velocity profile within the 
annular region. Thus, in this case, the maximum velocity 
occurs at the moving cylindrical surface and the minimum 
velocity a t  the stationary one. On the other hand, case I1 
occurs when the magnitude of the pressure is sufficient to 
produce a maximum (when AP > 0) or minimum (when 
AP < 0) in the velocity profile between the two cylindrical 
surfaces. 

Flumerfelt e t  al. (1969) established a quantitative cri- 
terion involving A and n to distinguish between these two 
cases for the problem of generalized plane couette flow. 
Lin and Hsu (1980) claimed that for the problem of gen- 
eralized annular couette flow "such a relation is rather 
difficult to obtain because of the presence of an additional 
parameter K and this does not allow predetermination of 
what case will result for a particular set of A, K and n". It 
is demonstrated below that such a quantitative criterion 
involving A, K ,  and n is indeed possible. There is no dif- 
ficulty posed on account of the presence of K ,  though it is 
not always possible to evaluate the integral analytically 
(except in the Newtonian case and when the reciprocals 
of n are integers). In either eq 10 or 14 by setting X = K 

(for A > 0 to obtain Acr+) and h = 1 (for A C 0 to obtain 
A=), the critical values of A separating the two cases may 
be determined. Thus 

The criterion may then be stated as fo:lows: case IIa 
results for A > Aa+, case IIb results for A < A,,, and case 
I results for A,, < A < Acr+. Values of Acr+ and A,, are 
tabulated in Tables I and 11, respectively, for various values 
of n and K .  The integrals in eq 15 were evaluated nu- 
merically by the quadrature routine QDAGS available in 
IMSL (1987). 

Analytical expressions for these critical A values may 
be obtained for the Newtonian fluid by substituting n = 
1 in eq 15. Thus 

A,.+ = [0.5(1 - K 2 )  + K2 ln K 1 - l  

Acr- = - - [ O . ~ ( K ~  - 1) - In K 1 - l  

Acr+ = [1/3 - 2 K 2  + 8K3/3 - K4] - l / '  

(164 

(16b) 

(1W 

Similarly, eq 15 gives for n = 1 /2  

ACr- = -[-73 + 1 / K  + 2 K  - K3/3]-'/' (17b) 
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Table I. Values of Acr+(KJI) Computed from Equation 15a 

8 

0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.95 

n = 0.1 
1.2749 
1.2867 
1.3356 
1.4241 
1.5657 
1.7874 
2.1461 
2.7796 
4.1145 
8.3873 

17.5527 

n = 0.2 
1.4363 
1.4526 
1.5193 
1.6391 
1.8302 
2.1302 
2.6202 
3.5006 
5.4103 

11.8533 
26.6254 

n = 0.3 
1.5597 
1.5812 
1.6682 
1.8223 
2.0671 
2.4529 
3.0901 
4.2567 
6.8651 

16.1546 
38.9343 

n = 0.4 
1.6600 
1.6877 
1.7973 
1.9887 
2.2921 
2.7728 
3.5768 
5.0787 
8.5436 

21.5838 
55.8008 

n = 0.5 n = 0.6 n = 0.7 n = 0.8 n = 0.9 n = 1.0 
1.7443 1.8170 
1.7792 1.8600 
1.9137 2.0214 
2.1455 2.2967 
2.5126 2.7328 
3.0984 3.4348 
4.0916 4.6428 
5.9868 6.9991 

10.5021 12.8000 
28.4747 37.2380 
78.9542 110.7266 

1.8807 
1.9327 
2.1230 
2.4446 
2.9556 
3.7859 
5.2373 
8.1332 

15.5041 
48.3881 

154.2814 

1.9376 
1.9992 
2.2202 
2.5912 
3.1829 
4.1549 
5.8818 
9.4080 

18.6915 
62.5734 

213.9156 

1.9888 
2.0609 
2.3142 
2.7376 
3.4165 
4.5446 
6.5829 

10.8442 
22.4519 
80.6128 

295.4676 

2.0356 
2.1188 
2.4060 
2.8848 
3.6577 
4.9575 
7.3474 

12.4643 
26.8903 

103.5413 
406.8676 

Table 11. Values of AOr(K,n ) Computed from Equation 15b 
&-(K,n) 

K n z 0 . 1  n Z 0 . 2  n = 0 . 3  nZO.4  n = 0 . 5  n z 0 . 6  n = 0 . 7  n = 0 . 8  n = 0 . 9  n = 1 . 0  
0.05 -0.0843 -0.1207 -0.1600 -0.2002 -0.2395 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.95 

-0.1589 
-0.3082 
-0.4744 
-0.6775 
-0.9478 
-1.3442 
-2.0047 
-3.3535 
-7.6151 

-16.7465 

-0.2132 
-0.3918 
-0.5907 
-0.8390 
-1.1788 
-1.6928 
-2.5794 
-4.4688 

-10.8299 
-25.4802 

-0.2664 
-0.4685 
-0.6971 
-0.9897 
-1.4017 
-2.0434 
-3.1874 
-5.7275 

-14.8294 
-37.3451 

-0.3171 
-0.5393 
-0.7968 
-1.1352 
-1.6245 
-2.4084 
-3.8507 
-7.1835 

-19.8859 
-53.6185 

-0.3643 
-0.6052 
-0.8917 
-1.2783 
-1.8516 
-2.7951 
-4.5849 
-8.8852 

-26.3117 
-75.9747 

-0.2768 
-0.4081 
-0.6668 
-0.9833 
-1.4210 
-2.0862 
-3.2092 
-5.4040 

-10.8846 
-34.4919 

-106.6724 

-0.3115 
-0.4485 
-0.7251 
-1.0727 
-1.5650 
-2.3306 
- 3.6 5 5 9 
-6.3225 

-13.2400 
-44.9093 

-148.7769 

-0.3436 
-0.4860 
-0.7806 
-1.1607 
-1.7113 
-2.5870 
-4.1399 
-7.3557 

-16.0192 
-58.1730 

-206.4531 

-0.3732 
-0.5207 
-0.8339 
-1.2480 
-1.8610 
-2.8573 
-4.6664 
-8.5205 

-19.3012 
-75.0523 

-285.3612 

-0.4005 
-0.5532 
-0.8854 
-1.3352 
-2.0149 
-3.1432 
-5.2404 
-9.8353 

-23.1784 
-96.5203 

-393.1908 

Reduction to Some Specialized Problems 
The above expressions include solutions to some specific 

problems of importance listed below. 
(i) Flow of a Power-Law Fluid through a Concen- 

tric Annulus under an Imposed Pressure Gradient 
with Both Cylinders Stationary. This problem of only 
pressure flow was first studied by Fredrickson and Bird 
(1958) and is really one extreme of the generalized flow 
problem considered here. (The other extreme of only drag 
flow is not directly obtained by reduction of the expres- 
sions derived above but can be easily solved independently 
(Middleman, 1977).) Here, V = 0, so eq 13 with A - 03 

gives 

The above equation is the result of Hanks and Larsen 
(1979) and may be used with their table for A. Their 
tabulated values of X for various n and K are merely the 
solution to eq 14 when l/[AIAll/n-l] = 0; thus, if they are 
denoted by A,, then the first ( A  - --) and last (A - 03) 

rows of Tables 111-V (included as supplementary material) 
correspond to Am2. 

( i i)  Generalized Annular Couette Flow of a New- 
tonian Fluid. For n = 1, cases I and I1 become identical, 
i.e., they need not be considered separately as the absolute 
sign in eq 4 vanishes. The expression for h2 can be de- 
termined from either eq 10 or 14 as 

where )i = - @R2 (19a) 2pL v 
Then, the volumetric flow rate equation can be obtained 
from either eq 9 or 13 as 

R = R, + Rd (1%) 

where f 2  = (Li/8)[(1 - K 4 )  + (1 - K2)2/(ln K ) ]  and nd = ( K 2  

- 1) / (4  fn K )  - K 2 / 2 .  

Equations 19 are merely another form of the known 
results of Middleman (1977). For a Newtonian fluid, the 
solution to the generalized annular couette flow problem 
is simply the superposition of the solutions to two prob- 
lems, namely, pressure flow in an annulus (denoted above 
by subscript p designating the flow between two fixed 
coaxial cylindrical surfaces due to a pressure gradient only) 
and drag flow in an annulus (denoted above by subscript 
d designating the flow between two cylindrical surfaces, 
one of which is moving, with no pressure gradient). Such 
a simple superposition is not possible (as can be argued 
on rigorous mathematical grounds) for non-Newtonian 
fluids due to the nonlinearity of the shear stress-shear rate 
relationship. 

(iii) Generalized Annular Couette Flow of a Pow- 
er-Law Fluid with n Being Reciprocal Integers. 
Formal analytical expressions for 4 and h may be obtained 
from eqs 8, 10, 12, and 14 when the reciprocals of n are 
integers, along the lines of Fredrickson and Bird (1958). 
However, these expressions are typically rather cumber- 
some, and, particularly for the case of A, the evaluation 
may not be straightforward. The simplest case in this 
category (besides the Newtonian) is n = 0.5, for which the 
expressions for X2 are given below. 
for case I 

b 

for case I1 
X 4 ( i  + 1 / K )  - 16X3/3 + 2X2(1 + K )  - (1 + K3)/3 + 

l / (AlAl)  = 0 (20b) 

The positive sign in eq 20a is used for A < 0 and the 
negative sign for A > 0. 

(iv) Generalized Plane Couette Flow of a Power- 
Law Fluid. Since a very thin annulus (with K = 1 - €, 

where c is small) can be approximated to a thin slit con- 
sisting of parallel flat surfaces at [, = the 
following transformations hold. 

and [, = 
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- 3  -1 

t = 1 - c /2  - et *  (21a) 

X = 1 - c /2  - ex, (21b) 

A = A8/(2e1+") (21c) 
n = Q,€(1 - c/2) (21d) 

The subscript s above denotes quantities defined by Flu- 
merfelt et al. (1969) for a thin slit. When these transfor- 
mations are used in conjunction with any of the previous 
expressions and the limit as t - 0 is evaluated, the results 
for the generalized plane couette flow (Flumerfelt et al., 
1969) are obtained. For example, eqs 15 and 21a give A, 
= -A, = (1 + l /n)" for the planar case. In other words, 
the last rows in Tables I and I1 may be approximately 
obtained from Act+ = -Acr = (1 + l/n)"/(2c1+") with e = 
0.05, on considering the K = 0.95 case to be a narrow an- 
nulus. 

Results and Discussion 
I t  must be emphasized that all the above equations are 

valid for positive A (corresponding to cases Ia and IIa 
where AP > 0) as well as negative A (corresponding to cases 
Ib and IIb where AP < 0). 

Equations 9 and 13 provide complete solutions for the 
volumetric flow rate during generalized annular couette 
flow with the value of X evaluated from eqs 10 and 14 for 
the respective cases. Such values of X2 as a function of A 
and n for three typical values of K ( K  = 0.25,0.50, and 0.75) 
are given in Tables 111-V (available as supplementary 
material). The various cases are indicated in these tables 
and are separated by horizontal lines. Figure 2 shows a 
typical plot of X2 vs A for K = 0.5 and n = 0.2 with the 
segments of the curves corresponding to the four cases 
labeled. As n increases, Am2 (which is the limiting value 
of X2 when A - *m) increases. 

The numerical values in the tables for h2 were generated 
by solving eqs 10 and 14 iteratively using the Newton- 
Raphson technique. The integrals involved were evaluated 
numerically by the IMSL (1987) routine QDAGS. The ap- 
propriate ranges for both A and X2 are indicated in Figure 
1 for the various cases. These are useful in obtaining 
suitable initial guesses for the different ranges, while the 
Newton-Raphson method is employed to solve eqs 10 and 
14. I t  may be remarked that there is a subrange (0 < A 
< Ai) in case Ia where X2 is negative. The value of Ai can 
be easily determined by setting h = 0 in eq 10. Thus 

1 

MacSporran (1982) has pointed out that this value of Ai 
corresponds to a linear shear-stress distribution. 

Tables for X given in Lin and Hsu (1980) for various 
values of K ,  n, and B (0 = l /A1in in our notation) do not 
cover the entire range of possible /3 values and have 
meaningless zero entries (except for n = 1) as per the 
commenta of MacSporran (1982). Lin and Hsu (1980) 
limited their discussion to the problem of the pressure 
gradient assisting the drag flow (Le., positive values of A) 
and provided tables that were further limited (to the range 
Ai I A < a). Given these deficiencies in the tables of Lin 
and Hsu (1980), Tables 111-V are complete and appro- 
priately revised as suggested by MacSporran (1982). In 
these tables, the entries for n = 0.5 conform with eq 20. 

The values of X2 may be substituted in eqs 8 and 12 to 
obtain the velocity profiles. Figure 3 shows typical velocity 
profiles (in the form of a plot of 5 vs 4) for various values 
of A with K = 0.5 and n = 0.2. The velocity distributions 

A2 h 

I I!" 

Figure 2. X2 as a function of A for K = 0.5 and n = 0.2. 

Figure 3. Velocity distributions for different values of A with K = 
0.5 and n = 0.2. 

1 I I  fi  1.5 

Figure 4. Dimensionless volumetric flow rate 88 a function of A 
n for K = 0.5. 

and 

for Aer (=-1.1788), Ai (=1.4355), and A, (=2.1302) shown 
in Figure 3 have zero derivatives (d4/d[ = 0) a t  5 = 1, [ 
= 0, and [ = K ,  respectively. 

Finally, the volumetric flow rate may be simply calcu- 
lated from eqs 9 and 13 to obtain a dimensionless plot of 
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Q vs A for a given K (0.5), as in Figure 4. The relationship 
is linear in the Newtonian case. The curves exhibit an 
"apparent" intersection point and two inflections (for low 
n). Fenner (19701, who also observed such behavior, has 
provided explanations for these observations. 

The solutions presented above would help in analyzing 
certain lubrication and coating problems, as well as the 
operations of dies and extruders in polymer processing. 

Nomenclature 
11, I ,  = integrals as defined in eqs A2 and A6, respectively 
L = length of cylindrical surfaces 
m, n = rheological parameters associated with power-law 

behavior 
P = pressure 
A?' = pressure drop over the length L 
Q = volumetric flow rate 
R = radius of stationary cylindrical surface 
r = radial distance in cylindrical coordinates 
s = subscript denoting quantities defined by Flumerfelt et 

V = constant velocity of moving cylindrical surface 
u, = local velocity in z direction 
x = dummy variable for integration 
z = axial distance in cylindrical coordinates 
Greek Letters 
e = dimensionless gap for a narrow annulus 
K = ratio of the radius of the moving cylindrical surface to that 

h = dimensionless pressure gradient parameter as defined in 

At, = value of ,i corresponding to linear shear-stress distri- 

&,+, .icy = critical values of -4 separating cases I and I1 (as 

X2 = dimensionless integration constant (A corresponds to 

A, = value of X when b - fm 
1 = viscosity of Newtonian fluid 
i = dimensionless distance in radial direction 
T,, = component of stress tensor 
r p  = dimensionless velocity in z direction 
4<, 4' = dimensionless velocity profiles for E 5 X and ( 2 X 

R = dimensionless volumetric flow rate as defined in eq 6 

Appendix: Evaluating the Flow Integrals 

al. (1969) for generalized plane couette flow 

of the stationary one 

eq 4 

bution (as given by eq 22) 

given by eq 15) 

dimensionless zero-shear radius in case 11) 

in case I1 

Integrating eq 6 by parts and using eq 5 give 

Case I. Substituting from eq 7 into eq A1 gives 

2 I1 
9 = -- + - where I ,  = [ A ( [ 2  - h2)]1/n[2-1/n dE 

2 2  
(A2) 

On utilizing eq 10, I ,  can be expressed as 

Il = t I 1 [ A ( t 2  - X2)]1+1/nr1/n d( + X2 (A3) 

Also, on integrating by parts, eq A2 gives 

Combining eqs A3 and A4 gives 

X2 (A5) n - 1  
3n + 1 

Kl- l /n [Ad(KZ - ~2)]l/n+l] + - 

On substituting in eq A2, the final expression for Q given 
in eq 9 is obtained. 

Case 11. By an analogous procedure, substituting from 
eq 11 into eq A1 results in 
9 = -- K 2  + I 2  - where I ,  = AIA11/n-11-~A(X2 - 

2 2  

On utilizing eq 14, I 2  can be written as 

I ,  = ' q A p 1  x 1 / A 2  - .$211+1/nc1/n d[ + X2 (A7) 

Proceeding as before, integrating eq A6 by parts and 
combining the result with eq A7 give 

h2 (A8) K2) 1 / n + l  n - 1  
'+m 

With substitution in eq A6, the final expression for Q given 
in eq 13 is obtained. 

I t  may be pointed out that the above evaluations of the 
flow integrals utilize some of the ideas originally proposed 
by Hanks and Larsen (1979), who obtained analytical ex- 
pressions for the volumetric flow rate during the flow of 
a power-law fluid in an annulus with an imposed pressure 
gradient and both cylinders stationary. The derivation 
route adopted here is simpler as it does not involve iterated 
integrals. 

Supplementary Material Available: Tables 111-V, 
containing values of X2 as a function of A and n for K = 0.25, 
0.50, and 0.75 (3 pages). Ordering information is given on any 
current masthead page. 
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