
 
 
  
 
 
 

 Editing Data Online with the Autodesk MapGuide® 
Enterprise API 
Dongjin Xing –  Autodesk, Inc. 
   

 DE205-3 Autodesk MapGuide Enterprise enables you to view your geospatial data online and edit 
the data online in a browser. Join this class and you’ll learn about the geospatial data structure and how to 
create, delete, and update data. You’ll learn how to use the Viewer API in accessing geometries in the 
browser and how to send the geometry information to the server for feature creation and backend data 
storage. Knowledge of C# or VB.NET is required for this session. 

 

 

 

 

 

 

 

 

About the Speaker: 
Dongjin Xing is a technical consultant for Autodesk Developer Network, helping Autodesk partners worldwide 
create solutions for geospatial applications such as MapGuide Enterprise, Map 3D, Civil 3D, and AutoCAD. 
Prior to joining Autodesk, he worked for ESRI providing API consulting, support, and training services for the 
ArcGIS product line. This is his second year as a speaker at Autodesk University. 

  



 
 
  
 
 

 
  



 
 
 
 
 

Editin
Enter
 
Introduct
 
In MapGu
new data 
operation 
 
New featu
example, 
then be ad
 
In the API
 
In this ses
 

1. D
2. S
3. C
4. A

 
Feature S
 
The geos
source is 
structure a
 
Typically, 

 

ng Data
rprise A
tion 

uide Enterpris
can be added
includes both

ure source ca
a new SDF fi
dded to the m

I, editing is pe

ssion, we will c

Deleting, upda
Spatial editing 
Creating new S
Adding new lay

Source Struc

patial data in 
SDF file, Sha
as database t

in a feature s

a Online
API  

se, map data c
d in the backe
h spatial editin

an also be crea
ile can be cre

map.  

erformed by th

cover the follo

ating, and inse
and geometry
SDFs 
yers to map d

cture 

MapGuide En
apefile, Oracle
tables.  

source, there a

e with t

can be edited
end data stora
ng on the geo

ated program
ated as the re

he feature ser

owing tasks.

erting features
ry creation 

display 

nterprise is st
e Spatial table

are several fie

the Aut

d online by the
age such as S

ometry and att

mmatically and
esult of a quer

rvice 

s on an existin

tored in featur
e, or ArcSDE f

elds, which ca

todesk MapGuuide® 

e user. Existin
SDF, Oracle S
tribute editing 

d added to the
ry and a new 

ng feature sou

re sources. A 
feature class.

an be categor
type is geom
geometric s
The other ty
the attribute
object. Norm
the identity f
identify the f
 
A feature co
and the attri
 
The picture 
class definit
is a geomet
5 data fields
SIZE. ID fie

ng data can be
Spatial, and s
in the attribut

e modified an
so on. This ed
te table.  

d 
iting 

e map display
layer based o

y on the fly. Fo
on the SDF ca

or 
an 

urce 

typical examp
 Feature sour

ple of feature 
rce has a simmilar 

rized into two 
metry field, wh
shape of the g
ype is data fie
e information o
mally, one dat
field, whose v
feature. 

types. The firs
hich contains 
geospatial obje
eld, which con
of the geospa
ta field is used
value will uniq

rst 
the 
ect. 
tains 

atial 
d as 
uely 

onsists of both
ibute informat

h the geometr
tion. 

ry 

on the left sh
tion. In this fea
try field, GEO
s, ID, OWNER
ld is used as t

ows a feature
ature class, th
M. There are 
R, VALUE, an
the identity fie

e 
here 

also 
nd 
eld. 

 



 
 
 
 
 

 

Feature EEditing  
 
Features 
feature so

in the feature 
ource as illustr

source can b
rated here.. 

be updated orr deleted, andd new featuress can be inserrted into the 

D
 
MgDelete
MgDelete

"O
MgDelete

"G
 
The above
MgDelete
features w
query strin
on query, 
 
In the abo
delete all t
JOHNNY
vertex stri
 

Deleting Featu

eFeatures 
eFeatures 
OWNER LIKE
eFeatures 
GEOM INTER

e is the code 
eFeatures clas
will be deleted
ng is the sam
please refer t

ove example, 
the features w

Y. The third wil
ng, 0 0, 2 0, 2

tures  

deleteFeat
deleteFeat
E 'JOHN%'")
deleteFeat
RSECTS GEOM

snippet for de
ss takes two p
d. The second
e as the one 
to the MapGu

the first line w
whose OWNE
ll delete all fea
2 2, 0 2, 0 0. 

 

 

ture1 = ne
tures = ne
); 
ture3 = ne
MFROMTEXT(

eleting 3 featu
parameters. T
d is the query 
used to perfo
uide Enterpris

will delete the 
ER field has a
atures whose 

ew MgDelete
ew MgDelete

ew MgDelete
('POLYGON((

ures from a fe
The first is the
string, which

orm queries in
se documenta

feature whos
a value like JO

geometry int

eFeatures(
eFeatures(

eFeatures(
(0 0, 2 0,

eature class na
e name of the 
specifies wha
 MapGuide E

ation.  

e ID field equ
OHN%, such a
tersects with a

("Parcels",
("Parcels",

, "ID=23544"); 
,  

("Parcels",
 2 2, 0 2,

amed Parcels
feature class 

at feature wou
Enterprise. Fo

uals 2354. The
as JOHN, JO
a polygon that

,  
, 0 0))')""); 

s. The 
from which 

uld be deleted
r more inform

d. The 
mation 

e second will 
OHNSON, or 

t is defined byy this 



 
 
  
 
 
 

Updating Features  
 
MgUpdateFeatures updateFeature1 = new MgUpdateFeatures 

("Parcels", properties, "ID=2354"); 
MgUpdateFeatures updateFeature2 = new MgUpdateFeatures 

("Parcels", properties, "OWNER LIKE 'JOHN%'"); 
MgUpdateFeatures updateFeature3 = new MgUpdateFeatures 

("Parcels", properties,  
"GEOM INTERSECTS GEOMFROMTEXT('POLYGON((0 0, 2 0, 2 2, 0 2, 0 0))')"); 

 
MgUpdateFeatures class is used for editing features. Like MgDeleteFeatures, it also uses a query string to 
indicate the features to be edited. MgUpdateFeatures takes three parameters. The first parameter is the 
name of the feature class in which the features will be updated. The second parameter contains the new 
values for all the fields to be updated on the selected features. We will discuss this parameter in detail later. 
The third parameter, like in MgDeleteFeatures, is the query string. 
 

Inserting Features 
 
MgInsertFeatures insertFeature = new MgInsertFeatures 

("Parcels", properties); 
 
MgInsertFeatures is used for adding new features to the feature class. It takes the name of the feature 
class and the new feature value to be added. 
 

Committing Edits 
 

After we have used MgDeleteFeatures, MgUpdateFeatures, and MgInsertFeatures to specify the edits to 
be performed on the feature class, we need to commit the edits to make the editing operation take place. 
 
MgFeatureCommandCollection commands = new MgFeatureCommandCollection(); 
 
commands.Add(deleteFeature1); 
commands.Add(deleteFeature2); 
commands.Add(deleteFeature3); 
 
commands.Add(updateFeature1); 
commands.Add(updateFeature2); 
commands.Add(updateFeature3); 
 
commands.Add(insertFeature); 
 
MgLayer layer = map.GetLayers().GetItem("Parcels"); 
layer.UpdateFeatures(commands); 
 
MgFeatureCommandCollection is used to commit all the edits. We add all the editing commands from 
above to this object. Then we call MgLayer.UpdateFeatures to actually perform all the editting operations. 
  



 
 
 
 
 

 

 
 PPassing New Feature Valuues 
 
In the cod
values of 

de snippet for 
the feature. In

updating and
n this section, 

d inserting feat
we will talk a

ture above, w
about this varia

we use variabl
able in detail.

le properties tto pass the neew 

 

The above
GEOM fie
 
In the  ear
 
MgUpdate

("
 
In this fea
GEOM fie
 
MgProper
MgAgfRea
MgPolygo
properti
properti
properti
 
You have
populate t
 
In the abo
means wh
must prov

e picture is a 
eld is the geom

rlier code snip

eFeatures 
"Parcels",

ture class, if  w
eld to a new p

rtyCollect
aderWriter
on poly = 
ies.Add(ne
ies.Add(ne
ies.Add(ne

e noticed that t
this object, we

ove feature cla
hen inserting 
vide values fo

feature sourc
metry field. It h

ppet for updat

updateFeat
 propertie

we want to ch
polygon, this is

tion proper
r agfWriter
getNewGeom
ew MgGeomet
ew MgString
ew MgInt32P

the variable p
e simply need

ass definition,
a new feature
r the remainin

ce’s definition.
has three add

ting features, w

ture1 = ne
es, "ID=23

hange the OW
s how we pop

rties = ne
r = new Mg
metry(); 
tryPropert
gProperty(
Property("

properties are 
d to add corre

 out of the five
e, we don’t ha
ng three fields

 Field ID is a 
ditional data fie

we updated a

ew MgUpdate
354"); 

WNER field to
polute the vari

ew MgProper
gAgfReaderW

ty("GEOM", 
("OWNER", "
"VALUE", 25

encapsulated
esponding pro

e fields, VALU
ave to provide
s; ID, GEOM, 

data field, wh
eld, VALUE, S

 
hich is used as
SIZE, and OW

s the identity f
WNER.  

field. 

  a feature as shown below. 

eFeatures

o “Smith”, VAL
iable propertie

rtyCollect
Writer();

agfWriter
"Smith");
50000)); 

d by the MgP
operty values t

UE and SIZE 
e the values fo
and OWNER

LUE field to 25
es. 

tion(); 

r.Write(pol

ropertyCollec
to it.  

fields are null
or these two fi
R.  

50,000, and 

ly))); 

ction object. To 

lable, which 
ields. Howeveer, we 



 
 
 
 
 
Based on
MgProper
 
MgProper
MgAgfRea
MgPolygo
properti
properti
properti
 
Creating 
 
In the cod
providing 
geometry 

 

 this definition
rtyCollection o

n, if we want to
object with at 

o insert a new
least the  field

w feature to th
d values for ID

he feature sou
D, GEOM, an

urce, we must
d OWNER. 

t populate thee 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming
y_coordin
 
MgGeomet
MgCoordi
 
for (int
{ 

MgCo
x_

    coor
} 
 
MgLinear
MgPolygo
 
A key obje
geometry 
coordinate

rtyCollect
aderWriter
on poly = 
ies.Add(ne
ies.Add(ne
ies.Add(ne

Geometry 

de snippets fo
an MgGeome
object progra

g that we alrea
nates. The foll

tryFactory
inateColle

t i = 0; i

oordinate 
_coordinat
rdCol.Add(

rRing outR
on polygon =

ect in the abo
in MapGuide

es into a colle

tion proper
r agfWriter
getNewGeom
ew MgGeomet
ew MgString
ew MgInt32P

r feature upda
etryProperty i
ammatically w

ady have a st
owing code w

y geoFactor
ection coor

i < num; i+

coord = ge
tes[i], y_c
(coord); 

Ring = geoF
= geoFactor

ove code snipp
e Enterprise. W
ection. With th

rties = ne
r = new Mg
metry(); 
tryPropert
gProperty(
Property("

ating and inse
in the MgProp

with the API. 

tring of X/Y co
will create a po

ry = new M
rdCol = ne

++) 

eoFactory.
coordinate

Factory.Cr
ry.CreatePo

pet is the MgG
We first create
he collection, w

ew MgProper
gAgfReaderW

rtyCollect

ty("GEOM", 
("OWNER", "
"ID", 32432

erting shown e
pertyCollectio

oordinates in t
olygon. 

MgGeometryF
ew MgCoordi

CreateCoor
es[i]); 

reateLinear
olygon(outRi

GeometryFac
e a coordinate
we create an 

tion(); 
Writer();

agfWriter
"Smith");
23)); 

earlier, we als
on. Now the qu

the array of x_

Factory();
inateColle

rdinateXY(

rRing(coor
ing, null);

ctory. This is t
e from the X/Y
MgLinearRing

r.Write(pol

so edited the g
uestion is how

_coordinates 

 
ection(); 

 

rdCol); 
 

the factory obj
Y arrays. The
g. This ring is

ly))); 

geometry field
w to create a n

d by 
new 

and 

ject to create 
n we add the 

s the outer ring

any 

g for 



 
 
 
 
 

 

the polygo
last, we cr

on. Because t
reate the poly

the polygon d
ygon from the 

doesn’t have a
outer ring. 

any holes, wee don’t have too create the innner rings for it. At 

 
Please no
must follow

ote that MgGe
w the rules yo

eometryFacto
ourself. Partic

ory doesn’t va
cularly, you ne

lidate the X/Y
eed to pay atte

Y coordinates 
ention to thes

in creating the
se two rules. 

e geometry. YYou 

 
1. W
2. F

cl

When creating

 
Digitizing
 
You can c
viewer AP
following. 
create the

The follow
 
The Viewe
paramete
click the la
handler, in
the server
 
 
<script 

fu
      

} 
 

fu
      

or a polygon, 
lockwise direc

g a polygon, e

g Geometry i

create a new g
PI has the Jav
Then the line

e geometry wi

wing is the Jav

er API metho
er, which is the
ast point to sig
n which we pa
r. 

type="text/
unction Di

paren

unction On
str =

the outer ring
ction . Be sure

ensure that the

in MapGuide

geometry suc
vaScript functi
e string coordi
ith the MgGeo

vaScript funct

od DigitizePoly
e name of the
gnify that the p
arse the poly 

/javascript
igitizePoly
nt.parent.m

nPolygonDig
= poly.Coun

g must travers
e to provide th

e first vertex o

e Enterprise V

ch as a polygo
ion to allow yo
nates can be 
ometryFactor

tions to digitize

ygon will put t
e  the event ha
polygon is fini
variable that c

t"> 
ygon() { 
mapFrame.D

gitized(po
nt + "~";

se in the coun
he coordinate

on the polygon

Viewer 

on in the view
ou to click on 
collected in th

ry object. 

e the polygon

the viewer into
andler functio
ished. In our c
contains the v

DigitizePol

oly) { 

nter-clockwise
es therefore in

n is the same

wer with your m
the map to di
he map unit a

n and get its c

o the polygon
n called when
case, OnPoly
vertex coordin

lygon(OnPo

e direction and
n the proper or

e as the last on
d inner rings i
rder.  

ne. 
n the 

mouse. MapG
igitize the line
and submitted

Guide Enterpr
e string like the
d to the server

rise 
e 
r to 

coordinate valu

n digitization m
n you hold the
ygonDigitized 
nates and sub

olygonDigit

 
ues. 

mode. It takes 
e CTRL key a
is the event 

bmit the result

tized); 

one 
and 

t to 



 
 
  
 
 
      for(var i = 0; i < poly.Count; i++) { 
          pt = poly.Point(i); 
          str += pt.X + "!" + pt.Y + "_"; 
      } 
     
            document.getElementById("coordinates").value = str; 
            form.submit() 

} 
</script> 
 
Creating New SDF files 
 
We can create new SDF files programmatically by creating a new feature source definition. 
MgClassDefinition and MgPropertyDefinition are two of the main classes used to create a new feature 
source definition.  
 

 
 
MgClassDefinition is used to define the feature source and MgPropertyDefinition is used to define the 
individual property, also called field, in the feature source. 
 
MgPropertyDefinition is a base class, which has 4 derived classed. The two most oftern used derived 
classes are MgGeometricPropertyDefinition for the geometry properties and MgDataPropertyDefinition for 
the data properties. 
  



 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
MgClassDefinition parcelClass = new MgClassDefinition(); 
parcelClass.SetName("tempParcel"); 
 
The first step is to create a new MgClassDefinition object and give it a name. 
 
MgPropertyDefinitionCollection props = parcelClass.GetProperties(); 
 
MgDataPropertyDefinition id = new MgDataPropertyDefinition("ID"); 
id.SetDataType(MgPropertyType.Int32); 
id.SetReadOnly(true); 
id.SetNullable(false); 
id.SetAutoGeneration(true); 
props.Add(id); 
 
MgPropertyDefinitionCollection idProps = parcelClass.GetIdentityProperties(); 
idProps.Add(id); 
 
MgGeometricPropertyDefinition geom = new 
MgGeometricPropertyDefinition("GEOM"); 
geom.SetGeometryTypes(MgFeatureGeometricType.Surface); 
geom.SetHasElevation(false); 
geom.SetHasMeasure(false); 
geom.SetSpatialContextAssociation("LL84"); 
props.Add(geom); 



 
 
  
 
 
parcelClass.SetDefaultGeometryPropertyName("GEOM"); 
 
MgDataPropertyDefinition acre = new MgDataPropertyDefinition("ACRE"); 
acre.SetDataType(MgPropertyType.String); 
acre.SetLength(256); 
props.Add(acre); 
 
Then we create property definitions for the geometry property and data properties and add them to the 
MgPropertyDefinitionCollection object. 
 
MgFeatureSchema schema = new MgFeatureSchema(); 
schema.SetName("SchemaParcels"); 
schema.GetClasses().Add(parcelClass); 
 
string ll84Wkt = "GEOGCS[\"LL84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 
84\",6378137,298.25722293287],TOWGS84[0,0,0,0,0,0,0]],PRIMEM[\"Greenwich\",0]
,UNIT[\"Degrees\",1]]"; 
 
MgCreateSdfParams sdfParams = new MgCreateSdfParams("LL84", ll84Wkt, schema); 
featureService.CreateFeatureSource(resId, sdfParams); 
 
Lastly, a feature schema is created and the previous MgClassDefinition object is added to the feature 
schema. So far, SDF is the only feature source that we can create in the MapGuide Enterprise API. We 
use MgCreateSdfParams to set up the parameters for the SDF file, such as the geographic coordinate 
systme. The last step is to use MgFeatureService.CreateFeatureSource to physically create the SDF file at 
the specified location. Variable resId is the resource identifier, which specifies the location in the repository 
for the SDF feature source.  
 
Adding New Layers 
 
After we have created the SDF file, we can add it to a map as a new layer dynamically. Map layer is the 
cartographic presentation of the feature source. It doesn’t contain any geospatial data, which comes from 
the feature source. Map layer consist of the styling and theming information of the feature source. In 
another word, map layer specifies how the geospatial data should be displayed.  
 
Map layer definition is an XML file in the repository. The following is a typical layer definition XML.. The 
ResourceId node specifies the feature source referenced by the layer, in this case,   
Library://Sheboygan/Data/Parcels.FeatureSource. If we change this to the value of variable resId on the 
last line of the code above, this layer will reference the SDF file we just created. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<LayerDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="LayerDefinition-1.1.0.xsd" version="1.1.0"> 
 <VectorLayerDefinition> 
  <ResourceId>Library://Sheboygan/Data/Parcels.FeatureSource</ResourceId> 
  <FeatureName>SHP_Schema:Parcels</FeatureName> 
  <FeatureNameType>FeatureClass</FeatureNameType> 
  ... 
  ... 
  <Geometry>SHPGEOM</Geometry> 
  ... 
  <VectorScaleRange> 



 
 
  
 
 
   <MaxScale>10000</MaxScale> 
   <AreaTypeStyle> 
    <AreaRule> 
     <LegendLabel>Zone:  AGR</LegendLabel> 
     <Filter>RTYPE = &apos;AGR&apos;</Filter> 
     <AreaSymbolization2D> 
      <Fill> 
       <FillPattern>Solid</FillPattern> 
       <ForegroundColor>FFC19E6A</ForegroundColor> 
       <BackgroundColor>FF000000</BackgroundColor> 
      </Fill> 
      <Stroke> 
       <LineStyle>Solid</LineStyle> 
       <Thickness>0</Thickness> 
       <Color>FF808080</Color> 
       <Unit>Inches</Unit> 
       <SizeContext>DeviceUnits</SizeContext> 
      </Stroke> 
     </AreaSymbolization2D> 

</AreaRule> 

You can find more information on the XML’s schema in the MapGuide Enterprise API reference. We also 
have a session dedicated to resource management in the AU. The session ID is DE115-3. 
 
To create a new layer, we mainly need to upload the above layer definition XML to the server repository.  
 
MgResourceIdentifier resId = new MgResourceIdentifier 

("Library://Resources/NewParcel.LayerDefinition"); 
MgByteSource content = new MgByteSource(@"C:\Temp\LayerDefinition.xml"); 
resourceService.SetResource(resId, content.GetReader(), null); 
 
MgLayer parcelLayer = new MgLayer(tempParcelLayerId, resService); 
parcelLayer.SetName("New Parcels"); 
parcelLayer.SetLegendLabel("New Parcels"); 
parcelLayer.SetDisplayInLegend(true); 
parcelLayer.SetSelectable(false); 
 
MgMap map = new MgMap(); 
map.Open(resService, "Sheboygan"); 
map.GetLayers().Insert(0, parcelLayer); 
 
parcelLayer.SetVisible(true); 
parcelLayer.ForceRefresh(); 
map.Save(resService); 
 
In the above code snippet, we first upload the layer definition XML from the local drive to the repository by 
using MgResourceService.SetResource. Then we create a new MyLayer object from the resource and set 
up its properties lsuch as name, legend, and so on. We add the layer to the map and save the map. This 
will add a new layer to the map. The new layer can be seen after refreshing the viewer.. 


