
© 2011 Autodesk

ETO Potlatch
Using .Net from Intent Rules

Vol. 2, 11-Oct-2012

Online Resources:

Forum: http://forums.autodesk.com/t5/Autodesk-Inventor-Engineer-to/bd-p/184
Wiki help: http://wikihelp.autodesk.com/Inventor_ETO/enu/2013

© 2011 Autodesk

Welcome / Agenda

 Introductory Remarks

 30 minutes presentation on selected topic:

 “Using .Net from Intent Rules” – Jon Balgley

 20 minutes Q&A and discussion “on-topic”

 10 minutes “Three Tips”

 20 minutes Q&A and discussion “on any topic”

© 2011 Autodesk

Introductory Remarks

© 2011 Autodesk

Overview: Using .Net from Intent Rules

 Why use .Net?

 How to call standard libraries

 How to write and use custom libraries

 Limitations

© 2011 Autodesk

Why Use .Net?

 Many capabilities already implemented

 File i/o and management, networking, image manipulation, etc

 Legacy/external systems – ERP, CRM, etc.

 Inventor API

 Wrapper around legacy apps

 High performance for algorithmic computations

 Easy to call from Intent rules

© 2011 Autodesk

Calling Standard Libraries

© 2011 Autodesk

 Etc.

© 2011 Autodesk

Calling Standard Libraries (aka Assemblies)

 “System” assemblies, or other special pre-loaded assemblies

 Call with fully-qualified reference, no „using‟

 e.g. System.IO.File.Exists

 Simple data types (strings, numbers, booleans) “just work”

 NOT case-sensitive

© 2011 Autodesk

Using .Net Objects

 “As Any”

 Use as normal Intent reference

© 2011 Autodesk

Using .Net Enumerators

 Use “For Each”

© 2011 Autodesk

 Use the “New” operator to make .Net objects
 [StringBuilder is an efficient way to make long strings]

 Use “.” to call methods and get property values

Using “New”

© 2011 Autodesk

Calling Inventor API

 Same as any other .Net interface

 Class methods

 Get objects back and refer to properties/methods

 Use „new‟ when necessary

 Use enumerators when necessary

 Start with „%%InventorApplication‟

 Simple example:

 Too many details – topic for other Potlatch sessions

 Can mess up Intent!

© 2011 Autodesk

Issues with .Net Libraries

 Caching

 Side-effects / state / order-of-evaluation

 Contextual Actions

 Writing to a file

 Adding to a sketch

 “Finishing” actions (e.g., closing a file/sketch)

 Returning „null‟ from .Net is NoValue [with all the ramifications]

© 2011 Autodesk

Summary of Using Standard .Net Libraries

 Call directly from Intent rules

 Use basic datatypes

 Use “For Each”

 Use “New”

© 2011 Autodesk

Creating Custom .Net Libraries

© 2011 Autodesk

Custom .Net Class Libraries - Project

© 2011 Autodesk

Custom .Net Class Libraries - Implementation

 Write classes, methods, and

properties

 Inventor must be stopped

 Install DLL to “Design Files”

folder

 Restart Inventor

© 2011 Autodesk

Custom .Net Class Libraries - Usage

 Call in all the usual ways

 Intent finds DLL via reflection

© 2011 Autodesk

Datatype Translation

 Intent datatypes .Net datatypes

 Arguments, return value

Intent Datatype .Net Datatype

Boolean, Integer, Number, String Same

List Object[]

Point, Vector, Frame Autodesk.Intent.Point
Autodesk.Intent.Vector
Autodesk.Intent.Frame

Part Risky to use this

NoValue Null

(.Net object) “Any” Other .Net objects

Name Use strings instead

© 2011 Autodesk

Example: Simple Customer List

© 2011 Autodesk

 Implemented with Lists

© 2011 Autodesk

Example: Lightweight “Struct”

 Class with a few “simple” properties, use instead of (sub) List.

Why?

 Data encapsulation – minimizes mistakes

 Probably faster

 Members (private)

 Constructor (public)

© 2011 Autodesk

 Properties:

 ToString (optional)

© 2011 Autodesk

Use in Intent

 Make some instances

© 2011 Autodesk

 Use the instances

© 2011 Autodesk

Summary: Custom Library for “Struct”

 More “structured” than using a List

 Faster & more convenient than using a Part

© 2011 Autodesk

Limitations

 No “index” operator … get_Item()

 get_PropertyName, set_PropertyName

 “Ref” arguments (for output)

 Template methods

 Casts, operators

 Not all “System” libraries available

 Workaround: Write a wrapper / auxiliary class

© 2011 Autodesk

Summary: Custom .Net Libraries

 Easy to make and use

 Many good reasons for doing so

 Don‟t forget why you‟re using Intent!

© 2011 Autodesk

When/Why to use .Net vs. Intent?

 Use Intent for modeling and for convenience

 Use .Net for interfacing to legacy and/or external systems

 Wrap .Net in Intent designs for best integration

 Use .Net for complex (CPU-intensive), self-contained

calculations

 Use .Net to optimize performance after finding bottlenecks

© 2011 Autodesk

Summary

 Easy to call into .Net assemblies

 Standard … “System” & Inventor & legacy apps

 Custom … to augment Intent, wrap legacy apps

© 2011 Autodesk

“On Topic” Q&A

© 2011 Autodesk

Random Tips

1. Use IvBlock for debugging. This design uses a standard, simple factory file,

and goes through all the factory- and member-file processing. If you have some

unexpected behavior, use this design to eliminate your IPT as one of the possible

causes. If it turns out to be an ETO defect, it will then be easier to report.

2. AutoSaveChanges? parameter. This parameter of IvAssemblyDocument

controls whether or not member files are saved immediately, or only when the top-level

assembly is saved. When set to False, it minimizes the number of possibly-

extraneous member files.

3. Test rule? Prefix it with “_”. This will put it at the beginning of the category,

where it‟s easy to find.

© 2011 Autodesk

Q&A – Open Discussion

© 2011 Autodesk

Thanks!

 Send us suggestions for future topics

 Send us your favorite little “tips”

 See you next time!

35

