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Building energy performance assessments are complex multi-criteria problems.
Appropriate tools that can help designers explore design alternatives and assess
the energy performance for choosing the most appropriate alternative are in high
demand. In this paper, we present a newly developed integrated parametric
Building Information Modeling (BIM)-based system to interact with cloud-based
whole building energy performance simulation and daylighting tools to optimize
building energy performance using a Multi-Objective Optimization (MOO)
algorithm. This system enables designers to explore design alternatives using a
visual programming interface, while assessing the energy performance of the
design models to search for the most appropriate design. A case study of
minimizing the energy use while maximizing the appropriate daylighting level of
a residential building is provided to showcase the utility of the system and its
workflow.

Keywords: Building Energy Performance Analysis, Building Information Model
(BIM), Parametric Modelling, Parametric Energy Simulation, Multi-objective
Optimization

INTRODUCTION
Due to the considerable impact of buildings on the
environment, it is essential for designers to recognize
the importance of improving or optimizing building
energy performance in the early design stage. En-
ergy performance-based design is a highly complex
and labor-intensive process. Designers deal with a
complex Multi-Objective Optimization (MOO) prob-

lem to minimize capital and operating costs while
maintaining occupants comfort (Wang et al., 2005;
Wright et al., 2002). This complexity comes from the
large number of interrelated parameters involved in
sustainable building design such as building geome-
try, space layout, materials, sites, weather data, user
behaviors, etc. There is a lack of easy-to-use and effi-
cient tools to help architects explore design alterna-
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tives and understand their impacts on building en-
ergy performance. Consequently, design practition-
ers either decide not to consider energyperformance
of their designs and instead follow general rules-of-
thumbs, which may result in inefficient building de-
signs, or seek help from building energy experts to
simulate building design alternatives. Since trans-
ferring an architectural design model to an energy
model is a time consuming and error-prone process,
thedesigners andenergyexperts have to select a lim-
ited number of design alternatives for energy analy-
sis, which result in unoptimized design solutions.

Current building energy modeling tools do not
support comprehensive parametric relations among
building objects for simulation in tools such as En-
ergyPlus. For instance, if a wall is transformed in
an energy model, none of the related objects in-
cluding windows, shading devices, rooms, roofs, and
floors will be updated automatically. In other words,
parametric intents that are embedded in parametric
Building InformationModeling (BIM) are not embed-
ded in the energy models. As a result, a manual up-
date of the model data is needed before running the
simulations but this is complex, tedious, and error-
prone.

In order to fulfill the requirements of low en-
ergy building design there is a need for an innova-
tive designmethodology and integrated design pro-
cess. The integration of parametric modeling and
BIM is the new trend of buildingmodeling, which can
greatly benefit sustainable buildingdesign. Paramet-
ricmodeling enables the creative exploration of a de-
sign space by varying parameters and their relation-
ships (Azhar and Brown, 2009). BIM is a model-based
process that provides methods and tools for creat-
ing and managing building projects faster and more
economically (Eastman et al., 2011). BIMmay contain
most of the data needed for building energy perfor-
mance analysis and if used appropriately can save a
significant amount of time and effort in preparing in-
put data for building energy simulation while reduc-
ing errors (Kumar, 2008).

In this paper we investigate a systematic integra-

tion of BIM, parametric modeling, and building per-
formance analysis to provide a new workflow that
makes the parametric building energy performance
study more accessible for innovative energy efficient
buildingdesign. Theworkflowuses aMOOalgorithm
to explore the design space and provide a set of op-
timal solutions to the designers.

BACKGROUND
The conventional architectural design methodolo-
gies focus on space and form. With the increasing
importance of building energy-efficiency, designers
have to consider energy performance of their de-
sign by exploring design alternatives that are more
promising to save energy in the conceptual design
phase (Azhar et al., 2009). A considerable amount
of literature has been published on building energy
simulation tools. For instanceMaile et al. (2007) stud-
ied the use of a selection of energy simulation en-
gines and their user interfaces over different build-
ing lifecycle phases. Also, Crawley et al. (2008) pro-
vided a comparisonof the features and capabilities of
twenty major building energy simulation tools. The
literature review of this paper is focused on build-
ing energy simulation in conjunction with paramet-
ric modeling, BIM, multi-objective optimization, and
visual programming, which are the techniques that
are used in the developed integrated system.

Parametric Modeling and Building Energy
Performance Analysis
Oneof themajorbenefitsofperformingenergy simu-
lationduring thedesignprocess is to comparedesign
alternatives using parameters and rules among ob-
jects. Parametric modeling enables generative form-
making and form-finding on the basis of aesthetic
and performancemetrics of buildings. Once the con-
texts change in a later design stage, parametricmod-
eling allows objects to automatically update (Aish
and Woodbury, 2005; Stocking, 2009). Designers can
integrate parametric modeling into the process of
performance analysis in different fields of building
design, including, but not limited to, energy simula-
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tion (Paoletti et al., 2011; Pratt and Bosworth, 2011),
structural analysis(Shea et al., 2005), and acoustic
simulation (Wu and Clayton, 2013).

Parametric studies show a significant potential
contribution to optimize the building energy per-
formance (Naboni et al., 2013; Pratt and Bosworth,
2011). Nonetheless, designers rarely use parametric
building energy performance analyses for the sake
ofdue to the difficulty in preparing the energy mod-
els as well as the long simulation run time. To solve
this issue, there are two common approaches: to
develop computational algorithms that reduce the
number of runs (Coley and Schukat, 2002; Wetter
and Wright, 2004), or to increase the computational
power through cloud-based simulation (Garg et al.,
2010; Zhang and Korolija, 2010; Zhang, 2009).

BIMandBuildingEnergyPerformanceAnal-
ysis
BIM is the process of generating and managing dig-
ital representations of the building's physical and
functional characteristics to facilitate the exchange
of information (Eastman et al., 2011). BIM represents
the building as an integrated database of coordi-
nated information that can be used for the analysis of
the multiple performance criteria including architec-
tural, structural, energy, acoustical, lighting, etc. (Fis-
cher, 2006). Performance-based design supported
by BIM is increasingly used in the building design
disciplines, allowing practitioners efficiently gener-
ate andmodify building models (Fischer, 2006; Welle
et al., 2011).

The existing studies that consider BIM as the
central data model for building energy performance
analysis aremainly focusedonautomaticpreparation
of the building energymodel for various energy sim-
ulation tools such as such as eQUEST (Maile et al.,
2007), EnergyPlus (Maile et al., 2007; Bazjanac, 2008;
Cormier et al., 2011), TRANSYS (Cormier et al., 2011),
Ecotect and Green Building Studio (Azhar et al., 2009,
2011), and Modelica-based tools (Yan et al. 2013).
The common approaches in this type of research is
to translate the BIM models to energy input files for

solving interoperability issues using Industry Foun-
dation Classes (IFC) (Bazjanac, 2008; Morrissey et al.,
2004) and to create an automatic link between BIM
authoring tools and building energy simulation en-
gines (Yan et al. 2013).

Integration of BIM andparametricmodeling pro-
vides a more effective process for performance-
based design. Welle et al. (2011) created a thermal
optimization tool, ThemalOpt, which used BIM for ex-
tracting the necessary information for thermal simu-
lation and optimization. Rahmani et al. (2013) devel-
oped Revit2GBSOpt, a plug-in for a BIM platform (Au-
todesk Revit®), which integrates parametric BIM and
building energy performance simulation. Due to the
complexity of parametric design study, an easy and
visual approach for designers to set up building pa-
rameters and the inclusion of advanced, open source
MOO algorithms are needed to improve the existing
studies, as presented in this paper.

Building Energy Performance Optimization
Optimization studies are being used in building de-
sign after long being computationally intractable, on
multi-scale systems in various topics including opti-
mizing construction costs (Radford and Gero, 1987),
construction elements (Sambou et al., 2009), build-
ing shapes (Wang et al., 2006), building envelopes
(Bouchlaghem, 2000; Radford and Gero, 1987), Heat-
ing, Ventilation, andAir Conditioning (HVAC) systems
(Zhang et al., 2006), etc.

There are two common approaches to MOO
problems: 1) simple aggregation 2) Pareto Optimal.
In simple aggregation, a composite objective func-
tion is defined by combining all of the individual
objective functions. The composite objective func-
tion can be determined with various methods, like
use ofweighting factors. Determining the composite
objective function needs knowledge of the relation-
ships among individual objectives and their weight-
ing factors (Fonseca and Fleming, 1993; Konak et
al., 2006). Nevertheless, in building design these re-
lationships are unknown in many cases. The sec-
ond approach is to seek a set of promising solutions,
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known as Pareto-optimal set (Fonseca and Fleming,
1993), given multiple objectives. Pareto Optimality
supports decision making by finding the equally op-
timal solutions such that it is not possible to improve
a single individual objective without causing at least
one other individual objective to become worse off
(Hoes et al., 2011). A posteriori set of preferencesmay
be used to evaluate the optimal solutions and find
the unique solution later by the designers (Gossard
et al., 2013; Konak et al., 2006).

Visual Programming
While computer programming is often needed for
designers to implement their sophisticated design
intent (e.g. through the use of for-loop and con-
ditional statements) in parametric BIM, visual pro-
gramming interfaces can replace the conventional
elaborate coding with a visual metaphor of con-
necting small blocks of independent functionalities
into a whole system or procedure (Boeykens and
Neuckermans, 2009). Visual programming allows
users create computer programs by manipulating
program elements graphically rather than textually.
Based on a survey of 50 visual programming lan-
guages (Myers, 1990), it is clear that a more visual
style of programming could be easier to understand
for non-programmers or novice programmers (archi-
tects normally fit into these categories). Examples of
visual programming tools for architectural design are
Grasshopper for McNeel Rhinoceros® and Dynamo
for Autodesk Revit®.

METHODOLOGY
In this study an integrated system is developed for
enabling designers to optimizemultiple objectives in
the early design process. A prototype of the system is
created in an open-source visual programming appli-
cation - Dynamo, which can interact with a BIM tool
(Autodesk Revit®) to extend its parametric capabili-
ties. The prototype contains a set of new function
nodes that can be used to optimize building energy
performance.

We have developed multiple Dynamo nodes to

contain essential functions for creating parametric
BIM models in Revit and run parametric simulations
in GBS. A MOO algorithm (Non-dominated Sorting
Genetic Algorithm-II or NSGA-II, Deb et al., 2002) is
created in Dynamo as a package of nodes that can
help designers optimize multiple conflicting objec-
tives and approach to a set of optimal solutions. The
NSGA-II node package is built based on the open
source code [1]. The node "NSGA-II" in Dynamo in-
cludes a package of nodes and plays the main loop
role for population generation in MOO to get to the
optimal solution (figure 1). The node "Initial Solu-
tion Set" generates the initial set of random variables
within the provided range and with the size of popu-
lation defined by user. The output of this node is a list
of variables and objective. The objective values are
null and they are assigned by "Population Evaluate"
node which gets objective values as input parame-
ters.

Figure 1
Implementation of
NSGA-II in Dynamo
to optimize
daylighting and
energy use

This workflow enables the Dynamo code to ac-
cept objective functions as nodes or packages of
nodes. For instance, in this study the "LEED Daylight-
ing" node is created as a package of nodes to calcu-
late the LEED daylight values based on LEED Refer-
ence Guide for Green Building Design and Construc-
tion (USGBC, 2009) as an objective function.

The node "gbXMLExport" in Dynamo generates
energy model data in the Green Building eXtended
Markup Language (gbXML, 2014) format, which con-
tains the necessary information for energy simula-
tion, using Revit's Application Programming Inter-
face (API). The "GBSProject" node is designed to cre-
ate a new project in GBS by extracting the project in-
formation from a BIMmodel such as the project loca-
tion and the building type using Revit API, GBS API,
and the Representational State Transfer (REST) pro-
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tocol. "GBSRun" is designed to create multiple runs
in the GBS project and upload the exported gbXML
files to GBS for whole building energy analysis. When
the simulations are done, GBSRun retrieves the en-
ergy simulation results for further analysis, optimiza-
tion, and visualization (figure 2).

Figure 2
Parametric BIM and
whole building
energy simulation
integration in
Dynamo

The presented system enables designers to ex-
plore design alternatives and at the same time assess
the building performance to search for the most ap-
propriate design.

CASE STUDY
The objectives of the optimization routine for this
case study is tomaximize the number of rooms of the
residential unit that satisfy the requirements of the
LEED IEQ Credit 8.1 for Daylighting while minimizing
the expected energy use. The simulation and calcula-
tion of the energy use requires building information
that BIM can provide, for example geometry informa-
tion, physical material information, and location data
embedded within the model. The workflows devel-
oped in this project can identify parameters from el-
ements within the BIM and explore a set of scenarios
for energy performance and daylighting adequacy.

Climate and Context
The geographic location of the home is in the city
of Indianapolis, Indiana, USA. The climate is domi-
nated by heating loads with 5892 Heating Degree
Days (HDD) on a yearly basis. Due to site constraints,
the long-axis orientation of the structure is fixed at 15
degrees west of true north (figure 3).

Figure 3
Case study building
site and floor plans

Model and Free Parameters (Decision Vari-
ables)
The residential home has six rooms at level one and
two rooms at the second level that are included as
part of the daylighting calculation and energy use for
the entire building. The light admitted to the build-
ing can enter via two fixed curtain walls that are not
included as free parameters in the design space op-
timization. These two curtain systems light the main
living space in the first floor and the balcony in sec-
ond floor. The rooms separated from the main living
space by interior partitions are lit naturally by fixed
windows with a visual transmission coefficient of 0.9.
The width and height of the windows are identified
within the Dynamo interface as free parameters. The
domains of the width and height of the glazing area
are set independently from 0.5' to 7.0' with an incre-
ment of 0.1'.

Optimization Algorithm
The NSGA-II algorithm is implemented with the in-
put of a population size of 100 for each generation,
with the maximum evaluations set at 1000 for a total
of 10 generations. The mutation probability is set at
0.01. The crossover probability is set at 0.9 and both
the mutation distribution index and crossover distri-
bution index are set at 20.0. Figure 4 shows the gen-
eral overview of the MOO system designed for this
study and figure 1 shows its implementation in Dy-
namo to optimize daylighting and energy use of the
building. The Pareto Optimal set from the NSGA-II al-
gorithm is shown in figure 5. This graph shows the
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Figure 4
General overview of
the designed MOO
system

result for 1000 runs for this experiment which took
about 3 hours overall. This graph indicates that the
optimization routine begins to converge on the op-
timal solution for each variable from the third gen-
eration onward. From the graph in figure 6 it can
be seen that windows of various Widths from 1' to
7' meet the requirements for more than 80% of the
rooms correlating with about $150 in variation for
the yearly energy cost. In this instance, windows be-
tween the sizes of 3' and 4' in Height are evaluated, as
this parameter is preferred for the reasonof style to fit
with immutable horizontal datum elements. For de-
sign variations within the bottom 30% of energy cost
and the full satisfaction of the daylightingmetric, the
smallest glazing Width is specified at 2' 8".

Figure 6
Interactive parallel
coordinates plot for
the constraint and
analysis of design
parameters.

Visualizing the results in an interactive parallel
coordinates plot allows the various iterations to be
evaluatedby thedesigner. In figure 7 the chart shows
the sample of design variations that meet 100% of
the LEED Daylighting requirements. Of these the
lowest energy use calculated is $4,265 and the small-
est window size is specified as a 5' width and 3.5'
height.
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Figure 5
Scatterplot
showing the Pareto
Frontier with model
thumbnails
superimposed on
the plot to illustrate
the association
between the
calculated optimal
solutions and the
building forms.

CONCLUSION
The investigation shows that the use of a BIM model
to generate a multiplicity of parametric design vari-
ations for simulated and procedural analysis is a vi-
able workflow for designers seeking to understand
trade-offs between daylighting and energy use. The
availability of a cloud-based energy analysis tool en-
ables thequick evaluationof hundreds of design vari-
ations and the connection to a visual, parametric pro-
gramming environment allows the design space to
be quickly and accurately specified.

Designers with limited parametricmodeling and
programming experience may use the nodes pro-
duced to perform a broad variety of design space
analyses. It is possible to optimize each window's
width and height individually though this method
expands the design space considerably. It is also pos-
sible to include the angle of the building orienta-
tion and the overall building footprint in the set of
free parameters to be modified. For a broader de-
sign space the number of iterations required may be
significantly increased toobtain reliable optimization

results.
In addition to local variables such as window di-

mensions and material variations this system is ca-
pable of producing design options in global building
geometries such as the footprint, the formof the roof,
and the interior layouts. These design options are
considered often by architects and engineers in the
design process. The information embedded within
the BIM can quickly be leveraged to obtain quantifi-
able sensitivity of the performative implications to a
broad set of possible design decisions.

Through the continued development of similar
projects to enable fast BIM-based simulation and rep-
resentation of solution spaces and trade-offs, design-
ers may be able to understand dependencies of de-
sign options on the decision variables at the early
design stage without substantial expertise in energy
modeling and daylighting analysis. For parametric
analysis, large changes in global building geometry
can lead to alterations in structural requirements and
mechanical systems as well. Incorporating a broader
variety of simulations in different domains into the

Contribution 224 (Preprint) - figure and table placement subject to change- eCAADe 32 | 7



Figure 7
Illustration of a
bi-directional
association
between parallel
coordinates and 3D
model views

system will lead to more comprehensive exploration
of the solution space and provide better decision
support for the stakeholders of building construc-
tion.
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