
 
 
  
 
 
 

 Editing Data Online with the Autodesk MapGuide® 
Enterprise API 
Dongjin Xing –  Autodesk, Inc. 
   

 DE205-3 Autodesk MapGuide Enterprise enables you to view your geospatial data online and edit 
the data online in a browser. Join this class and you’ll learn about the geospatial data structure and how to 
create, delete, and update data. You’ll learn how to use the Viewer API in accessing geometries in the 
browser and how to send the geometry information to the server for feature creation and backend data 
storage. Knowledge of C# or VB.NET is required for this session. 

 

 

 

 

 

 

 

 

About the Speaker: 
Dongjin Xing is a technical consultant for Autodesk Developer Network, helping Autodesk partners worldwide 
create solutions for geospatial applications such as MapGuide Enterprise, Map 3D, Civil 3D, and AutoCAD. 
Prior to joining Autodesk, he worked for ESRI providing API consulting, support, and training services for the 
ArcGIS product line. This is his second year as a speaker at Autodesk University. 
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Updating Features  
 
MgUpdateFeatures updateFeature1 = new MgUpdateFeatures 

("Parcels", properties, "ID=2354"); 
MgUpdateFeatures updateFeature2 = new MgUpdateFeatures 

("Parcels", properties, "OWNER LIKE 'JOHN%'"); 
MgUpdateFeatures updateFeature3 = new MgUpdateFeatures 

("Parcels", properties,  
"GEOM INTERSECTS GEOMFROMTEXT('POLYGON((0 0, 2 0, 2 2, 0 2, 0 0))')"); 

 
MgUpdateFeatures class is used for editing features. Like MgDeleteFeatures, it also uses a query string to 
indicate the features to be edited. MgUpdateFeatures takes three parameters. The first parameter is the 
name of the feature class in which the features will be updated. The second parameter contains the new 
values for all the fields to be updated on the selected features. We will discuss this parameter in detail later. 
The third parameter, like in MgDeleteFeatures, is the query string. 
 

Inserting Features 
 
MgInsertFeatures insertFeature = new MgInsertFeatures 

("Parcels", properties); 
 
MgInsertFeatures is used for adding new features to the feature class. It takes the name of the feature 
class and the new feature value to be added. 
 

Committing Edits 
 

After we have used MgDeleteFeatures, MgUpdateFeatures, and MgInsertFeatures to specify the edits to 
be performed on the feature class, we need to commit the edits to make the editing operation take place. 
 
MgFeatureCommandCollection commands = new MgFeatureCommandCollection(); 
 
commands.Add(deleteFeature1); 
commands.Add(deleteFeature2); 
commands.Add(deleteFeature3); 
 
commands.Add(updateFeature1); 
commands.Add(updateFeature2); 
commands.Add(updateFeature3); 
 
commands.Add(insertFeature); 
 
MgLayer layer = map.GetLayers().GetItem("Parcels"); 
layer.UpdateFeatures(commands); 
 
MgFeatureCommandCollection is used to commit all the edits. We add all the editing commands from 
above to this object. Then we call MgLayer.UpdateFeatures to actually perform all the editting operations. 
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      for(var i = 0; i < poly.Count; i++) { 
          pt = poly.Point(i); 
          str += pt.X + "!" + pt.Y + "_"; 
      } 
     
            document.getElementById("coordinates").value = str; 
            form.submit() 

} 
</script> 
 
Creating New SDF files 
 
We can create new SDF files programmatically by creating a new feature source definition. 
MgClassDefinition and MgPropertyDefinition are two of the main classes used to create a new feature 
source definition.  
 

 
 
MgClassDefinition is used to define the feature source and MgPropertyDefinition is used to define the 
individual property, also called field, in the feature source. 
 
MgPropertyDefinition is a base class, which has 4 derived classed. The two most oftern used derived 
classes are MgGeometricPropertyDefinition for the geometry properties and MgDataPropertyDefinition for 
the data properties. 
  



 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
MgClassDefinition parcelClass = new MgClassDefinition(); 
parcelClass.SetName("tempParcel"); 
 
The first step is to create a new MgClassDefinition object and give it a name. 
 
MgPropertyDefinitionCollection props = parcelClass.GetProperties(); 
 
MgDataPropertyDefinition id = new MgDataPropertyDefinition("ID"); 
id.SetDataType(MgPropertyType.Int32); 
id.SetReadOnly(true); 
id.SetNullable(false); 
id.SetAutoGeneration(true); 
props.Add(id); 
 
MgPropertyDefinitionCollection idProps = parcelClass.GetIdentityProperties(); 
idProps.Add(id); 
 
MgGeometricPropertyDefinition geom = new 
MgGeometricPropertyDefinition("GEOM"); 
geom.SetGeometryTypes(MgFeatureGeometricType.Surface); 
geom.SetHasElevation(false); 
geom.SetHasMeasure(false); 
geom.SetSpatialContextAssociation("LL84"); 
props.Add(geom); 



 
 
  
 
 
parcelClass.SetDefaultGeometryPropertyName("GEOM"); 
 
MgDataPropertyDefinition acre = new MgDataPropertyDefinition("ACRE"); 
acre.SetDataType(MgPropertyType.String); 
acre.SetLength(256); 
props.Add(acre); 
 
Then we create property definitions for the geometry property and data properties and add them to the 
MgPropertyDefinitionCollection object. 
 
MgFeatureSchema schema = new MgFeatureSchema(); 
schema.SetName("SchemaParcels"); 
schema.GetClasses().Add(parcelClass); 
 
string ll84Wkt = "GEOGCS[\"LL84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 
84\",6378137,298.25722293287],TOWGS84[0,0,0,0,0,0,0]],PRIMEM[\"Greenwich\",0]
,UNIT[\"Degrees\",1]]"; 
 
MgCreateSdfParams sdfParams = new MgCreateSdfParams("LL84", ll84Wkt, schema); 
featureService.CreateFeatureSource(resId, sdfParams); 
 
Lastly, a feature schema is created and the previous MgClassDefinition object is added to the feature 
schema. So far, SDF is the only feature source that we can create in the MapGuide Enterprise API. We 
use MgCreateSdfParams to set up the parameters for the SDF file, such as the geographic coordinate 
systme. The last step is to use MgFeatureService.CreateFeatureSource to physically create the SDF file at 
the specified location. Variable resId is the resource identifier, which specifies the location in the repository 
for the SDF feature source.  
 
Adding New Layers 
 
After we have created the SDF file, we can add it to a map as a new layer dynamically. Map layer is the 
cartographic presentation of the feature source. It doesn’t contain any geospatial data, which comes from 
the feature source. Map layer consist of the styling and theming information of the feature source. In 
another word, map layer specifies how the geospatial data should be displayed.  
 
Map layer definition is an XML file in the repository. The following is a typical layer definition XML.. The 
ResourceId node specifies the feature source referenced by the layer, in this case,   
Library://Sheboygan/Data/Parcels.FeatureSource. If we change this to the value of variable resId on the 
last line of the code above, this layer will reference the SDF file we just created. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<LayerDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="LayerDefinition-1.1.0.xsd" version="1.1.0"> 
 <VectorLayerDefinition> 
  <ResourceId>Library://Sheboygan/Data/Parcels.FeatureSource</ResourceId> 
  <FeatureName>SHP_Schema:Parcels</FeatureName> 
  <FeatureNameType>FeatureClass</FeatureNameType> 
  ... 
  ... 
  <Geometry>SHPGEOM</Geometry> 
  ... 
  <VectorScaleRange> 



 
 
  
 
 
   <MaxScale>10000</MaxScale> 
   <AreaTypeStyle> 
    <AreaRule> 
     <LegendLabel>Zone:  AGR</LegendLabel> 
     <Filter>RTYPE = &apos;AGR&apos;</Filter> 
     <AreaSymbolization2D> 
      <Fill> 
       <FillPattern>Solid</FillPattern> 
       <ForegroundColor>FFC19E6A</ForegroundColor> 
       <BackgroundColor>FF000000</BackgroundColor> 
      </Fill> 
      <Stroke> 
       <LineStyle>Solid</LineStyle> 
       <Thickness>0</Thickness> 
       <Color>FF808080</Color> 
       <Unit>Inches</Unit> 
       <SizeContext>DeviceUnits</SizeContext> 
      </Stroke> 
     </AreaSymbolization2D> 

</AreaRule> 

You can find more information on the XML’s schema in the MapGuide Enterprise API reference. We also 
have a session dedicated to resource management in the AU. The session ID is DE115-3. 
 
To create a new layer, we mainly need to upload the above layer definition XML to the server repository.  
 
MgResourceIdentifier resId = new MgResourceIdentifier 

("Library://Resources/NewParcel.LayerDefinition"); 
MgByteSource content = new MgByteSource(@"C:\Temp\LayerDefinition.xml"); 
resourceService.SetResource(resId, content.GetReader(), null); 
 
MgLayer parcelLayer = new MgLayer(tempParcelLayerId, resService); 
parcelLayer.SetName("New Parcels"); 
parcelLayer.SetLegendLabel("New Parcels"); 
parcelLayer.SetDisplayInLegend(true); 
parcelLayer.SetSelectable(false); 
 
MgMap map = new MgMap(); 
map.Open(resService, "Sheboygan"); 
map.GetLayers().Insert(0, parcelLayer); 
 
parcelLayer.SetVisible(true); 
parcelLayer.ForceRefresh(); 
map.Save(resService); 
 
In the above code snippet, we first upload the layer definition XML from the local drive to the repository by 
using MgResourceService.SetResource. Then we create a new MyLayer object from the resource and set 
up its properties lsuch as name, legend, and so on. We add the layer to the map and save the map. This 
will add a new layer to the map. The new layer can be seen after refreshing the viewer.. 


