ETO Potlatch
Using .Net from Intent Rules

Vol. 2, 11-Oct-2012

Online Resources:

Forum: http://forums.autodesk.com/t5/Autodesk-Inventor-Engineer-to/bd-p/184
Wiki help: http://wikihelp.autodesk.com/Inventor ETO/enu/2013

© 2011 Autodesk Auto deSk

Welcome / Agenda

= Introductory Remarks

= 30 minutes presentation on selected topic:

- " — Jon Balgley
= 20 minutes Q&A and discussion “on-topic”
= 10 minutes “Three Tips”

= 20 minutes Q&A and discussion “on any topic”

N Autodesk

Introductory Remarks

R Autodesk

Overview: Using .Net from Intent Rules

= Why use .Net?

= How to call standard libraries

= How to write and use custom libraries
= Limitations

N Autodesk

Why Use .Net?

= Many capabilities already implemented
= File i/o and management, networking, image manipulation, etc
= Legacy/external systems — ERP, CRM, etc.
= |nventor API

= Wrapper around legacy apps
= High performance for algorithmic computations

= Easy to call from Intent rules

N Autodesk

Calling Standard Libraries

R Autodesk

~Signin | United States - Engl

.NET Framework Class Library

.MET Framework 4.5 1 45 out of

4 Namespaces

© 2011 Autodesk Auto de Sk

Calling Standard Libraries (aka Assemblies)

= “System” assemblies, or other special pre-loaded assemblies

= Call with fully-qualified reference, no ‘using’
= e.g. System.|O.File.Exists

LR T 1 | [- D
<EFlategory("Simple™) >

Eule fileDoesHNotExist As Boolean

fileCo

fileDoesMotExist

= Simple data types (strings, numbers, booleans) “just work”
= NOT case-sensitive

© 2011 Autodesk AutOdeSk

Using .Net Objects

- “AS Any”
» Use as normal Intent reference

Directory.CreateDirectory Method (String)

.NET Framework 4.5 0 Th

Namespace:
Assembly: m

4 Syntax

=| File IO
ewDirInfo Cev | Fi
ewDirTime

Parameters

© 2011 Autodesk AutOdeSk

Using .Net Enumerators

= Use “For Each”

-

Dim tempDirEnum As I
tempFileCount

tempFileCount = tempFileCount + 1

Hext £
End ERule

Enumerator

tempFileCount

© 2011 Autodesk AutOdeSk

Using “New”

= Use the “New” operator to make .Net objects
= [StringBuilder is an efficient way to make long strings]

<%iCategory("Struct™)> _
Bule strAllCustNames As String

Dim sb A= Any = New =system.text.stringbuilder (100)

strhllCu=stHames

End Rule

(13 H

= Use “.” to call methods and get property values

© 2011 Autodesk Auto deSk

Calling Inventor API

= Same as any other .Net interface
= Class methods
Get objects back and refer to properties/methods
Use ‘new’ when necessary
Use enumerators when necessary
Start with ‘% %InventorApplication’

= Simple example:

<%3Category ("InventorAPI™)>

Eule invTest Az Any = Fjinventoripplication.Caption

= Inventor APT

invTest "Autodesk Inventor Professio... | 4|

= Too many details — topic for other Potlatch sessions

© 2011 Autodesk Auto desk

Issues with .Net Libraries

= Caching
= Side-effects / state / order-of-evaluation

= Contextual Actions
= Writing to a file
= Adding to a sketch

= “Finishing” actions (e.g., closing a file/sketch)

= Returning ‘null’ from .Net is NoValue [with all the ramifications]

N Autodesk

Summary of Using Standard .Net Libraries

= Call directly from Intent rules
= Use basic datatypes

= Use “For Each”
= Use “New”

N Autodesk

Creating Custom .Net Libraries

N Autodesk

Custom .Net Class Libraries - Project

Solution Explorer
= | o (2] 8
_,_7] Solution 'ClassLibranyl' (1 proj

4 [Classlibraryl

=d| Properties

+a] References

] Classl.cs

© 2011 Autodesk

ClassLibraryl <

Application
Build

Build Events
Debug
Resources
Services

Settings

Assembly name:

Target frarmnewark:

| MET Framework 4

Startup chject:

Default namespace:
ClassLibraryl
Output type:

- | | Class Library

Autodesk

Custom .Net Class Libraries - Implementation

ClassLibraryl Eﬁm

5 ClassLibranyl.Classl 0 & public class Classl

“% ClassLibranyl.Classl = | W GetTheString(string

= Write classes, methods, and
. us em.Collections.Generic;
propertles f 5 Ling;

ext;

—Inamespace ClasslLibraryl
I
|

= Inventor must be stopped S public class

1
private static string m_theString = "This is the string”;

public static string TheString

= Install DLL to “Design Files” {
folder)

public static string GetTheString(string
.

gat T rafen aCE e L
get { return m_theString; }

= Restart Inventor }

return m_theString + suffix;

|Z]| centerSupporfssy.iks

centerSupporhs

| ClassLibraryl.dll

|Z| curvedBearm.iks

Z| curvedBeamAdopt.iks

© 2011 Autodesk AutOdeSk

Custom .Net Class Libraries - Usage

= Call in all the usual ways

classlibraryl.classl.getTheString (" that I wanted™)

aryl.classl.TheString

= Custom

thestring_method " string that I wanted”

theString_property

= Intent finds DLL via reflection

© 2011 Autodesk AutOdeSk

Datatype Translation

= Intent datatypes < - .Net datatypes

= Arguments, return value

© 2011 Autodesk

Boolean, Integer, Number, String
List

Point, Vector, Frame

Part

NoValue

(.Net object) “Any”

Name

Same
Object|]

Autodesk.Intent.Point
Autodesk.Intent.Vector
Autodesk.Intent.Frame

Risky to use this
Null
Other .Net objects

Use strings instead

Autodesk

Example: Simple Customer List

N Autodesk

= Implemented with Lists

ldexr ({100}

d(£3

a(r

=| Customers
allCusPhoneMumbe

sl

usts

strallCusiMames

"Jon Balgley, Jon Yelglah™

© 2011 Autodesk

Autodesk

Example: Lightweight “Struct”

= Class with a few “simple” properties, use instead of (sub) List.
Why?

= Probably faster

namespace cs
i
public class Customer

I
L

private string m_firstName;
pri
pr

u Members (p”Vate) :qt: string m_lastName;

ivate string m_phone;

public Customer(string firstName, string lastName, string phone)
;
1

u COnStrUCtor (pUbIIC) m_firstName = firstName;

rr-_l-a::tr-larne = lastName;
m_phone = phone;

}

© 2011 Autodesk Auto de Sk

= Properties:

= ToString (optional)

© 2011 Autodesk

public string FirstName

I
L

get { return m_firstName; }

1
i
public string LastName
I
L

get { return m_lastName; }

1
¥

public string Phone
I
L

get { return m_phone; }

public override string ToString()
.

{
sb.A (FirstiName);
sh
sh.Append(LastName);
return sh.ToString();

der sb = new Strin

Autodesk

Use In Intent

= Make some instances

< Jon Balgley =

<Jon Yelglab =

customers {<Jon Balgley=, <Jon Yelglab=}

© 2011 Autodesk AutOdeSk

= Use the Iinstances

alPhoneMumbers

gtringbuilder (100)

ng Ccomma-

strallCustiames
© 2011 Autodesk

Jon Balgley, Jon Yelglab™

Autodesk

Summary: Custom Library for “Struct”

= More “structured” than using a List

= Faster & more convenient than using a Part

N Autodesk

Limitations

= No “index” operator ... get_ltem()
= get_PropertyName, set_PropertyName

= “Ref” arguments (for output)
= Template methods

= Casts, operators

= Not all “System” libraries available

N Autodesk

Summary: Custom .Net Libraries

= Easy to make and use
= Many good reasons for doing so

= Don’t forget why you're using Intent!

N Autodesk

When/Why to use .Net vs. Intent?

= Use Intent for and for

= Use .Net for interfacing to and/or systems
for best integration

= Use .Net for complex (CPU-intensive), self-contained
calculations

= Use .Net to optimize performance after finding bottlenecks

N Autodesk

Summary

= Easy to call into .Net assemblies

= Standard ... “System” & Inventor & legacy apps

= Custom ... to augment Intent, wrap legacy apps

N Autodesk

“On Topic” Q&A

N Autodesk

Random Tips

1. Use lvBlock for debugging. This design uses a standard, simple factory file,
and goes through all the factory- and member-file processing. If you have some
unexpected behavior, use this design to eliminate your IPT as one of the possible
causes. Ifit turns out to be an ETO defect, it will then be easier to report.

2. AutoSaveChanges? parameter. This parameter of lvAssemblyDocument
controls whether or not member files are saved immediately, or only when the top-level
assembly is saved. When set to False, it minimizes the number of possibly-
extraneous member files.

13 7

3. Testrule? Prefix it with
where it's easy to find.

This will put it at the beginning of the category,

© 2011 Autodesk Auto deSk

Q&A — Open Discussion

R Autodesk

Thanks!

= Send us suggestions for future topics
= Send us your favorite little “tips”

= See you next time!

N Autodesk

