Autodesk
University
2007

The Best of Both Worlds: .NET and LISP Can Coexist

Wayne Brill - Autodesk

DE211-2 You know that .NET is a modern and powerful programming environment. But, no matter
how much you might want to start using it, you can't seem to abandon all your old LISP code. We'll show you

how to write .NET code that can interoperate with your existing LISP code, with a special emphasis on user
interface components.

About the Speaker:
Wayne has been a member of Autodesk Developer Technical services since 2000. Currently, Wayne works

for Autodesk supporting the APIs for Inventor, AutoCAD Mechanical, AutoCAD, AutoCAD OEM, and
RealDWG.

Autodesk

Autodesk
University
2007

Autodesk
University
2007

The Best of Both Worlds: .NET and LISP Can Coexist

This document has two sections. The first section is a discussion about communication between
AutoLISP and AutoCAD .NET functions. The second section is a tutorial that steps you through
creating a .NET form and using this form with the AutoLISP tutorial that ships with AutoCAD.

Communication between AutoLISP functions and .NET functions

The AutoCAD .NET API was introduced as a preview in AutoCAD 2005. Prior to the AutoCAD
2007 release there was not much interaction possible from AutoLISP and AutoCAD .NET. In
AutoCAD .NET 2007 the LispFunction attribute was introduced. Using this attribute it is now
possible to run .NET functions from AutoLISP.

The LispFunction attribute takes a string that defines the function name. The function that
follows the LispFunction attribute will be the .NET function that will be called when the
LispFunction is run from AutoLISP. Here are the LispFunction Signatures for C# and VB.NET.

C#

[LispFunction('HelloWorld™)]
static public ResultBuffer helloWorld(ResultBuffer theArgs)

VB.NET

<LispFunction('HelloWorld™)> _
Public Function helloWorld(ByVal theArgs As ResultBuffer) As
ResultBuffer

In these examples the LISP function name is “HelloWorld”. When the (HelloWorld) function is
run from AutoLISP the .NET hellowWorld function will be called. Notice that a ResultBuffer is
passed into the function and is returned. The ResultBuffer contains arguments that allow data to
be passed between AutoLISP and the .NET function. In AutoCAD 2008 a ResultBuffer is the
only type that can be returned. This should not be a major issue as the ResultBuffer can contain
different types of data.

The ResultBuffer contains TypedValues. A TypedValue is a data pair. (Data type and the data
value) When you create a new ResultBuffer you can pass in TypedValues to the constructor.
The LispDataType object will allow you to easily set the type. Here are the Result Type codes
that can be used for the data type. (These are 16 bit integer codes)

_atom Nil DottedPair ListeEnd
ListBegin Point3d Orientation Objectld
Angle Point2d None SelectionSet
Void Int32 Int16 Double
Text

Autodesk
University
2007

Take a look at ,NET function below. This example will get the arguments from the ResultBuffer
that is passed into the function. It then creates a new ResultBuffer using a TypedValue and
LispDataType. It returns the updated arguments to the calling AutoLISP function. To test this
function use the NETLOAD command and load the .NET dll that has this LispFunction defined.
Enter the following on the command line: “(changeArgs 10.1 20.1 30.1)” Here is an excerpt from
the command line that shows the result. Notice the returned values were added together.

Command: (changeArgs 10.1 20.1 30.1)
Updated arguments in .NET function
(30.2 50.2 60.3)

<LispFunction('‘changeArgs')>
Public Function dNetLispDemoO2a(ByVal myLispArgs As ResultBuffer) As
ResultBuffer

" Shows how to get arguments passed into a lisp function

" change them and send arguments back

Dim ed As Editor

ed =
Autodesk.AutoCAD.ApplicationServices.Application.DocumentManager .MdiActiveDoc
ument.Editor

"Ensure there are arguments passed in

IT myLispArgs Is Nothing Then
ed._WriteMessage("'No arguments'™ & vbLT)
Return myLispArgs

Else

Dim myArgsArray As Array

myArgsArray = myLisSpArgs.AsArray
"Ensure there are at least 3 arguments
IT myArgsArray.Length > 2 Then

Dim myArgl, myArg2, myArg3 As Double

"Get the arguments that were passed in

Dim myTypeVal As TypedValue

myTypeVal = myArgsArray.GetValue(0)

myArgl = myTypeVal .Value

" does the same thing as the previous two lines gets
Arguments 2 and 3

myArg2

myArg3

= CType(myArgsArray.GetValue(1l), TypedValue).Value
= CType(myArgsArray.GetValue(2), TypedValue).Value
" Add the arguments to make a change

myArgl = myArgl + myArg2

myArg2 myArg2 + myArg3

myArg3 myArg3 + myArgl

" Package data to send back to calling lisp function
Dim rbfResult As ResultBuffer
rbfResult = New ResultBuffer(_

Autodesk
University
2007

New TypedValue(Clnt(LispDataType.Double),

myArgl), _

New TypedValue(Clnt(LispDataType.Double),
myArg2), _

New TypedValue(CInt(LispDataType.Double),
myArg3))

ed.WriteMessage(''Updated arguments in _NET function" & vbLf¥)

Return rbfResult
Else
ed.WriteMessage(''Not enough arguments' & vbLf)
Return myLispArgs
End If
End If

Return myLispArgs
End Function

The following AutoLISP function demonstrates using the .NET example above. Run the function
testchangeArgs and pass in a double. “(testchangeArgs 20.0)” The value will be changed. The
original and updated value will be displayed on the command line.

(defun testchangeArgs (dToChange / myDoubles d1 str str2)
(setq myDoubles(changeArgs 20 dToChange 30)); send the arguments to .NET
(Setg d1(nth 1 myDoubles));get the second argument returned
(setq str(strcat ".NET changed " (rtos dToChange)))
(setq str2(strcat " to " (rtos d1)))
(princ (strcat str str2))
(princ)
)

Here is the result after running this function:

Command: (testchangeargs 20)
Updated arguments in .NET function
.NET changed 20.0000 to 50.0000

The rest of this document is a tutorial that will show how to use a .NET form to gather input from
the user. This input is then used from AutoLISP.

NET Tutorial - Using a .NET Form with the AutoLISP Garden Path Tutorial

In this tutorial, we will create a lisp callable function (LispFunction) that will display a form. This
form will replace the DCL dialog in the AutoLISP GardenPath tutorial.

Autodesk
University
2007

You can use the LispFunction attribute to create a lisp callable function. In this section we will
add a Form to our project that will be displayed when the LispFunction is called from an
AutoLISP function. This form will allow the user to make settings that will be returned to the
AutoLISP function. In this lab we will replace the DCL dialog used in the GardenPath tutorial
that ships with AutoCAD with our .NET form.

This tutorial assumes you have created a .NET project for AutoCAD. If you need some help
doing this, then download the .NET training from the link below. Lab one in this training will
show you how to create a .NET project for AutoCAD. Lab 6 shows how to add forms to a
project.

http://www.autodesk.com/developautocad

1) Create a .NET form.

First we need to add a new form to the project. Select the Project Menu and use Add Windows
Form. On the Add New Item dialog enter GardenPath.vb for the name. When you are finished
adding the controls, the form the will look something like this:

=T

— Outline Polline Type

¥ |ighbweight
= Old-ztyle

7 Tile Creation Method
+ Activel Automation
" Entmake

" Command

Riadius of Tile [20
Spacing Between Tiles I-5

Ok,

Cancel

.]

Display the Visual Studio ToolBox (Cntrl+Alt+X) and add two Group boxes to the form. Using the properties
Window, (Alt+Enter) change the Text property for the Group boxes:

<First, Group box>

http://www.autodesk.com/developautocad

Autodesk
University
2007

Text = <Outline Polyline Type>
<Second, Group box>
Text = <Tile Creation Method>

Add two radio buttons inside of the “Outline Polyline Type” Group box. Change the properties of
the radio buttons.

<First, Radio button>
Name = <rb_LightWeight>
Text = <&LightWeight>

<Second, Radio button>
Name = <rb_Oldstyle>
Text = <&Old-style>

Add three radio buttons inside of the “Tile Creation Method” Group box. Change the properties
of the three radio buttons:

<First, Radio button>
Name = <rb_ActiveX>
Text = <&ActiveX Automation>

<Second, Radio button>
Name = <rb_Entmake>
Text = <&Entmake>

<Third, Radio button>
Name = <rb_Command>
Text = <&Command>

Add two labels below the “Tile Creation Method” Group box. Change the Text properties:

<First, Label>
Text = <Radius of tile>

<Second, Label>
Text = <Spacing Between Tiles>

Add two TextBoxes to the right of the labels. Change the properties of the TextBoxes:

<First Textbox>
Name = <tb_RadiusOfTile>
Text = <3.0>

Autodesk
University
2007

<Second Textbox>
Name = <tb_SpacingBetweenTiles>
Text = <0.5>

Add two buttons for OK and Cancel.

<First button>
Name = <bt_OK>
Text = <OK>

<Second button>
Name = <bt_Cancel>
Text = <Cancel>

Double click on the OK button to bring up the code window for the form. In the
bt OK Click event handler add Me.Close()

Private Sub bt OK Click(ByVal sender As System.Object, ByVal e As
System._EventArgs) Handles bt OK.Click

Me.Close()
End Sub

Add Me.Close() to the event handler for the button bt_Cancel as well.

Private Sub bt Cancel(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles bt OK.Click

Me.Close()
End Sub

2) Create a function using the LispFunction attribute.

The LispFunction attribute was introduced in the AutoCAD 2007 .NET API. This attribute is
designed to allow AutoLISP functions to call AutoCAD .NET functions. (it allows sending and
returning values) The LispFunction attribute is similar to the CommandMethod attribute. It can
be used in the same places and has the similar properties.

Add a LispFunction named VBNetFunction to Class1.vb. Use dNetGpath as the LispFunction
name. This function will display the form created in step 1. This function will return the users
selections on the form to the GardenPath Lisp routine.

<LispFunction(*‘dNetGpath')> _

Public Function VBNetFunction(ByVal myLispArgs As ResultBuffer) As
ResultBuffer

End Function

Autodesk
University
2007

First show the GardenPath dialog by adding code to the VBNETFunction that instantiates a new
GardenPath form and shows it:

Dim gPathFrm As New GardenPath
Application.ShowModalDialog(gPathFrm)

We can return a list to the calling AutoLISP function using a ResultBuffer. A ResultBuffer is used
to contain data. The data in the ResultBuffer is organized by pairs. Each pair of data will contain
a data type description and a value.

Next declare a ResultBuffer by adding the following code:

Dim rbfResult As ResultBuffer

Our function needs to return different values depending on how the user interacts with our
GardenPath form. First we need to know if the User clicked OK or Cancel. Add a global Boolean
variable named bOK to the GardenPath class.

Public bOK As Boolean = False

In the bt_OK_Click event handler make this variable true.

bOK = True

We need to test the bOK variable in our vbNetFunction. If this variable is true the user clicked
OK and we need to get the values from the GardenPath form. Once we have these vaules we
can return them to the calling AutoLISP function. If the user clicked Cancel we need to return nil.
Add an if statement to the vbNetFunction testing bOK:

IT gPathFrm.bOk = True Then

Inside the bOK “if” statement add code that will get the values from the form. Other nested if
statements can be used to get the values from the radio buttons by querying the Checked

property.

" Get the radius of tile to use
Dim dRadOfTile As Double
dRadOfTile = gPathFrm.tb_RadiusOfTile.Text

* Get the spacing of tiles to use
Dim dSpaceOfTiles As Double
dSpaceOfTiles = gPathFrm.tb_SpacingBetweenTiles.Text

" Get the creation type

Dim strCreationType As String

IT gPathFrm.rb_ActiveX.Checked Then
strCreationType = "ActiveX"

Elself gPathFrm.rb_Entmake.Checked Then
strCreationType = "Entmake"

Else

Autodesk

AU University

2007

strCreationType = "Command™
End If

Dim strPlineType As String

IT gPathFrm.rb_Lightweight.Checked Then
strPlineType = "Light"”

Else
strPlineType = "Heavy"

End If

Now that we have the input selected by the user we can populate the ResultBuffer. We use a
TypedValue to package up the data we want to send back to the AutoLISP function. The
TypedValue accepts two parameters. One is the type and the other is the data.

Add the following code to the end of the “If bOK = True” statement:

"Dim rbfResult As ResultBuffer

rbfResult = New ResultBuffer(New TypedValue(Clnt(LispDataType.Double),
dRadOfTile), _

New TypedValue(CInt(LispDataType.-Douple), dSpaceOfTiles),

New TypedValue(CInt(LispDataType.Text), strCreationType),

New TypedValue(ClInt(LispDataType.Text), strPlineType))

Return rbfResult

End If
This will return a list to the AutoLISP function. Similar to this:
(3.0 0.5 “ActiveX” “Light”)

Now we need to handle the case where the user cancels the GardenPath form instead of hitting
OK. After the End If statement add the following code:

rbfResult = New ResultBuffer(New TypedValue(CInt(5019)))
Return rbfResult
End Function

Here is the complete code for the dNetGpath function:

<LispFunction("'dNetGpath')>
Public Function VBNetFunction(ByVal myLispArgs As ResultBuffer) As
ResultBuffer

Dim gPathFrm As New GardenPath

gPathFrm.ShowDialog()

Dim rbfResult As ResultBuffer

IT gPathFrm.bOk = True Then
" Get the radius of tile to use
Dim dRadOfTile As Double
dRadOfTile = gPathFrm.tb RadiusOfTile.Text

* Bet the spacing of tiles to use
Dim dSpaceOfTiles As Double

Autodesk
University
2007

dSpaceOfTiles = gPathFrm.tb_SpacingBetweenTiles.Text

" Get the creation type

Dim strCreationType As String

IT gPathFrm.rb_ActiveX.Checked Then
strCreationType = "ActiveX"

Elself gPathFrm.rb_Entmake.Checked Then

strCreationType = "Entmake"
Else

strCreationType = "Command"’
End If

Dim strPlineType As String

IT gPathFrm.rb_Lightweight.Checked Then
strPlineType = "Light"”

Else
strPlineType = "Heavy"

End If

*Dim rbfResult As ResultBuffer

rbfResult = New ResultBuffer(_
New TypedValue(CInt(5001), dRadOfTile),
New TypedValue(CInt(5001), dSpaceOfTiles), _
New TypedValue(CInt(5005), strCreationType), _
New TypedValue(CInt(5005), strPlineType))

Return rbfResult

End If

rbfResult = New ResultBuffer(New TypedValue(CInt(5019)))
Return rbfResult
End Function

3) Modify the LISP tutorial to call the LispFunction created in Step 2.

Run AutoCAD and open the Visual LISP editor. (VLIDE) On the Projects menu select “Open
Project”, navigate to the VisualLISP tutorial directory Lesson 7 and open the gpath7.prj. The
Visual Lisp Tutorial can be found in this directory if the option to install it was included during the
AutoCAD install: C:\Program Files\AutoCAD 2008\Tutorial\VisualLISP

After the project files are opened SaveAs GPMAIN.Isp file. Name the new file
GPMAIN_NET.Isp. We will edit this file to call our .NET LispFunction.

Change the function name from Gpath to GpathN. Update the variable list to include a variable
that we will be using. (valuesFromdNet)

(defun C:GPathN (/gp_PathData gp_dialogResults PolylineName p_PathData tileList PolylineList
valuesFromdNet)

Now we need to change the function so that it will call the dNetGpath function instead of
gp:getDialoginput. Comment out these lines of code after setq gp_dialogResults.

Autodesk
University
2007

;(gp:getDialoglnput
; (cdr (assoc 40 gp_PathData))
;);_end

The logical flow of the function is updated with a couple of new progn statements. Add a progn
statement after (if (setq gp_PathData (gp:getPointinput))

(if (setq gp_PathData (gp:getPointinput))
(progn ; Update for .NET LAB

Now we need to call the LispFunction. Add the call to dNetGpath and set the return value to the
valuesFromdNet variable. Also add an if statement to check to see if the user hit Cancel.
(valuesFromdNet will be nil) Add a progn statement before the existing “if setq
gp_dialogResults”.

; Call our .NET function

(setq valuesFromdNet (dNetGpath)) ; Update for .NET LAB
(if (/= nil (nth 0 valuesFromdNet)); Update for .NET LAB
(progn ; Update for .NET LAB

(if (setq gp_dialogResults

We need to populate gp_dialogResults with the values from the valuesFromdNet variable. Use
the list function and cons to construct the correct values for gp_dialogResults. (This replaces the
code we commented out above)

(if (setq gp_dialogResults
; Get the data returned from our _NET function
(list
(cons 42 (nth 0 valuesFromdNet))
(cons 43 (nth 1 valuesFromdNet))
(cons 3 (nth 2 valuesFromdNet))
(cons 4 (nth 3 valuesFromdNet))
(cdr (assoc 40 gp_PathData))

)

Now add the closing parentheses for the two progn statements and the one if statement. Near
the end of the function find the code for the vir-editor-reactor. Add the last three closing
parenthesis as seen in this code snippet. If you have trouble with the placement of the
parenthesis use “Edit>Parenthesis Matching”. (Ctrl+[and Ctrl+])

) ;_ end of vlr-editor-reactor

)
)

) ; progn after if (setq gp_dialogResults
); if (setq gp_dialogResults

Autodesk
University
2007

) ;_ progn after if (/= nil valuesFromdNet - Update for _NET

LAB

Finally move the “Function cancelled” princ statement inside of the (if (/= nil (nth O
valuesFromdNet)) statement. Notice the comment also needs to be changed. The closing
parenthesis is no longer for the progn.

(princ ""\nFunction cancelled.'")

) ;_ end of progn
;(princ "\nFunction cancelled.™)

Here is the complete lisp function:

(defun C:GPathN (/ gp_PathData gp_dialogResults
PolylineName gp_PathData tileList PolylineList valuesFromdNet Result
)
(setvar "OSMODE" 0)
;; Ask the user for input: first for path location and
;; direction, then for path parameters. Continue only if you have
;; valid input. Store the data in gp_PathData
(if (setq gp_PathData (gp:getPointinput))
(progn ; Update for .NET LAB
; Call our .NET function
(setq valuesFromdNet (dNetGpath)) ; Update for .NET
(if (/= nil (nth 0 valuesFromdNet)); Update for .NET
(progn ; Update for .NET
(if (setq gp_dialogResults
; Get the data returned from our .NET function

(list
(cons 42 (nth 0 valuesFromdNet))
(cons 43 (nth 1 valuesFromdNet))
(cons 3 (nth 2 valuesFromdNet))
(cons 4 (nth 3 valuesFromdNet))
(cdr (assoc 40 gp_PathData))
)

B (gp:getDialoglnput

B (cdr (assoc 40 gp_PathData))

i) ;_ end of gp:getDialoglnput

) ;_end of setq
(progn
i (princ "\nReceived gp_dialogResults: ") (princ gp_dialogResults)

;; Now take the results of gp:getPointinput and append this to

Autodesk
University
2007

;; the added information supplied by gp:getDialoglnput
(setq gp_PathData (append gp_PathData gp_DialogResults))

;; At this point, you have all the input from the user.
;; In'lesson 7, the gp:drawOutline function was modified to
;; return a list of the pointer to the polyline as well as
;; the list of boundary points (the 12, 13, 14, 15 lists)
;; Draw the outline, storing the resulting polyline "pointer"
;; in the variable called PolylineName, and the boundary
;; points into gp_pathData
; (trace gp:drawOutline)
(setq PolylineList (gp:drawOutline gp_PathData)
PolylineName (car PolylineList)
gp_pathData (append gp_pathData (cadr PolylineList))
) ;_ end of setq

;; Next, it is time to draw the tiles within the boundary.
;; The tileList contains a list of the object pointers for
;; the tiles. By counting up the number of points (using the
;; length function), we can print out the results of how many
;; tiles were drawn.
(princ "\nThe path required ")
(princ
(length
(setq tileList
(gp:Calculate-and-Draw-Tiles
;; path data list
gp_PathData
;; object creation style to use - should be nil
;; when drawing initial path. Subsequent calls
;; from reactor will provide the function to use.
nil
) ;_ end of gp:Calculate-and-Draw-Tiles
) ;_ end of setq
) ;_ end of length
) ;_ end of princ
(princ " tiles.")

;; Add the list of pointers to the tiles (returned by
;; gp:Calculate-and-Draw-Tiles) to the gp_PathData variable.
;; This is stored in the reactor data for the reactor attached
;; to the boundary polyline. With this data, the polyline
;; "knows" what tiles (circles) belong to it.
(setq gp_PathData (append (list (cons 100 tileList))

; all the tiles

Autodesk
University
2007

gp_PathData
) ;_ end of append
) ;_ end of setq

;; Before we attach reactor data to an object let's look at
;; the function vir-object-reactor.
;; vir-object-reactor has the following arguments:

5 (vlr-object-reactor owners data callbacks)

;; The callbacks Argument is a list comprising of

5 owner , Reactor_Object list

b For further explanation see Help system

;; For this exercise we will use all arguments
;; associated with vir-object-reactor

;; These reactor functions will excecute only if
;; the polyline in PolylineName is modified or erased

(vlr-object-reactor

;; The first argument for vir-object-reactor is

;; the "Owners List" argument. This is where to
;; place the object to be associated with the

;; reactor. In this case it is the vlaObject

;; stored in PolylineName

(list PolylineName)
;; The second argument contains the data for the path
gp_PathData

;; The third argument is the list of specific reactor
;; types that we are interested in dealing with

(
;; reactor that is called upon modification of the object
(:vlr-modified . gp:outline-changed)
;; reactor that is called upon erasure of the object
(:vlr-erased . gp:outline-erased)

)

) ;_ end of vir-object-reactor

;; Next, register a command reactor to adjust the polyline
;; When the changing command is finished.

Autodesk
University
2007

(if (not *commandReactor*)
(setq *commandReactor*
(VLR-Command-Reactor

nil ; No data is associated with the editor reactor
;5 call backs

(

(:vlr-commandWillStart . gp:command-will-start)
(:vlr-commandEnded . gp:command-ended)

)

) ;_ end of vir-editor-reactor

)
)

(if (not *DrawingReactor*)
(setg *DrawingReactor*
(VLR-DWG-Reactor

nil ; No data is associated with the editor reactor
;; call backs

(

;; This is extremely important!!!111111

;» Without this notification, AutoCAD wiill
;; crash upon exiting.

(:vlr-beginClose . gp:clean-all-reactors)

)

) ;_ end of vir-editor-reactor

)
)

) ; progn after if (setq gp_dialogResults
); if (setq gp_dialogResults

) ;_ progn after if (/= nil valuesFromdNet - Update for .NET LAB

(princ "\nFunction cancelled.")

) ;_ end of progn
;(princ "\nFunction cancelled.")
);_end of if
(princ "\nIncomplete information to draw a boundary.")
);_end of if
(princ)

; exit quietly
) ;_ end of defun

Autodesk
University
2007

;;; Display a message to let the user know the command name
(princ "\nType GPATHN to draw a garden path.")
(princ)

After following the steps above load the .NET project, GPMAIN_NET.Isp and all of the Garden
Path tutorial files. Run the GPATHN command. If all goes well the .NET form will be displayed
and used to get input for the garden path.

If you debug the .NET project you will not be able to run VLIDE. (Error occurs) You can use
another means such as the APPLOAD command to load the LISP files. To have the LISP files
automatically load you can use the Start Up suite. (Available from the APPLOAD dialog)

Additional Resources
Here are a few links with additional resources for AutoCAD .NET:

AutoCAD Developer Center - download training labs
http://www.autodesk.com/developautocad

AutoCAD .NET Training (classroom)
http://www.autodesk.com/apitraining

Through the Interface blog - Site focuses on .NET
http://blogs.autodesk.com/through-the-interface

Also see the ObjectARX Help file for topics related to AutoCAD .NET

http://www.autodesk.com/developautocad
http://www.autodesk.com/apitraining
http://blogs.autodesk.com/through-the-interface

