
© 2011 Autodesk

ETO Potlatch
Comparison of Positioning Techniques

Vol. 1, 6-Sep-2012

Online Resources:

Forum: http://forums.autodesk.com/t5/Autodesk-Inventor-Engineer-to/bd-p/184
Wiki help: http://wikihelp.autodesk.com/Inventor_ETO/enu/2013

© 2011 Autodesk

Welcome / Agenda

 30 minutes presentation on selected topic:

 “Comparison of Positioning Techniques” – Jon Balgley

 20 minutes Q&A and discussion “on-topic”

 10 minutes “Three Tips”

 20 minutes Q&A and discussion “on any topic”

© 2011 Autodesk

Positioning Techniques

 The two options

 How they work

 Analysis/comparison/timings

© 2011 Autodesk

Positioning Techniques

 Constraint-based Positioning (CBP)

 Frame-based Positioning (FBP)

© 2011 Autodesk

© 2011 Autodesk

CBP

• Only correct relative to each other
• Where do rules place the ‘basePlate’?
• Is this code error-free?

© 2011 Autodesk

© 2011 Autodesk

© 2011 Autodesk

Other CBP technique

 Incremental adopt

© 2011 Autodesk

FBP

© 2011 Autodesk

What is a Frame?

 Representation of component position & orientation

 (a.k.a. “transform matrix”)

 Intent data type

 never needed when using CBP

 Often computed/used indirectly from points & vectors

 Frames are used to align “native” Origin, xDirection, yDirection to

another position/orientation

 The “native” directions:

 Aligned with Inventor “Origin” work-elements

 Not necessarily aligned with any geometry

© 2011 Autodesk

© 2011 Autodesk

FBP

© 2011 Autodesk

© 2011 Autodesk

Other FBP Techniques

 Many point/vector/frame functions and operations

 Adopt (in 6.0) captures initial component position

 “BlockMixin” – define component L/W/H and get many useful

named vertices

© 2011 Autodesk

© 2011 Autodesk

CBP Analysis

Advantages:

 Resulting Inventor assembly files are constrained

 Easier(?) to get started (can use “adopt”)

 Inventor users already understand constraints

 Easier to use, with geometrically complex parts/assemblies

Disadvantages:

 Does not work with non-Inventor ETO (e.g., web server)

 Positioning is unpredictable when constraints have multiple

solutions, or under-constrained

 Harder to debug (can’t tell why constraint is “sick”)

 Sometimes requires “fully constrained” scenario to be robust

 Generally slower than FBP, sometimes much slower

© 2011 Autodesk

FBP Analysis

Advantages:

 Works with both Inventor-based ETO and non-Inventor ETO

(e.g., web server)

 Generally faster than CBP, sometimes much faster

 Positioning is always “fully constrained”, no ambiguity due to

multiple solutions or under-constraining

Disadvantages:

 Resulting Inventor file has no constraints!

 Harder(?) to get started in Inventor

 (e.g., “adopt” gets absolute position, not a useful rule)

 Perhaps harder to learn? If you have never done it before, or

are afraid of a “vector”

© 2011 Autodesk

Don’t Mix Modes!

 Constraints don’t respect FBP positioning

 FBP frames aren’t affected by constraints

 Theoretically possible to make it work, if you’re REALLY careful

 … at different assembly levels

© 2011 Autodesk

Why choose one or the other?

 CBP is your only choice if:

 You need “well-constrained” files, to do downstream editing

 FBP is your only choice if:

 You need to run your rule-set in a non-Inventor ETO (web server)

environment

© 2011 Autodesk

But which is better?

 CBP is more Inventor-ish

 FBP is unambiguous

 No “multiple solution” issues

 Never over- nor under-constrained

© 2011 Autodesk

But which is faster?

 FBP is always at least a little faster

 CBP solutions have many more parts, hence many more rules to

evaluate

 In the worst typical case, CBP is 3x slower than FBP. YMMV.

© 2011 Autodesk

Actual Comparison

 25m high

 7.75 turns

 Treads are a shared sub-

assembly

 TLA not shared –

constraints/FBP for each

tread)

© 2011 Autodesk

 Time to

build

Occurrences Files Intent

Parts

FBP 0:44 838 12 1679

CBP 1:41 838 12 2517

© 2011 Autodesk

Shared Assemblies

 “Shared” assemblies minimize computation times

 Intent keeps track of all assembly participants (occs, constraints, patterns,

etc) and caches and reuses member files whenever possible

 All assembly-modeling is minimized

 Still must compute the participants that WOULD be needed … this is

relatively fast

 Shared assemblies also apply to FBP.

 Even faster, since there’s little or no “would be needed” computations

 Sharing doesn’t apply to TLA

© 2011 Autodesk

Simplistic Example

© 2011 Autodesk

Technique Cells/
Pack

packs

Intent
parts

Shared
time

Un-shared time

CBP 5 100 2100 0:24 1:20

FBP 5 100 603 0:13 0:29

CBP 100 5 2005 0:20 1:00

FBP 100 5 508 0:08 0:16

© 2011 Autodesk

Better Example

© 2011 Autodesk

Technique Sharing From
Size

To
Size

Time Comments

FBP Yes 3500 35000 1:09 Seems normal

FBP Yes 35000 3500 0:07 Nice and fast

FBP Yes 3500 35000 0:35 Seems like it should have been faster

FBP No 3500 35000 1:05 Same as sharing, OK

FBP No 35000 3500 0:40 Needs to do a lot of work tearing down
previous occurrences

FBP No 3500 35000 1:00 Same as first time, OK

CBP Yes 3500 35000 3:45 Quite a bit more than FBP

CBP Yes 35000 3500 0:08 Nice and fast

CBP Yes 3500 35000 0:35 Same as FBP, should have been faster

CBP No 3500 35000 3:48 Same as sharing, OK

CBP No 35000 3500 2:31 Needs to do even more tearing down than
FBP

CBP No 3500 35000 4:28 Not sure why this is longer than the first
time

© 2011 Autodesk

Summary

 Two different techniques, FBP & CBP

 Each has advantages and disadvantages

 FBP faster than CBP

 Shared assemblies always helps

© 2011 Autodesk

“On Topic” Q&A

© 2011 Autodesk

Three Random Tips

1. Use Iv…OccurrencePattern instead of Child-list where

possible. Much faster. Can only be used where pattern elements are identical,

and position of elements is well-defined.

2. GetNewPartNumber. This method is executed after the member file is fully

created and updated, but before it is saved. You can use it to do any customization of

the member files.

3. Avoid chaining rules to avoid “deep” recursions (e.g., in a Child list,

origin = child.previous.origin+Vector(…)). Although this seems

straightforward and safe, under some circumstances, this kind of rule can cause all the

referenced rules to be executed from the same call, resulting in a fatal stack overflow

© 2011 Autodesk

Q&A – Open Discussion

© 2011 Autodesk

Thanks!

 Send us suggestions for future topics

 Send us your favorite little “tips”

 See you next time!

35

