

 Creating a Docking Palette

for AutoCAD® with VB.NET
Mike Tuersley – Ohio Gratings, Inc.

 CP205-2 This is a VB.NET translation of the C# example that ships with the ObjectARX SDK. This

class demonstrates how to create a simple palette inside a dockable window within
AutoCAD that contains the contents of a .NET user control created in VB.NET. Other
functionality demonstrated includes docking states and associated reactor events, drag-
and-drop from the Tool Palette window, and activating different Tool Palettes within the Tool
Palette set. This is a must-have user-interface option in every developer’s arsenal.

About the Speaker:
Mike works for Ohio Gratings Inc. as a Senior Programmer/Analyst and focuses on enterprise level
automation using the latest Microsoft technologies. Before this, he was the founding member and senior lead
application developer for RAND IMAGINiT’s National Services Team, which focuses on providing
customization services to meet customer visions. Mike has been customizing AutoCAD since release 2.5 and
is a past columnist for "CADalyst" Magazine. For 6 years, he wrote the AutoCAD "Help Clinic" and the "CAD
Clinic"; the latter focusing on teaching AutoCAD programming topics.

Email: mike.tuersley@hotmail.com

CP205-2 2

 Creating a Docking Palette for AutoCAD® with VB.NET

Table of Contents

Table of Contents .. 2
Introduction ... 3
First Tool Palette ... 5
Controlling Tool Palette Set Properties .. 7

Quirks .. 11
Adding More Palettes ... 14

Implementing Drag-n-Drop .. 14

Active Drawing Tracking ... 17
Cross Communication ... 18
AutoLoading ... 19

Calculator Extra .. 20
Appendix 1: DocData & MyDocData Classes .. 21

CP205-2 3

 Creating a Docking Palette for AutoCAD® with VB.NET

Introduction

One of the key design goals of a developer, or hobbyist programmer, is to have their application add-in

appear as if it is part of the original program; to seamlessly integrate it into the host environment. To

accomplish this lofty goal, one must use the same user interface (UI) constructs wherever possible. Tool

Palettes in AutoCAD-based add-ins are a perfect example and a must-have user-interface option in every

developer’s arsenal!

To expand upon why to use Tool Palettes, consider the following real world example. As a developer, I

was tasked with the project of updating and consolidating an existing vba application for Ohio Gratings

Inc. that had grown out of control after years of multiple people adding multiple things. The existing

application consisted of dozens of forms along with the dozens of toolbar buttons to launch the forms:

Additionally, there were even more complementary AutoLISP and VBA commands all accessed by their

own toolbar buttons. There were literally dozens of toolbar strips docked along the top, left and right sides

of the AutoCAD drawing area that shrunk the drawing space by a good third.

As every developer whose actually used AutoCAD themselves knows, AutoCAD users value their

drawing real estate. So to provide the users with more real estate as well as more functionality, the

CP205-2 4

optimum UI choice was a Tool Palette Set. A tool palette set can auto hide to maximize the drawing

space as well as contain multiple palettes to allow for organization of commands/concepts. It also made

the processes easier to orchestrate by providing a work flow where the user interacts with the various tool

palettes instead of bouncing around between different dialog boxes. Here is the final delivery that

organized all the original clutter:

This new interface:

 Received data from web services tied to a Progress data base as well as XML data documents.

 Provided an interactive user experience by having the user select a button, then allowing them to

interact with the drawing entities before posting the interactive data back into the tool palette.

 During drawing interaction or when not in use, collapsed (auto hid) to return the user’s drawing

real estate.

For this class, the tools required are simple:

 Any version of Microsoft Visual Studio including the Express
1
 versions. For this class, Microsoft

Visual Studio 2005 Professional will be used.

 Any version of AutoCAD or AutoCAD-based product 2005 or newer. For this class, AutoCAD

2008 will be used.

1
 If you are not familiar with how to setup the Express versions for debugging, please refer to an excellent

blog article by Autodesk’s Kean Walmsley:

http://through-the-interface.typepad.com/through_the_interface/2006/07/debugging_using.html

http://through-the-interface.typepad.com/through_the_interface/2006/07/debugging_using.html

CP205-2 5

First Tool Palette

Every class must start somewhere so we’ll begin with a variation of the classic, but corny, Hello World

Example entitled My First Tool Palette.

1. To begin, start up Visual Studio 2005 and select to create a new Windows Class project (You can

optionally use the ObjectARX Wizard if it is installed) and name it Example1

2. Rename Class1.vb to Commands.vb

3. Next make sure that you add references to the two AutoCAD managed libraries: acmgd.dll and

acdbmgd.dll. Then add the following Imports statements:

Imports System.Runtime

Imports Autodesk.AutoCAD.Runtime

4. Now add a user control to the project and name it Container1

5. In the design view of Container1, add a Label and set its Text property to “My First Tool

Palette”

CP205-2 6

6. Switch back to the initial class module (should be Commands) and add the following code:

 1' Define command

 2 <CommandMethod("TestPalette")> _

 3 Public Sub DoIt()

 4

 5 Dim ps As Autodesk.AutoCAD.Windows.PaletteSet = Nothing

 6 ps = New Autodesk.AutoCAD.Windows.PaletteSet("My First Palette")

 7 Dim myPalette As Container1 = New Container1()

 8 ps.Add("My First Palette", myPalette)

 9 ps.Visible = True

10

11 End Sub

To explain the code, line 2 is the basic command attribute assigned to the function to define it

within AutoCAD. Next we need to instantiate a PaletteSet object which will hold the user control

object. In Line 6, the PaletteSet is assigned a name and in Line 8 the user control is added to the

PaletteSet along with a string assignment for its tab.

7. Compile and Debug the program. As with any DLL, use NETLOAD to

load the library and then type TestPalette into the AutoCAD command

prompt to launch your tool palette.

You should now see your first tool palette visible inside of AutoCAD. Play

around with it; you should be able to drag and dock it around all four edges of

the drawing window. If you accidentally close it, just rerun the Example1

command. If you try to run the TestPalette command while the tool palette is

visible, you should get another duplicate tool palette. This is not a desirable

feature so return to your project and revise your code as follows:

 'ensure single instance of this app...

 Friend Shared m_ps As Autodesk.AutoCAD.Windows.PaletteSet = Nothing

 ' Define command

 <CommandMethod("TestPalette")> _

 Public Sub DoIt()

 'check to see if paletteset is already created

 If m_ps Is Nothing Then

 'no so create it

 m_ps = New Autodesk.AutoCAD.Windows.PaletteSet("My First Palette")

 'create new instance of user control

 Dim myPalette As Container1 = New Container1()

 'add it to the paletteset

 m_ps.Add("My First Palette", myPalette)

 End If

 'turn it on

 m_ps.Visible = True

 End Sub

CP205-2 7

Now if you rerun your code, you should be able to type in TestPalette as many times as you wish and

only have one instance of your tool palette running at a time. That’s it! Now let’s continue looking at

expanding on our knowledge of tool palettes.

Controlling Tool Palette Set Properties

To effectively control a tool palette, let’s look at setting some of its basic properties:

 Opacity

 Title Location

 Docking

 Size

 Restoring User Settings

 Turning on Standard Buttons

 Adding a Custom Icon

Back inside the code project, remove the label and

add the following controls:

 2 textboxes with labels

 1 trackbar with a label

 2 radio buttons with a label

 1 command button

 1 combobox with a label

OPACITY

Set the following TrackBar settings:

Minimum = 10

Maximum = 100

Value = 100

Then add this code to the TrackBar’s ValueChanged event:

 Private Sub TrackBar1_ValueChanged(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles TrackBar1.ValueChanged

 'adjust opacity

 Example1.Commands.m_ps.Opacity = TrackBar1.Value

 End Sub

TITLE LOCATION

Add the following code to the RadioButton’s CheckChanged event:

 Private Sub RadioButton1_CheckedChanged(ByVal sender As System.Object,

 ByVal e As System.EventArgs) _

 Handles RadioButton1.CheckedChanged, RadioButton2.CheckedChanged

 'toggle title location

 Example1.Commands.m_ps.TitleBarLocation = _

 IIf(sender.text.Equals("Left"), _

 PaletteSetTitleBarLocation.Left, _

 PaletteSetTitleBarLocation.Right)

 End Sub

CP205-2 8

SIZE

Add the following code to the CommandButton’s Click event assuming the textboxes are named

txtHeight and txtWidth:

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 'resize paletteset

 Dim hgt As Int16 = Example1.Commands.m_ps.Size.Height

 Dim wid As Int16 = Example1.Commands.m_ps.Size.Width

 If Me.txtHeight.Text.Length > 0 And _

 Not Me.txtHeight.Text.Equals(0) Then

 hgt = Convert.ToInt16(Me.txtHeight.Text)

 End If

 If Me.txtWidth.Text.Length > 0 And _

 Not Me.txtWidth.Text.Equals(0) Then

 wid = Convert.ToInt16(Me.txtWidth.Text)

 End If

 Example1.Commands.m_ps.Size = New Drawing.Size(wid, hgt)

 End Sub

Notice how the call is made back to the initial class (Commands in this example) to set the size of the

palette set? There are easier ways to accomplish this as discussed later in this document. Also, we

are assuming that the user will type in numeric values for the height and width. If this was for an

actual project, validation code would need added to verify this assumption and avoid the potential

unhandled exception error.

DOCKING

To the ComboBox, add the following values to the Items property: Bottom, Left, Right, Top, and

Floating or None. Then add this code to the ComboBox’s SelectedIndexChanged event:

 Private Sub ComboBox1_SelectedIndexChanged(_

 ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles ComboBox1.SelectedIndexChanged

 'toggle docking

 With Example1.Commands.m_ps

 Select Case Me.ComboBox1.SelectedIndex

 Case Is = 0 'bottom

 .Dock = DockSides.Bottom

 Case Is = 1 'left

 .Dock = DockSides.Left

 Case Is = 2 'right

 .Dock = DockSides.Right

 Case Is = 3 ''top

 .Dock = DockSides.Top

 Case Is = 4 'float

 .Dock = DockSides.None

 End Select

 End With

 End Sub

Notice, again, the call back to the initial class’ global palette set variable as well as the fact that we

are checking the SelectedIndex rather than the text property of the combo box. If you added the items

in a different order, you will need to account for this.

CP205-2 9

Now, build the project and debug it. Everything should work as expected except for the docking. If

your tool palette is floating, you can select a docking option. After this, or if your tool palette is already

docked, notice how you cannot select an item from the drop down list with your mouse cursor. This is

one of the odd, little quirks with using tool palettes. The next section will explain how to get around

this quirk.

RESTORING USER SETTINGS

Since we want our tool palette set to function like a part of AutoCAD, it needs to be able to remember

the users last settings – if it was docked, where it was docked, its size, etc. To implement this is very

simple. First, add the following statement to the Commands object:

 'auto-enable our toolpalette for AutoCAD

 Implements Autodesk.AutoCAD.Runtime.IExtensionApplication

Once you have added this line [two lines with the comment], Visual Studio should underline it as an

error telling you that you need to implement Initialize and Terminate for the IExtensionApplication

object:

To do this, we will add them but will not add any code at this time:

 Public Sub Initialize() Implements IExtensionApplication.Initialize

 'add anything that needs to be instantiated on startup

 End Sub

 Public Sub Terminate() Implements IExtensionApplication.Terminate

 'handle closing down a link to a database/etc.

 End Sub

So after all of this, you will be able to tie into the palette set’s events so you can add these two

functions:

 Private Shared Sub ps_Load(ByVal sender As Object, _

 ByVal e As Autodesk.AutoCAD.Windows.PalettePersistEventArgs)

 'demo loading user data

 Dim a As Double = _

 CType(e.ConfigurationSection.ReadProperty("Example1", 22.3), Double)

 End Sub

CP205-2 10

 Private Shared Sub ps_Save(ByVal sender As Object, _

 ByVal e As Autodesk.AutoCAD.Windows.PalettePersistEventArgs)

 'demo saving user data

 e.ConfigurationSection.WriteProperty("Example1", 32.3)

 End Sub

Now we need to change the initialization of the palette set by assigning it a GUID:

m_ps = New Autodesk.AutoCAD.Windows.PaletteSet("My First Palette", _

 New Guid("{ECBFEC73-9FE4-4aa2-8E4B-3068E94A2BFA}"))

The events for Load and Save will now automatically read and write the tool palette set’s settings.

TURNING ON STANDARD BUTTONS

The tool palette set’s title bar can have the standard Close, AutoHide and Options

buttons turned on by setting the Style property. This code will turn on all of the buttons.

m_ps.Style = PaletteSetStyles.ShowPropertiesMenu Or _

 PaletteSetStyles.ShowAutoHideButton Or _

 PaletteSetStyles.ShowCloseButton

ADDING A CUSTOM ICON

The tool palette set’s title bar can have a custom icon applied to it for that personalized

look by setting the Icon property:

 m_ps.Icon = GetEmbeddedIcon("Example1.gold_1_32.ico")

 Private Shared Function GetEmbeddedIcon(_

 ByVal sName As String) As Icon

 'pulls embedded resource

 Return New Icon(System.Reflection.Assembly.

 GetExecutingAssembly.GetManifestResourceStream(sName))

 End Function

This code accomplishes assigning the Icon property by using an embedded icon so

there is no need for a manifest or icon file that needs to be read by the program.

CP205-2 11

Quirks

As with any API, there are always little quirks or nuances that a programmer needs to identify and

workaround – it wouldn’t be programming if this never happened! So, here are the top three quirks when

programming tool palettes:

Combo Boxes

As identified in the last section, combo boxes behave differently depending on whether the tool palette is

docked or floating. Luckily this is an easy fix. To fix, simply add the following code to the combo box’s

DropDown event:

 Private Sub ComboBox1_DropDown(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles ComboBox1.DropDown

 'check to see if docked

 If Not Example1.Commands.m_ps.Dock.Equals(0) Then

 'docked so keep focus

 Example1.Commands.m_ps.KeepFocus = True

 End If

 End Sub

This code will check to see if the palette set is docked. If not, it will pass through and perform the normal

event. If it is docked, though, the code will force the palette set to keep focus so the cursor will work with

the drop down. Of course, the palette set is now set to keep focus so we need to reset it like this:

 Private Sub ComboBox1_DropDownClosed(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles ComboBox1.DropDownClosed

 'check to see if docked

 If Not Example1.Commands.m_ps.Dock.Equals(0) Then

 'docked so keep focus

 Example1.Commands.m_ps.KeepFocus = False

 End If

 End Sub

AutoRollUp

AutoHide or AutoRollUp is when the tool palette contracts back to just the title bar. While there are no

problems with this from the user’s standpoint, accomplishing this via code offers some unique challenges.

You will definitely understand once you have received the "Operation is not valid due to the current state

of the object." exception. Before looking at the code to help with this, consider the challenges:

1. If the tool palette is docked, it cannot auto rollup.

2. While it’s easy enough to set the docking property to “None”, we need to wait for the tool palette

to reinitialize before the auto rollup can occur.

3. If the cursor is located in the palette window, the palette will not be automatically refreshed; the

cursor has to be moved off the palette window to have the change take effect.

 NOTE: If you are using .Net Framework 1.1 or Visual Studio 2003, the ComboBox does not

have a DropDown event. To accommodate, you need to create a custom control and add the

event using Windows API code. An example is provided in the source download for this class.

CP205-2 12

So let’s try this. Add a Button to the tool palette and add this code to its Click event:

 1 Private Sub btnRollUp_Click(ByVal sender As System.Object, _

 2 ByVal e As System.EventArgs) Handles btnRollUp.Click

 3 'check to see if docked...

 4 If Example1.Commands.m_ps.Dock.Equals(DockSides.None) Then

 5 'yep so check for Snappable and turn off

 6 If Example1.Commands.m_ps.Style.Equals(32) Then

 7 Example1.Commands.m_ps.Style = 0

 8 End If

 9 'roll it up and toggle visibility so palette resets

 10 With Example1.Commands.m_ps

 11 .AutoRollUp = True

 12 .Visible = False

 13 .Visible = True

 14 End With

 15 Else

 16 'it's docked so undock

 17 With Example1.Commands.m_ps

 18 .Dock = Autodesk.AutoCAD.Windows.DockSides.None

 19 'roll it up and toggle visibility so palette resets

 20 .AutoRollUp = True

 21 .Visible = False

 22 .Visible = True

 23 End With

 24 'create timer to handle paletteset's change in docking

 25 CreateTimer()

 26 End If

 27 End Sub

The comments within the code should be self-explanatory with the exception of the check for the palette

set’s Style property. The palette set has a value for Style called Snappable. Snappable is similar to

docking and is used between two palette sets - the same as docking to an edge of the drawing area.

Turning the whole palette set OFF and ON to refresh the window is a neat trick by DevTech’s Bill Zhang

who supplied this code [minus the Style check] in DevNote TS88082. Using this method does not require

moving the cursor off of the palette window.

Next is the CreateTimer function which is used to implement the AutoRollUp setting after the palette set

has undocked itself:

 Private Shared Clock As System.Windows.Forms.Timer

 Friend Shared Sub CreateTimer()

 Clock = New System.Windows.Forms.Timer

 Clock.Interval = 500

 Clock.Start()

 AddHandler Clock.Tick, AddressOf Timer_Tick

 End Sub

CP205-2 13

 Friend Shared Sub Timer_Tick(ByVal sender As Object, _

 ByVal eArgs As EventArgs)

 If sender Is Clock Then

 Try

 With Example1.Commands.m_ps

 .AutoRollUp = True

 .Visible = False

 .Visible = True

 End With

 'stop the clock and destroy it

 Clock.Stop()

 Clock.Dispose()

 Catch ex As Exception

 If Example1.Commands.m_ps.AutoRollUp.Equals(True) Then

 'stop the clock and destroy it

 Clock.Stop()

 Clock.Dispose()

 End If

 End Try

 End If

 End Sub

Buttons

If you want the user to interact with the drawing [selecting entities, picking points, etc.], you will notice

another quirk based on whether the palette set is docked or floating. Assuming you have a button for the

user to select to start the drawing related task, if the palette set is docked everything will work as

expected. If the palette set is floating, the user will have to pick the button, then pick inside the drawing

area before the task will start. This two picks to get to the

action can be annoying. To remedy this, use the AutoRollUp

code from above and force the focus to the drawing area. To

demonstrate this, add two textboxes with labels and a button to

the container (as seen to the right). Then add code to the

button that has the user select a point. The selected point will

then populate the two textboxes.

 Dim bRollUp As Boolean = False

 <setting up Editor and prompt options omitted; see sample app>

 If m_Host.Dock.Equals(DockSides.None) Then 'check for docked...

 If m_Host.Style.Equals(32) Then m_Host.Style = 0

 With m_Host

 .AutoRollUp = True

 .Visible = False

 .Visible = True

 End With

 bRollUp = True 'set a flag so we can unroll if needed

 End If

CP205-2 14

Adding More Palettes

Now that we have covered the majority of the tool palette interaction, let’s add another tool palette to our

palette set. Simply add another user control to the project and name it Container2. For the moment, we

will not add any controls or code to it.

Switch to the initial class which should be called Commands and modify the DoIt sub as follows:

 Private m_Container1 As Container1 = Nothing

 Private m_Container2 As Container2 = Nothing

 <CommandMethod("TestPalette")> _

 Public Sub DoIt()

 'check to see if paletteset is already created

 If m_ps Is Nothing Then

 'no so create it

 m_ps = New Autodesk.AutoCAD.Windows.PaletteSet("My First Palette")

 'create new instance of user control

 m_Container1 = New Container1()

 'add it to the paletteset

 m_ps.Add("My First Palette", m_Container1)

 'create new instance of 2nd user control

 m_Container2 = New Container2(m_ps)

 'add it to the paletteset

 m_ps.Add("Drag-n-Drop", m_Container2)

 End If

 'turn it on

 m_ps.Visible = True

 End Sub

As you can see, we just duplicated the Container1 lines and renamed the Container to Container2. I also

gave Container2’s tab “Drag-n-Drop” for a name which will lead us into the next topic…implementing

drag-n-drop from our tool palette into the AutoCAD drawing area.

Implementing Drag-n-Drop

The first thing required for Drag and Drop is an object to drag so

add a textbox to Container2 and name it txtDD. From this textbox,

we will be able to handle drag and drop into the AutoCAD drawing

editor.

To detect when a drag event is taking place, we need to know when

certain mouse operations take place as well as consider what type

of control we are using since each control behaves differently. For

the textbox, we will use the MouseMove event. So select txtDD

from the Class Name pulldown and then MouseMove in the Method

pulldown. This will import the skeleton for handling the event:

CP205-2 15

 Private Sub txtDD_MouseMove(ByVal sender As Object, _

 ByVal e As System.Windows.Forms.MouseEventArgs) _

 Handles txtDD.MouseMove

 ‘code to follow later

 End Sub

Now that we can detect the mouse move operation, we need a way to know when, or if, the object is

dropped into the AutoCAD drawing editor. To detect the drop, we need to add another class that will

inherit the .NET base class DropTarget. Then we can implement any of the methods. We will need

OnDrop in this exercise so add a new class to the project called DropTargetNotifier which inherits from

Autodesk.AutoCAD.Windows.DropTarget and add the OnDrop event just like we did with the MouseMove

event:

Public Class DropTargetNotifier

 Inherits DropTarget

 Public Declare Auto Function acedPostCommand Lib "acad.exe" _

 Alias "?acedPostCommand@@YAHPB_W@Z" (ByVal Expr As String) _

 As Integer

 Private Shared m_DroppedData As String

 Public Overrides Sub OnDrop(_

 ByVal e As System.Windows.Forms.DragEventArgs)

 'catch the drop

 Dim dropTxt As String = e.Data.GetData(GetType(String))

 ‘read the data and store it

 m_DroppedData = dropTxt

 'start a command to handle the interaction with the user.

 ‘Don't do it directly from the OnDrop method

 AcApp.DocumentManager.MdiActiveDocument.SendStringToExecute _

 ("netdrop" & vbLf, False, False, False)

 End Sub

 'command handler for the netdrop command which is executed when the

 ‘drop occurs in the acad window.

 <CommandMethod("netdrop")> _

 Public Shared Sub netdropCmd()

 If Not data Is Nothing Then

 acedPostCommand(m_DroppedData & vbLf)

 m_DroppedData = Nothing

 Else

 acedPostCommand("nothing to do.")

 End If

 End Sub

End Class

To begin with, this class inherits from the DropTarget object which allows the ability to access the OnDrop

event. There is also a local variable m_DroppedData to store the text being dropped and picked up by the

OnDrop event through the DragEventArgs object. Then the OnDrop event calls the netdropCmd which

sends the text string to the AutoCAD command line. Sending it to the command line is just for

CP205-2 16

demonstration purposes. Once you have the text, you could query it or do something else depending

upon what you are anticipating. Now we can go back to the textbox’s MouseMove event and add the final

bit of code:

 Private Sub txtDD_MouseMove(ByVal sender As Object, _

 ByVal e As System.Windows.Forms.MouseEventArgs) _

 Handles txtDD.MouseMove

 If Control.MouseButtons.Equals(MouseButtons.Left) Then

 AcApp.DoDragDrop(Me, txtDD.Text, DragDropEffects.All, _

 New DropTargetNotifier())

 End If

 End Sub

So we are going to check when the mouse moves within/over the textbox if the left mouse button is held

down. If so, we activate the AutoCAD Application’s DoDragDrop method. We pass the container object,

the text from the textbox, define the DragDropEffects [which will generally be ALL], and a new instance of

the DropTargetNotifier object. The DropTargetNotifier object is supplied so it can start watching for the

drop to occur within the AutoCAD editor window – similar to a watched folder application. If the drop does

not occur, the DropTargetNotifier object will be dismissed; if a drop occurs, the DropTargetNotifier object

will handle the event accordingly.

For the most part, implementing the drag and drop functionality is complete – you can compile and run

the code to test it. While it will work in this scenario, there is one more piece of the puzzle to add to this

solution. This scenario works because we are sending the dropped data to the command line. If the data

were to go to the drawing itself, the application would pop a fatal error because we are accessing the

document from outside the command structure. By design, AutoCAD stores its data in documents where

the data can only be edited by commands that have the required rights to make modifications. We need

to lock the document while we access it. This is done via the Document.LockDocument method:

 Private Sub txtDD_MouseMove(ByVal sender As Object, _

 ByVal e As System.Windows.Forms.MouseEventArgs) _

 Handles txtDD.MouseMove, txtADwg.MouseMove

 If Control.MouseButtons.Equals(MouseButtons.Left) Then

 Dim docLock As DocumentLock = _

 AcApp.DocumentManager.MdiActiveDocument.LockDocument()

 AcApp.DoDragDrop(Me, txtDD.Text, DragDropEffects.All, _

 New DropTargetNotifier())

 docLock.Dispose()

 End If

 End Sub

In the MouseMove event, we instantiate a DocumentLock variable before sending the information to the

DoDragDrop method. Then we dispose of the lock when the program returns from the method. That’s all

there is to implementing the DocumentLock!

CP205-2 17

Active Drawing Tracking

Since AutoCAD supports a multi-document interface, it may be important for your tool palette set to know

which drawing is the active drawing. Suppose your tool palette set interacts with the drawing and

remembers specific things about that particular drawing. If the cad user opens another drawing, your

programming could go awry if it is unaware of the change in active drawing. To track the active document,

we need to:

1. Add a class to handle storing the tracking information [See Appendix 1 for class code]

2. Switch to the initial class and add:

a. A global variable: Private Shared m_DocData As MyDocData = Nothing

b. The following code to the DoIt sub routine:

 If m_DocData Is Nothing Then m_DocData = New MyDocData

 AddHandler AcApp.DocumentManager.DocumentActivated, _

 AddressOf Me.DocumentManager_DocumentActivated

 AddHandler AcApp.DocumentManager.DocumentToBeDeactivated, _

 AddressOf Me.DocumentManager_DocumentToBeDeactivated

c. Add the following events:

 Private Sub DocumentManager_DocumentActivated(_

 ByVal sender As Object, _

 ByVal e As DocumentCollectionEventArgs)

 'display the current active document

 If Not m_DocData Is Nothing Then

 m_Container2.txtADwg.Text = m_DocData.Current.Stuff

 End If

 End Sub

 Private Sub DocumentManager_DocumentToBeDeactivated(_

 ByVal sender As Object, _

 ByVal e As DocumentCollectionEventArgs)

 'store the current contents

 If Not m_DocData Is Nothing Then

 m_DocData.Current.Stuff = m_Container2.txtADwg.Text

 End If

 End Sub

d. To Container2, add a textbox named txtADwg

Now as drawings are opened and closed, the DocumentActivated and DocumentToBeDeactivated events

will fire and effectively track which drawing is currently active. The name of the active drawing will be

displayed in the textbox so you can verify that the programming is working.

CP205-2 18

Cross Communication

Cross communication is how to talk between tool palettes as well as a better method for talking back to

the host tool palette set. The method is surprisingly simple if you are familiar with customizing your

constructors. To each Container object, we are going to change the NEW constructor. To get to it, the

easiest way is to select Container1 in the Class Name pulldown and then New in the Method pulldown:

This will take you into the Container1.Designer.vb file which is the old Windows Generated Code section

from Visual Studio 2003 – that area that you weren’t supposed to touch that Visual Studio 2005 now

hides from you [depending on your 2005 environment settings of course]. To this sub, we are going to

add the following code:

 Private m_Host As PaletteSet

 Public Sub New(ByRef Host As PaletteSet)

 ' This call is required by the Windows Form Designer.

 InitializeComponent()

 ' Add any initialization after the InitializeComponent() call.

 m_Host = Host

 End Sub

We begin by adding a local variable to store the PaletteSet. Then add a ByRef parameter to the New sub.

Making the addendum to the constructor is a better method than floating a global variable in the startup

object which, in this case, would be to declare m_ps as Public Shared.

Now ordinarily, I would check to see whether m_Host was already instantiated or not before I instantiate

it. In this scenario, I am not concerned because that check already exists on the Container object back in

the DoIt sub routine. From here on, we can use m_Host to talk to the palette set object instead of typing

in the fully qualified reference to it.

PLEASE pay attention! You must declare the parameter as By

Reference (ByRef), not By Value (ByVal). ByRef passes a reference to the

object in question, not a local copy of it.

CP205-2 19

While this is great way to talk to the host palette, suppose we want to talk to one of the other palettes in

our palette set? It is possible to access other palettes via m_Host.PaletteSet.Items(int_for_order_loaded)

but that is a lot of code. The best method is to change the constructor to accept a reference to our initial

class object, Commands in my example. Then if I change the declaration of the local variables for each

container to Friend Shared, I can access any container from any other container.

To the container class:

 Private m_Host As Commands

 Public Sub New(ByRef Host As Commands)

 ' This call is required by the Windows Form Designer.

 InitializeComponent()

 ' Add any initialization after the InitializeComponent() call.

 m_Host = Host

 End Sub

To the initial class, change the local variables:

 Friend Shared m_Container1 As Container1 = Nothing

 Friend Shared m_Container2 As Container2 = Nothing

And to the constructor, change the value passed from the m_PS object to Me. Now we can access the

other containers through m_Host.m_ContainerX – where X is the number corresponding to the container

with which we want to interact.

AutoLoading

Now that you are all set to start implementing tool palettes in your application, how do you set your

automation to automatically load whenever AutoCAD starts? It’s as simple as a couple of registry entries:

[HKEY_LOCAL_MACHINE\SOFTWARE\Autodesk\AutoCAD\R17.1\ACAD-

6001:409\Applications\Example1] add key using the name of your application

"DESCRIPTION"="Example1" name of your application

"LOADER"="C:\\Program Files\\AutoCAD 2008\\Example1.dll" location of your application

"LOADCTRLS"=dword:00000000 0 to automatically load your application

CP205-2 20

Calculator Extra

I always like to end a class, or a column, with something I think is

cool and most programmers are unaware of. There is another

managed library for which I have not seen any documentation –

acmgdinternal.dll. You can explore it on your own but it has

some publishing, sheet set and calculator interaction. The

coolest one is the calculator because it enables us to add the

AutoCAD Calculator to a tool palette – here’s how to do it:

1. Add a reference to acmgdinternal.dll

2. Add a reference to AcCalcUI.dll

3. Add the following import statements to the base class

object [again. Commands in this example]:

Imports Autodesk.AutoCAD.AcCalc

Imports Autodesk.AutoCAD.CalculatorUI

Imports CalcDialogCreator

4. To the DoIt subroutine, add this code:

Dim ucCalc As New UserControl

ucCalc = New

CalculatorControl.AcCalcCalcCtrl(ucCalc)

m_PS.Add("Calculator", ucCalc)

5. Compile, debug, load and run Example1 in AutoCAD and you should see a new tab with the

AutoCAD Calculator on it!

CP205-2 21

Appendix 1: DocData & MyDocData Classes

The following class is a VB.NET conversion of the C# class that originally appeared as part of

DevNote TS88082

//Copyright (C) 2004-2006 by Autodesk, Inc.

Imports Autodesk.AutoCAD.ApplicationServices

Imports AcApp = Autodesk.AutoCAD.ApplicationServices.Application

MustInherit Class DocData

 Private Shared m_docDataMap As System.Collections.Hashtable

 Private Shared Sub DocumentManager_DocumentToBeDestroyed(_

 ByVal sender As Object, ByVal e As DocumentCollectionEventArgs)

 m_docDataMap.Remove(e.Document)

 End Sub

 Protected Delegate Function CreateFunctionType() As DocData

 Protected Shared CreateFunction As CreateFunctionType

 Public Shared ReadOnly Property Current() As DocData

 Get

 If m_docDataMap Is Nothing Then

 m_docDataMap = New System.Collections.Hashtable()

 AddHandler AcApp.DocumentManager.DocumentToBeDestroyed, _

 AddressOf DocumentManager_DocumentToBeDestroyed

 End If

 Dim active As Document = AcApp.DocumentManager.MdiActiveDocument

 If Not m_docDataMap.ContainsKey(active) Then

 m_docDataMap.Add(active, CreateFunction())

 End If

 Return DirectCast(m_docDataMap(active), DocData)

 End Get

 End Property

End Class

CP205-2 22

Class MyDocData

 Inherits DocData

 Private m_stuff As String

 Shared Sub New()

 CreateFunction = New CreateFunctionType(AddressOf Create)

 End Sub

 Public Sub New()

 m_stuff = AcApp.DocumentManager.MdiActiveDocument.Window.Text

 End Sub

 Protected Shared Function Create() As DocData

 Return New MyDocData()

 End Function

 Public Property Stuff() As String

 Get

 Return m_stuff

 End Get

 Set(ByVal value As String)

 m_stuff = value

 End Set

 End Property

 Public Shared Shadows ReadOnly Property Current() As MyDocData

 Get

 Return DirectCast(DocData.Current, MyDocData)

 End Get

 End Property

End Class

