

About the Speaker:
Robert is the Design Technology Manager for Sparling, the largest specialty electrical engineering and
technology consulting firm in the United States, located in Seattle Washington. He provides strategic
direction, technical oversight, and high-level support for Sparling’s enterprise design and production
technology systems. He is instrumental in positioning Sparling as an industry and client leader in
leveraging technology in virtual building and design. Robert has been writing AutoLISP® code since the
release of AutoCAD v2.5, and VBA since introduced in R14. He has customized applications for the
electrical/lighting, plumbing/piping, and HVAC disciplines. Robert has also developed applications for
AutoCAD as a consultant. A former member of the Board of Directors for AUGI®, he is active on AUGI
forums and Autodesk discussion groups.
rbell@sparling.com

Good Habits for Coding in Visual LISP®
R. Robert Bell – Sparling

CP319-1
The power of AutoCAD® lies in its customization capabilities. Visual LISP is a powerful tool for
expanding your options. Unhappily, it is easy to have a “scatter-shot” approach to the way you
write code. This course will broaden your horizons regarding good coding practice. You will learn
the importance of writing modular code. You will see how to identify portions of code that belong
to subroutines and avoid the trap of monolithic applications. Toolbox routines for your own code
are important to reducing the time spent writing the overall application. Some extremely useful
toolbox routines will be discussed. Bring your own ideas for toolbox routines and we will discuss
them.

mailto:rbell@sparling.com

Good Habits for Coding in Visual LISP®

3

Introduction
Let's face it. Many people pick up programming in Visual LISP by coping posted code and
simply tweaking it to fit their needs. This class is going to explore some topics that will help take
Visual LISP code to the next level.

Self-Documenting Code, or The Holy Grail of Programming
Your main code should be concise and brief enough so as to be self-documenting. Indeed, most
of the code you write should reach this goal. Comments should only be required for sections of
code that perform complex operations. This brings up comment formats. There are 4 different
styles. Most common are the single- and triple- semi-colon styles. The other two formats are
double- semi-colon and in-line.

 Single semi-colon, used to comment a line of code on the same line, to the right of the code
 Double semi-colon, comment on a separate line, at the same indent as the code above the

comment
 Triple semi-colon, comment on a separate line, at the left margin
 In-line (;|<comment> |;), comment embedded in the middle of code

The in-line comment is particularly useful for creating code headers. The delimiters can be on
separate lines. Many programmers make verbose comments at the beginning of the file.
However, you will often see the triple- semi-colon style used. Use the in-line style and avoid the
line wrap issues that occur with the triple- semi-colon style.

Notice the function name in Figure 1. Note that it has a prefix, similar to “c:”. You may use any
prefix you desire. This makes it easy to determine functions that have been developed by you in

Figure 1

Good Habits for Coding in Visual LISP®

4

support of the main code. For example, if you prefix all your “toolbox” functions with “i:” you can
easily search a large application for any statements that may be using external toolbox
functions. Also, these prefixes may help you when posting code on forums or discussion groups
for support. As you get ready to post your code you may notice those toolbox functions due to
their prefix and include those external functions. This makes it easier to get support.

Look for sections of code that perform a specific task. Code that is a prime candidate to make
into a function is code that can be boiled down to a single task. For example, you may have a
section of code that is related to returning a list of the attributes for an inserted block. This could
be converted into a function called GetAttributes that takes an inserted block as an argument.

Most functions should be designed so that they return something upon success and nil
otherwise. This permits them to be used as test expressions. For example, when the
GetAttributes function is passed a block reference that doesn't contain any attributes it will
return nil. You can then use the function to verify your data before continuing your code.
(defun sinc:GetAttributes (parent / res)
 (vl-load-com)
(cond ((= (vla-Get-ObjectName parent) “AcDbBlockTableRecord”)
 (vlax-For aObj parent
 (cond ((= (vla-Get-ObjectName aObj) “AcDbAttributeDefinition”)
 (setq res (cons aObj res)))))
 (setq res (reverse res)))
 ((and (= (vla-Get-ObjectName parent) “AcDbBlockReference”)
 (= (vla-Get-HasAttributes parent) :vlax-True))
 (setq res (vlax-Invoke parent 'GetAttributes))))
res)

You can take the above example even further. It is far better to validate all your data before
executing your full code. This avoids the kludge of using quit or exit. The use of the and function
makes this very elegant. The and function will evaluate its expressions in order, and drop out at
the first expression that returns nil. It will not continue to process the rest of its expressions.
Therefore, you may verify each piece of data within a single and statement in the sequential
order of gaining the data.

In the example below, the code is going to check four different data before running the main
expressions. If any of the data returns nil the test will fail and the cond will go to another test.
The first test expression is using the result of user-defined function and is a perfect example of
designing a function to return nil when there is no valid data. The last test expression is
noteworthy because it is executing code within the and statement that would usually been seen
outside the cond expression.
 (cond ((and (setq chkDWT (sinc:GetTemplate))
 (setq chkPlot (wcmatch chkDWT “Sparling*x*.dwt”))
 (setq chkBlank (<= (vla-Get-Count (vla-Get-ModelSpace (sinc:ThisDoc))) 1))
 (setq fileName (getfiled “Select Architect's Titleblock”
 (getvar “DwgPrefix”)
 “dwg”
 16)))
 <main expressions>

So why not just perform the setq statements outside the cond expression? Because there is no
reason to display a dialog box asking the user to select a file if any of the first three conditions
fail. In fact, there is no reason to check the template name when there is no template since
wcmatch would cause an error if sinc:GetTemplate returned nil. There is no reason to check for
1 or less objects in ModelSpace if the template is not correct.

Making a Toolbox, or What Did I Do with That Hammer?
A few very useful “toolbox” routines are described below. One formats a prompt for the user to
provide input and return the user's selection, including a default value. The next one provides a

Good Habits for Coding in Visual LISP®

5

prompt only when a specific flag is set. The final one is a robust error handler that handles
normal exits and also dumps detailed information when a specific flag is set.

Toolbox: Prompting a User for Specific Input
The process of initializing a list of keywords, formatting the prompt string, and dealing with a
default entry is the same no matter how many different times you use the code. Since the
process involves the same statements and tests, with only a few variables, it makes perfect
sense to create a function to wrap the process.
(defun i:GetInp (myPrompt myOptions / inpDefault inpOptions inpPrompt)
 (initget 0 myOptions)
 (setq inpDefault (substr myOptions 1 (vl-string-position (ascii “ “) myOptions)))
 (setq inpOptions (vl-string-left-trim inpDefault myOptions))
 (setq inpPrompt (strcat myPrompt
 “ [“
 inpDefault
 (vl-string-translate “ “ “/” inpOptions)
 “] <“
 inpDefault
 “>: “))
 (cond ((getkword inpPrompt))
 (inpDefault)))

Toolbox: Debug.Print
VBA provides a useful method called Debug.Print to print messages only to the IDE for the
programmer to view. Visual LISP does not have such a mechanism yet the concept of printing
messages for debugging is useful. Imagine being able to tell a user over the telephone to “flip a
switch” and then run the code that is having a problem. Messages then appear at the command
prompt to verify data or code execution. The user may then “turn the switch off” to return the
code to normal prompts.

The code checks if a Visual LISP blackboard namespace
variable named *Debug* has been set. It then takes the
argument and checks if it is supposed to print on a new line. If so, it prefixes “Debug> “ to the
message to help users differentiate normal messages from debug messages. When the
blackboard namespace variable is not set the function returns T so that it won't interfere with
test expressions if it is located in a test expression.
(defun i:DebugPrint (msg)
 (cond ((vl-bb-ref '*Debug*)
 (princ
 (cond ((= (substr msg 1 1) “\n”) (strcat “\nDebug> “ (substr msg 2)))
 (msg))))
 (T)))

Toolbox: Error Handling in the New Millennium
Error handling in Visual LISP is more robust than in early versions of AutoLISP. Prior to
AutoCAD 2000, you had to save the current error handler to a variable, define the new error
handler, and finally restore the original error handler from the variable at the end of your code. If
you have code similar to the code below, you are not using Visual LISP to its full advantage.
;;; R14 error handling
(defun newErr (msg)
 (princ (strcat “newErr> “ msg))
 (cond (oldHi (setvar “Highlight” oldHi)))
 (setq *Error* oldErr))

Setting a blackboard variable
(vl-bb-set '*Debug* T)

Good Habits for Coding in Visual LISP®

6

 (defun C:TestR14 (/ oldErr oldHi inp1 inp2)
 (setq oldErr *Error*
 Error newErr
 oldHi (getvar “Highlight”))
 (setvar “Highlight” 0)
 (princ (strcat “\nHighlight is set to “ (itoa (getvar “Highlight”))))
 (setq inp1 (getdist “\nSpecify numerator: “))
 (setq inp2 (getdist “\nSpecify denominator: “))
 (princ (/ inp1 inp2))
 (setvar “Highlight” oldHi)
 (setq *Error* oldErr)
(princ))

That sort of code was necessary in early versions of AutoCAD because, even if you attempted
to declare the error handler to be local, it would become global as soon as it ran. So it was
necessary to save the original global error handler, define the new error handler (which would
become global as soon as it ran, regardless of it being declared local), and reset the original
error handler at the end of the new one. All of that is unneeded in most AutoCAD installations at
this time.

Visual LISP error handlers remain local when they are defined as local and execute. Therefore,
creating a reliable local error handler for a specific application is simple. Not only that, but they
can also be used for a normal exit from the application. Think about it for a moment. The same
tasks you perform when normally exiting an application are the same tasks you will want to
perform when handling an error. Tasks such as returning the environment to the original state
need to run in both cases. All that is different is how you handle errors themselves. In most
cases, you are going to report the error and that's all. So the difference between a function for
normal exit and abnormal exit boils down to just a print statement.

With that in mind, note the following code. There is a separate routine called i:Exit for exiting the
application. The function checks the msg variable and, if it is nil, reports no error. If msg is
bound, there was an error, so it is reported unless it was simply the user hitting the Escape key.
After that, regardless of the state of the msg variable, the remainder of the code runs,
performing the restoration code. The i:Exit function then ends with a princ statement which
presents a clean exit from the routine, either in an error condition or normal exit condition. Note
that the main code calls the i:Exit function with nil as the argument as the last statement of its
code. There is no need for a princ statement since the i:Exit function will provide it.

In order for the i:Exit routine to run as an error handler, the variable *Error* is declared as local
in the main application and then bound to the i:Exit function. This causes i:Exit to act as an error
handler, yet it remains local to the application. The global error handler is unaffected.
;;; 2000 error handling
(defun i:Exit (msg)
 (cond ((not msg)) ; normal exit
 ((member msg '(“Function cancelled” “quit / exit abort”))) ; <esc> or (quit)
 ((princ (strcat “\nError: “ msg)) ; fatal error, display it
 (cond ((vl-bb-ref '*Debug*) (vl-bt))))) ; if in debug mode, dump backtrace
 (cond (oldHi (setvar 'Highlight oldHi))) ; restore original setting
 (princ)) ; clean exit

 (defun C:TestR17 (/ *Error* oldHi inp1 inp2)
 (setq *Error* i:Exit
 oldHi (getvar 'Highlight))
 (setvar 'Highlight 0)
 (princ (strcat “\nHighlight is set to “ (itoa (getvar 'Highlight))))
 (setq inp1 (getdist “\nSpecify numerator: “))
 (setq inp2 (getdist “\nSpecify denominator: “))
 (princ (/ inp1 inp2))
 (i:Exit nil))

Look again at the error handler. There is a statement that checks for the state of the blackboard
namespace variable *Debug*. If it is not nil then the vl-bt function is run. This is Visual LISP's
backtrace function and will display the statement that caused the error. Reading the backtrace is
not trivial, yet you can usually isolate the cause. Look at the following backtrace from running

Good Habits for Coding in Visual LISP®

7

the above code and providing zeros as both arguments. Find the line that begins with “:ERROR-
BREAK”. The line that follows is the line in the code that caused the error.
Backtrace:
[0.50] (VL-BT)
[1.46] (I:EXIT “divide by zero”) LAP+119
[2.40] (_call-err-hook #<USUBR @13b28cf8 I:EXIT> “divide by zero”)
[3.34] (sys-error “divide by zero”)
:ERROR-BREAK.29 “divide by zero”
[4.26] (/ 0.0 0.0)
[5.20] (C:TESTR17) LAP+135
[6.15] (#<SUBR @13b28d5c -rts_top->)
[7.12] (#<SUBR @1340a35c veval-str-body> “(C:TESTR17)” T #<FILE internal>)
:CALLBACK-ENTRY.6 (:CALLBACK-ENTRY)
:ARQ-SUBR-CALLBACK.3 (nil 0)

Autoloading, or “I'm Sick and Tired of Loading My Tools”
Another advantage to modularizing your code is that you can save these functions that perform
distinct tasks as a library of functions and use them in new code. The key to doing this is to
have a good autoloading function. Autodesk provides an autoload function in Acad2009Doc.lsp
but this function has a few limitations. (Note that it is still very useful for loading ARX
applications!)

 It only creates command-line functions
 It cannot create functions that take arguments
 It cannot load .vlx or .fas files before finding a .lsp file of the same name
 It cannot accept subfolders in the filename specification
 It does not warn you if the target file does not exist when making the stub code
 It will fall into an endless loop when a function doesn't exist in the target file

Figure 2 on the next page is used to provide the narrative for what the code does. This is a case
of code that is not self-documenting without additional comments. The code in the figure is
replicated as text in the appendix for copy and paste, without some of the comments seen in
Figure 2.

The i:FindApp function searches for the 3 supported lisp file formats, in the order of compiled to
source code. The first condition is a provision for the person writing code. If they set the
environment variable AcadCode to the folder holding their source code, all auto-loading code
will load from that source folder or its subfolders. This makes it easy to keep the source code in
a location different than the production code. Yet the programmer's code will always be loading
from the source code folder so they can thoroughly test the code before releasing it to
production.

The i:AutoLoad function takes care of all of the deficiencies in Autodesk's autoload function.

 It can create normal functions in addition to command-line functions
 It can create functions that take arguments
 It can load .vlx or .fas files first
 It can accept subfolders in the filename specification, e.g. a Toolbox folder
 It warns you if the target file does not exist when making the stub code
 It will not fall into an endless loop when a function doesn't exist in the target file, rather, it

displays an alert to warn the programmer

Good Habits for Coding in Visual LISP®

8

Figure 2 Autoloading Functions

Storing Data the User Cannot See, or “How Does He Do That?!”
At times you need to store data in a drawing that isn't easily accessible to the user. The best
mechanism is to use Dictionaries and XRecords. Data stored in this fashion are also available to
other languages used to customize AutoCAD, such as VBA and C#. This is far superior than the
(vlax-ldata-*) functions. LData is not visible to VBA applications and therefore is a poor choice.

Dictionaries are primarily containers for XRecords. XRecords
store the data in a DXF-style structure of group codes. The
DXF Reference lists what types of data may be stored in
specific group codes. You may use codes 1 thru 369, except 5,
105, and 210-239.

When attempting to read the data in an XRecord you would first need to check if the host
dictionary exists. If it exists, attempt to retrieve the XRecord. If you get the XRecord you could
trim the header data that AutoCAD attaches to the XRecord.

Setting an XRecord is similar to reading an XRecord. You first need to get the host dictionary.
The difference at this point is that if the dictionary does not exist you need to create it. Once you
have a valid dictionary you would search for an existing XRecord of that name and delete it if
found. (You cannot overwrite an existing XRecord, you must delete the XRecord and recreate
it.) At this point you may add the new XRecord to the dictionary.

Certain versions of AutoCAD may
have additional undocumented
limitations in usable DXF codes.

Good Habits for Coding in Visual LISP®

9

It is a good idea to add a version number to your XRecord for migration purposes. This would
give you the ability to migrate legacy data into the current form.
(defun i:ReadXRec (dictName xrName / dictObj xrObj)
 (cond ((and (setq dictObj (dictsearch (namedobjdict) dictName))
 (setq xrObj (dictsearch (cdr (assoc -1 dictObj)) xrName)))
 (cdr (vl-member-if (function (lambda (a) (= (car a) 280))) xrObj)))))

 (defun i:SetXRec (dictName xrName data / dictObj)
 (cond ((setq dictObj (cdr (assoc -1 (dictsearch (namedobjdict) dictName)))))
 ((setq dictObj (dictadd (namedobjdict)
 dictName
 (entmakex '((0 . “DICTIONARY”) (100 . “AcDbDictionary”)))))))
 (cond ((dictsearch dictObj xrName) (entdel (dictremove dictObj xrName))))
 (dictadd dictObj
 xrName
 (entmakex (append '((0 . “XRECORD”) (100 . “AcDbXrecord”)) data))))

;;; Samples
(i:ReadXRec “AU2008” “Test”)
(i:SetXRec “AU2008” “Test” '((1 . “Version”) (40 . 1.0)))
(i:ReadXRec “AU2008” “Test”)
(i:SetXRec “AU2008” “Test” '((1 . “Version”) (40 . 1.1) (60 . 1)))

Efficiently Opening Files, or “Warp Speed, Captain!”
ObjectDBX allows you to access drawings without loading them in the drawing editor. This
results in a huge improvement in processing speed at the expense of not having the user
interface. The lack of a user interface means that you cannot use selection sets. There may also
be issues when modifying objects such as attributes. It is also useful for decomposing complex
objects without the risk of modifying the original object or its host drawing.

The performance gains make ObjectDBX an excellent tool for querying multiple drawings. For
example, many firms have developed applications that allow them to create and maintain sheet
indexes across hundreds of drawings in seconds rather than hours.

ObjectDBX cannot directly work on drawings that are read-only or templates. Therefore, a
simple wrapper function that detects those conditions and provides a temporary drawing file to
use in such a case is useful.
(vl-load-com)
(load “C:\\Datasets\\CP319-1\\Toolbox\\Get Attributes.lsp”)

(defun i:IsReadOnly (fileName / fileH)
 (cond ((setq fileH (open filename “a”))
 (close fileH))
 ((not fileH))))

 (defun i:OpenDBXDoc (fileName / newFile dbxDoc chkOpen)
 (cond ((or (i:IsReadOnly fileName)
 (= (strcase (vl-filename-extension filename)) “.DWT”))
 (setq newFile (vl-filename-mktemp “Temp .dwg”))
 (vl-file-copy fileName newFile)))
 (setq dbxDoc (vla-GetInterfaceObject
 (vlax-Get-Acad-Object)
 (strcat “ObjectDBX.AxDbDocument.” (substr (getvar “AcadVer”) 1 2))))
 (setq chkOpen (vl-catch-all-apply
 'vla-Open
 (list dbxDoc
 (cond (newFile)
 (fileName)))))
 (cond ((vl-catch-all-error-p chkOpen) (vlax-Release-Object dbxDoc) nil)
 (dbxDoc)))

 (defun i:CloseDBXDoc (dbxDoc)
 (vl-catch-all-apply 'vlax-Release-Object (list dbxDoc))
 (setq dbdDoc nil))

Good Habits for Coding in Visual LISP®

10

;;; Samples
(defun C:Test1 (/ chk res)
 (setq chk (i:openDBXDoc “C:\\Datasets\\CP319-1\\TestDBX.dwg”))
 (setq res (vla-Get-TextString
 (car
 (sinc:GetAttributes
 (vla-Item (vla-Get-Block (vla-Item (vla-Get-Layouts chk) “Layout1”))
 1)))))
 (setq chk (i:CloseDBXDoc chk))
 (princ (strcat “\nFound: “ res))
 (princ))

;; Slow motion
(defun C:Test2 (/ myDocs i fileName myDoc)
 (setq myDocs (vla-Get-Documents (vlax-Get-Acad-Object)))
 (setq i 1)
 (repeat 20
 (setq fileName (strcat “C:\\Datasets\\CP319-1\\DBX Sample Drawings\\E2.”
 (itoa i)
 “.dwg”))
 (setq myDoc (vla-Open mydocs fileName))
 (princ
 (strcat “\n”
 (vla-Get-TextString
 (car
 (sinc:GetAttributes
 (vla-Item (vla-Get-Block (vla-Item (vla-Get-Layouts myDoc) “Layout1”))
 1))))))
 (vla-Close myDoc)
 (setq i (1+ i)))
 (princ))

;; Warp speed
(defun C:Test3 (/ myDoc i fileName)
 (setq myDoc (vla-GetInterfaceObject
 (vlax-Get-Acad-Object)
 (strcat “ObjectDBX.AxDbDocument.” (substr (getvar “AcadVer”) 1 2))))
 (setq i 1)
 (repeat 100
 (setq fileName (strcat “C:\\Datasets\\CP319-1\\DBX Sample Drawings\\E2.”
 (itoa i)
 “.dwg”))
 (vla-open myDoc fileName)
 (princ
 (strcat “\n”
 (vla-Get-TextString
 (car
 (sinc:GetAttributes
 (vla-Item (vla-Get-Block (vla-Item (vla-Get-Layouts myDoc) “Layout1”))
 1))))))
 (setq i (1+ i)))
 (setq myDoc (i:CloseDBXDoc myDoc))
 (princ))

DbMod, or, Never Start AutoCAD with a Modified “New” Drawing
This condition is all too common. The moment a firm begins to customize the AutoCAD
environment at startup is usually the moment the users start complaining about Document1.
Changing the environment at startup is perfectly acceptable. However, if you make changes that
cause a drawing to be immediately “dirty” when the user hasn't done anything, they will not
tolerate the situation for long.

The sad part is this: in most cases you can avoid the issue with a few lines of code. A drawing is
“dirty”, flagged as modified, when the system variable DbMod is greater than 0. This system
variable is read-only. However, for years there has been a couple of AutoLISP functions that
can save the current state of the system variable and then restore that saved state back into the
otherwise read-only system variable.

Place this statement at the top of the code that starts your customization: (acad-push-dbmod).

Good Habits for Coding in Visual LISP®

11

This saves the current state. Note that if the drawing or environment is already “dirty” this will
save the dirty state. In some cases, such as opening legacy AEC-based drawings the drawing
database may be altered before your code begins to execute.

Place this statement near the end of your code: (acad-pop-dbmod).

This restores the state of the system variable at the time you saved it. In most cases this means
that blank drawings are no longer marked as modified before the user has done anything.

Conclusion
The topics covered in this handout only scratch the surface of what is possible with Visual LISP.
The techniques of self-documenting code, modular functions, init-and-forget autoloading, storing
data, opening AutoCAD drawings at high speed, and reducing false modifications all make code
more efficient. Use this handout as a launch pad to developing (groan, sorry for the pun) good
coding habits.

These techniques are not simply one person’s view on how to write code. Practices and
techniques such as these are applied by professional programmers no matter what language is
used. The book “Code Complete, 2nd Edition” by Steve McConnell (ISBN 0735619670) is
recommended reading for anyone wishing to further develop these presented techniques.

Good Habits for Coding in Visual LISP®

12

Appendix
(defun i:FindApp (fileName / res)
 (cond ((and (getenv “AcadCode”)
 (setq res (findfile (strcat (getenv “AcadCode”) “\\” fileName “.lsp”))))
 res)
 ((findfile (strcat fileName “.vlx”)))
 ((findfile (strcat fileName “.fas”)))
 ((findfile (strcat fileName “.lsp”)))
 ((findfile fileName))))

 (defun i:AutoLoad (data / fileName funcs warnUser fqnFilename)
 (mapcar 'set '(fileName funcs) data)
 (setq warnUser (strcat “Unable to load “ fileName “.”))
 (cond ((setq fqnFileName (i:FindApp fileName))
 (mapcar (function
 (lambda (aFunc)
 (eval
 (cond ((= (type aFunc) 'LIST)
 (list 'defun-q
 (nth 0 aFunc)
 (nth 1 aFunc)
 ;; The below statement is needed to avoid
 ;; endless loops where there is a bad
 ;; function name but the filename exists.
 (list 'setq (nth 0 aFunc) nil)
 (list 'load fqnFileName warnUser)
 ;; If the load is successful when the wrapper
 ;; runs, the function name is once again bound.
 ;; The first condtion will execute it.
 ;; Otherwise, the variable is still nil and
 ;; the alert is thrown.
 (list 'cond
 (list (nth 0 aFunc) (cons (nth 0 aFunc) (nth 1 aFunc)))
 (list (list 'alert
 (strcat “Cannot find function name “
 (vl-symbol-name (nth 0 aFunc))
 “ in file “
 fileName
 “.”))))))
 (T
 (list 'defun-q
 aFunc
 nil
 ;; The code below has the same logic
 ;; as the above code
 (list 'setq aFunc nil)
 (list 'load fqnFileName warnUser)
 (list 'cond
 (list aFunc (list aFunc))
 (list (list 'alert
 (strcat “Cannot find function name “
 (vl-symbol-name aFunc)
 “ in file “
 fileName
 “.”))))))))))
 funcs))
 ((/= (logand (getvar “CmdActive”) 4) 4) (alert warnUser))
 ((princ (strcat “\n” warnUser)) nil)))

;;; Samples
(i:AutoLoad '(“BogusFile” (i:GetInp)))
(i:AutoLoad
 '(“Toolbox\\Get Input” ((i:GetInp (myPrompt myOptions)) i:AmBogus)))

