Autodesk
University
2007

Editing Data Online with the Autodesk MapGuide®
Enterprise API

Dongjin Xing — Autodesk, Inc.

DE205-3 Autodesk MapGuide Enterprise enables you to view your geospatial data online and edit
the data online in a browser. Join this class and you'll learn about the geospatial data structure and how to
create, delete, and update data. You'll learn how to use the Viewer API in accessing geometries in the
browser and how to send the geometry information to the server for feature creation and backend data
storage. Knowledge of C# or VB.NET is required for this session.

About the Speaker:

Dongjin Xing is a technical consultant for Autodesk Developer Network, helping Autodesk partners worldwide
create solutions for geospatial applications such as MapGuide Enterprise, Map 3D, Civil 3D, and AutoCAD.
Prior to joining Autodesk, he worked for ESRI providing API consulting, support, and training services for the
ArcGIS product line. This is his second year as a speaker at Autodesk University.

Autodesk

Autodesk
University
2007

Autodesk
University
2007

Editing Data Online with the Autodesk MapGuide®
Enterprise API

Introduction

In MapGuide Enterprise, map data can be edited online by the user. Existing data can be modified and
new data can be added in the backend data storage such as SDF, Oracle Spatial, and so on. This editing
operation includes both spatial editing on the geometry and attribute editing in the attribute table.

New feature source can also be created programmatically and added to the map display on the fly. For
example, a new SDF file can be created as the result of a query and a new layer based on the SDF can
then be added to the map.

In the API, editing is performed by the feature service

In this session, we will cover the following tasks.

Deleting, updating, and inserting features on an existing feature source
Spatial editing and geometry creation

Creating new SDFs
Adding new layers to map display

AN PE

Feature Source Structure

The geospatial data in MapGuide Enterprise is stored in feature sources. A typical example of feature
source is SDF file, Shapefile, Oracle Spatial table, or ArcSDE feature class. Feature source has a similar
structure as database tables.

Typically, in a feature source, there are several fields, which can be categorized into two types. The first
type is geometry field, which contains the
geometric shape of the geospatial object.
The other type is data field, which contains
the attribute information of the geospatial
object. Normally, one data field is used as
the identity field, whose value will uniquely
identify the feature.

A feature consists of both the geometry
and the attribute information.

The picture on the left shows a feature
class definition. In this feature class, there
is a geometry field, GEOM. There are also
5 data fields, ID, OWNER, VALUE, and
SIZE. ID field is used as the identity field.

Autodesk
University
2007

Feature Editing

Features in the feature source can be updated or deleted, and new features can be inserted into the
feature source as illustrated here..

y

— X’ Delete

é

& Update
<> y
#
y

G - Insert
4
¢

Deleting Features

MgDeleteFeatures deleteFeaturel = new MgDeleteFeatures("Parcels"™, "1D=2354");
MgDeleteFeatures deleteFeatures = new MgDeleteFeatures('Parcels™,

"OWNER LIKE “JOHN%"'");
MgDeleteFeatures deleteFeature3 = new MgDeleteFeatures(''Parcels",

"GEOM INTERSECTS GEOMFROMTEXT("POLYGON((O 0, 2 0, 2 2, 0 2, 0 0))")'™);

The above is the code snippet for deleting 3 features from a feature class named Parcels. The
MgDeleteFeatures class takes two parameters. The first is the name of the feature class from which
features will be deleted. The second is the query string, which specifies what feature would be deleted. The
guery string is the same as the one used to perform queries in MapGuide Enterprise. For more information
on guery, please refer to the MapGuide Enterprise documentation.

In the above example, the first line will delete the feature whose ID field equals 2354. The second will
delete all the features whose OWNER field has a value like JOHN%, such as JOHN, JOHNSON, or
JOHNNY. The third will delete all features whose geometry intersects with a polygon that is defined by this
vertex string,00,20,22,02,00.

Autodesk
University
2007

Updating Features

MgUpdateFeatures updateFeaturel = new MgUpdateFeatures
('Parcels', properties, "1D=2354");
MgUpdateFeatures updateFeature2 = new MgUpdateFeatures
("'Parcels', properties, "OWNER LIKE "JOHN%"'");
MgUpdateFeatures updateFeature3 = new MgUpdateFeatures
('Parcels', properties,
""GEOM INTERSECTS GEOMFROMTEXT(*POLYGON((0O O, 2 0, 2 2, 0 2, 0 0))")");

MgUpdateFeatures class is used for editing features. Like MgDeleteFeatures, it also uses a query string to
indicate the features to be edited. MgUpdateFeatures takes three parameters. The first parameter is the
name of the feature class in which the features will be updated. The second parameter contains the new
values for all the fields to be updated on the selected features. We will discuss this parameter in detail later.
The third parameter, like in MgDeleteFeatures, is the query string.

Inserting Features

MglnsertFeatures insertFeature = new MglnsertFeatures
('Parcels', properties);

MglnsertFeatures is used for adding new features to the feature class. It takes the name of the feature
class and the new feature value to be added.

Committing Edits

After we have used MgDeleteFeatures, MgUpdateFeatures, and MglnsertFeatures to specify the edits to
be performed on the feature class, we need to commit the edits to make the editing operation take place.

MgFeatureCommandCol lection commands = new MgFeatureCommandCollection();
commands.Add(deleteFeaturel);
commands.Add(deleteFeature?);
commands.Add(deleteFeature3d);
commands.Add(updateFeaturel);
commands.Add(updateFeature?);
commands.Add(updateFeature3d);
commands.Add(insertFeature);

MgLayer layer = map.GetLayers() -Getltem(*'Parcels™);
layer .UpdateFeatures(commands);

MgFeatureCommandCaollection is used to commit all the edits. We add all the editing commands from
above to this object. Then we call MgLayer.UpdateFeatures to actually perform all the editting operations.

Autodesk
University
2007

Passing New Feature Values

In the code snippet for updating and inserting feature above, we use variable properties to pass the new
values of the feature. In this section, we will talk about this variable in detail.

Properties Nullable

Nl -
GEOM

VALUE

OWNER

SIZE I M

The above picture is a feature source’s definition. Field ID is a data field, which is used as the identity field.
GEOM field is the geometry field. It has three additional data field, VALUE, SIZE, and OWNER.

In the earlier code shippet for updating features, we updated a feature as shown below.

MgUpdateFeatures updateFeaturel = new MgUpdateFeatures
('Parcels™, properties, "1D=2354");

In this feature class, if we want to change the OWNER field to “Smith”, VALUE field to 250,000, and
GEOM field to a new polygon, this is how we popolute the variable properties.

MgPropertyCollection properties = new MgPropertyCollection();
MgAgfReaderWriter agfWriter = new MgAgfReaderWriter();

MgPolygon poly = getNewGeometry();

properties.Add(new MgGeometryProperty("'"GEOM", agfWriter . Write(poly)));
properties.Add(new MgStringProperty(""OWNER"™, "Smith'™);
properties.Add(new Mglnt32Property(""VALUE™, 250000));

You have noticed that the variable properties are encapsulated by the MgPropertyCollection object. To
populate this object, we simply need to add corresponding property values to it.

In the above feature class definition, out of the five fields, VALUE and SIZE fields are nullable, which
means when inserting a new feature, we don’t have to provide the values for these two fields. However, we
must provide values for the remaining three fields; ID, GEOM, and OWNER.

Autodesk
University
2007

Based on this definition, if we want to insert a new feature to the feature source, we must populate the
MgPropertyCollection object with at least the field values for ID, GEOM, and OWNER.

MgPropertyCollection properties = new MgPropertyCollection();
MgAgfReaderWriter agfWriter = new MgAgfReaderWriter();

MgPolygon poly = getNewGeometry();

properties.Add(new MgGeometryProperty(""GEOM™, agfWriter _Write(poly)));
properties.Add(new MgStringProperty("'OWNER™, "Smith™);
properties.Add(new Mglnt32Property(*"ID", 324323));

Creating Geometry

In the code snippets for feature updating and inserting shown earlier, we also edited the geometry field by
providing an MgGeometryProperty in the MgPropertyCollection. Now the question is how to create a new

geometry object programmatically with the API.

QLS

Assuming that we already have a string of X/Y coordinates in the array of x_coordinates and
y_coordinates. The following code will create a polygon.

NO3O

MgGeometryFactory geoFactory = new MgGeometryFactory();
MgCoordinateCollection coordCol = new MgCoordinateCollection();

for (int 1 = 0; 1 < num; I++)

MgCoordinate coord = geoFactory.CreateCoordinateXY(
x_coordinates[i], y_coordinates[i]);
coordCol .Add(coord) ;

}

MgLinearRing outRing = geoFactory.CreatelLinearRing(coordCol);
MgPollygon polygon = geoFactory.CreatePolygon(outRing, null);

A key object in the above code snippet is the MgGeometryFactory. This is the factory object to create any
geometry in MapGuide Enterprise. We first create a coordinate from the X/ arrays. Then we add the
coordinates into a collection. With the collection, we create an MgLinearRing. This ring is the outer ring for

Autodesk
University
2007

the polygon. Because the polygon doesn't have any holes, we don't have to create the inner rings for it. At
last, we create the polygon from the outer ring.

Please note that MgGeometryFactory doesn't validate the X/Y coordinates in creating the geometry. You
must follow the rules yourself. Particularly, you need to pay attention to these two rules.

1. When creating a polygon, ensure that the first vertex on the polygon is the same as the last one.
2. For a polygon, the outer ring must traverse in the counter-clockwise direction and inner rings in the
clockwise direction . Be sure to provide the coordinates therefore in the proper order.

Digitizing Geometry in MapGuide Enterprise Viewer
You can create a new geometry such as a polygon in the viewer with your mouse. MapGuide Enterprise
viewer API has the JavaScript function to allow you to click on the map to digitize the line string like the

following. Then the line string coordinates can be collected in the map unit and submitted to the server to
create the geometry with the MgGeometryFactory object.

Dl'}istrict 6 Dil

|CTRL + click to end |

B
~Pistrict P District 3

= Distr
District 47— —

The following is the JavaScript functions to digitize the polygon and get its coordinate values.

The Viewer APl method DigitizePolygon will put the viewer into the polygon digitization mode. It takes one
parameter, which is the name of the the event handler function called when you hold the CTRL key and
click the last point to signify that the polygon is finished. In our case, OnPolygonDigitized is the event
handler, in which we parse the poly variable that contains the vertex coordinates and submit the result to
the server.

<script type="text/javascript'>
function DigitizePolygon() {
parent._parent._mapFrame.DigitizePolygon(OnPolygonDigitized);
}

function OnPolygonDigitized(poly) {
Str = poly-COunt + "~";

Autodesk
University
2007

for(var i = 0; i < poly.Count; i++) {
pt = poly.Point(i);
str += pt.X + "I'" + pt.Y + "_";
}

document.getElementByld(*'coordinates’™) .value = str;
form.submit()

}

</script>
Creating New SDF files

We can create new SDF files programmatically by creating a new feature source definition.
MgClassDefinition and MgPropertyDefinition are two of the main classes used to create a new feature

source definition.

([MgPropertyDefinition ¥

Class
- MgProperty
L D
[MgRasterPropertyDefinition ®
Clas
¥ MgPropertyDefinition
= |
[MgGeometricPropertyDefinition &)
Class
—+ MgPropertyDefinition
o |

| MgDataPropertyDefinition (¥ \

¥ MgPropertyDefinition
™ |

[MgObjectPropertyDefinition ¥ ‘

¥ MgPropertyDefinition
|

MgClassDefinition is used to define the feature source and MgPropertyDefinition is used to define the
individual property, also called field, in the feature source.

MgPropertyDefinition is a base class, which has 4 derived classed. The two most oftern used derived
classes are MgGeometricPropertyDefinition for the geometry properties and MgDataPropertyDefinition for
the data properties.

Autodesk

University
2007
(MgDataPropertyDefinition @)
Class
=+ MgPropertyDefinition
“J
MgGeometricPropertyDefinition -.ﬁ.l.“‘ = Methods
Class +%¥ ~MgDataPropertyDefinition
:3 MaPropertyDefinition V¥ Dispose
o Methads ¥ GetDataType
v GetDefaultValue
»¥ ~MgGeometricPro Definition
4 Disgose perty ¥ Getlength
v GetGeometryTypes - Gewu”?b_le
& GetHasElevation ¥ GetPrecision
@ GetHasMeasure ¥ GetReadOnly
v GetReadOnly ¥ GetScale
¥ GetSpatialContextAssociation v IsAutoGenerated
MgGeometricPropertyDefinition (+ 2... ‘v MgDataPropertyDefinition (...
=3 SetGeometryTypes SetAutoGeneration

SetDataType
=¥ SetDefaultValue
SetSpatialContextAssociation | =¥ Setlength

y y, =¥ SetNullable
> SetPrecision
=¥ SetReadOnly

=3 SetScale

SetHasElevation
=3 SetHasMeasure

MgClassDefinition parcelClass = new MgClassDefinition();
parcelClass.SetName(""tempParcel™);

The first step is to create a new MgClassDefinition object and give it a name.
MgPropertyDefinitionCollection props = parcelClass.GetProperties();

MgDataPropertyDefinition id = new MgDataPropertyDefinition('ID™);
id.SetDataType(MgPropertyType. Int32);

id.SetReadOnly(true);

id.SetNullable(false);

id.SetAutoGeneration(true);

props.Add(id);

MgPropertyDefinitionCollection idProps = parcelClass.GetldentityProperties();
idProps.Add(id);

MgGeometricPropertyDefinition geom = new
MgGeometricPropertyDefinition(*"GEOM™);
geom.SetGeometryTypes(MgFeatureGeometricType.Surface);
geom.SetHasElevation(false);
geom.SetHasMeasure(false);
geom.SetSpatialContextAssociation(*'LL84™);
props.Add(geom) ;

Autodesk
University
2007

parcelClass.SetDefaultGeometryPropertyName(*"GEOM™) ;

MgDataPropertyDefinition acre = new MgDataPropertyDefinition(*"ACRE™);
acre.SetDataType(MgPropertyType.String);

acre.SetlLength(256);

props.Add(acre);

Then we create property definitions for the geometry property and data properties and add them to the
MgPropertyDefinitionCollection object.

MgFeatureSchema schema = new MgFeatureSchema();
schema.SetName(*'SchemaParcels™);
schema.GetClasses() -Add(parcelClass);

string 1184Wkt = "GEOGCS[\"LL84\",DATUM[\"WGS_1984\"",SPHEROID[\"WGS
84\",6378137,298.25722293287] , TOWGS84[0,0,0,0,0,0,0]],PRIMEM[\"Greenwich\",0]
,UNIT[\"Degrees\",111";

MgCreateSdfParams sdfParams = new MgCreateSdfParams("'LL84", 1184Wkt, schema);
featureService.CreateFeatureSource(resld, sdfParams);

Lastly, a feature schema is created and the previous MgClassDefinition object is added to the feature
schema. So far, SDF is the only feature source that we can create in the MapGuide Enterprise API. We
use MgCreateSdfParams to set up the parameters for the SDF file, such as the geographic coordinate
systme. The last step is to use MgFeatureService.CreateFeatureSource to physically create the SDF file at
the specified location. Variable resld is the resource identifier, which specifies the location in the repository
for the SDF feature source.

Adding New Layers

After we have created the SDF file, we can add it to a map as a new layer dynamically. Map layer is the
cartographic presentation of the feature source. It doesn’t contain any geospatial data, which comes from
the feature source. Map layer consist of the styling and theming information of the feature source. In
another word, map layer specifies how the geospatial data should be displayed.

Map layer definition is an XML file in the repository. The following is a typical layer definition XML.. The
Resourceld node specifies the feature source referenced by the layer, in this case,
Library://Sheboygan/Data/Parcels.FeatureSource. If we change this to the value of variable resld on the
last line of the code above, this layer will reference the SDF file we just created.

<?xml version="1.0" encoding="UTF-8"7>

<LayerDefinition xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemalLocation="LayerDefinition-1.1.0.xsd" version="1.1.0">
<VectorLayerDefinition>
<Resourceld>Library://Sheboygan/Data/Parcels.FeatureSource</Resourceld>
<FeatureName>SHP_Schema:Parcels</FeatureName>
<FeatureNameType>FeatureClass</FeatureNameType>

<Geometry>SHPGEOM</Geometry>

<VectorScaleRange>

Autodesk
University
2007

<MaxScale>10000</MaxScale>
<AreaTypeStyle>
<AreaRule>
<LegendLabel>Zone: AGR</LegendLabel>
<Filter>RTYPE = 'AGR'</Filter>
<AreaSymbolization2D>
<Fill>
<FillPattern>Solid</FillPattern>
<ForegroundColor>FFC19E6A</ForegroundColor>
<BackgroundColor>FF000000</BackgroundColor>
</Fill>
<Stroke>
<LineStyle>Solid</LineStyle>
<Thickness>0</Thickness>
<Color>FF808080</Color>
<Unit>Inches</Unit>
<SizeContext>DeviceUnits</SizeContext>
</Stroke>
</AreaSymbolization2D>
</AreaRule>

You can find more information on the XML'’s schema in the MapGuide Enterprise API reference. We also
have a session dedicated to resource management in the AU. The session ID is DE115-3.

To create a new layer, we mainly need to upload the above layer definition XML to the server repository.

MgResourceldentifier resld = new MgResourceldentifier
('Library://Resources/NewParcel .LayerDefinition™™);

MgByteSource content = new MgByteSource(@"C:\Temp\LayerDefinition.xml"™);

resourceService.SetResource(resld, content.GetReader(), null);

MgLayer parcelLayer = new MglLayer(tempParcellLayerld, resService);
parcellLayer.SetName("'New Parcels'™);
parcellLayer.SetLegendLabel (*'"New Parcels');
parcellLayer.SetDisplaylnLegend(true);
parcellLayer.SetSelectable(false);

MgMap map = new MgMap(Q);
map.Open(resService, ''Sheboygan™);
map.GetLayers() - Insert(0, parcellLayer);

parcellLayer.SetVisible(true);
parcellLayer.ForceRefresh();
map.Save(resService);

In the above code shippet, we first upload the layer definition XML from the local drive to the repository by
using MgResourceService.SetResource. Then we create a new MyLayer object from the resource and set
up its properties Isuch as name, legend, and so on. We add the layer to the map and save the map. This
will add a new layer to the map. The new layer can be seen after refreshing the viewer..

